CLOVEWOOD

Final Environmental Impact Statement

Section 10.5 Revised Stormwater Pollution Prevention Plan (SWPPP)

P.O. Box 2020, Monroe New York 10949 Tel: (845) 774 · 8000 | cpcnyni@gmail.com

Stormwater Pollution Prevention Plan CLOVEWOOD SUBDIVISION Village of South Blooming Grove Orange County, NY Revised February 2022 Revised January 2019 Prepared March 2018

Summary

This Stormwater Pollution Prevention Plan (SWPPP) is prepared for a project known as Clovewood, a proposed development comprised of 600 residential lots situated on approximately 708 acres of land lying on the south side of NYS Route 208 and County Route 27 within the Village of South Blooming Grove in Orange County NY. The objective of the SWPPP is to minimize potential impacts to the watershed from the development. A full stormwater analysis has been performed in accordance with New York State SPDES Permit GP-0-20-001 requirements. Erosion and sediment control, stormwater quantity management, run-off reduction features and stormwater quality control measures will be implemented in conformance with the NYS Stormwater Design Manual, (Jan. 2015 ed.), the NYS Standards for Erosion and Sediment Control, (Nov. 2016 ed.), and SPDES permit criteria. A pre and post developed hydrologic analysis has been completed and the impacts from the proposed development have been quantified. This SWPPP narrative, with attached Appendices, together with the drainage system and erosion control engineered drawings, constitute the contract documents necessary to obtain coverage under the NYS SPDES Permit. With proper implementation and maintenance, the best management practices chosen for the Clovewood project will meet all SPDES Permit criteria while mitigating potential impacts to downstream and off-site properties to the greatest extent practical.

Property and Contact Information

Property Address:

505 Clove Road Monroe, NY 10950

Coordinates:

Latitude: 41.387 Longitude:-74.166

Owner:

Keen Equities, LLC C/o Y.C. Rubin 4922 11th Avenue Brooklyn, NY 11219

Developer:

CPC LLC C/o Simon Gelb PO Box 2020 Monroe, NY 10949 845-774-8000 cpcnynj@gmail.com

Engineer:

Kirk Rother, PE, Consulting Engineer, PLLC Kirk Rother, PE 5 Saint Stephens Lane Warwick, NY 10990 845-988-0620 krother@kirkrother.com

NYS DEC Region:

Region 3

NYS DEC Spill Hotline: 800-457-7362 or 631-444-0320 (Region 3 spill office)

Underground Utilities:

Dig Safely NY Dial 811

Table of Contents

Title Pagei
Summaryii
Property and Contact Informationiii
Table of Contentsiv
Contractor's Certification Statement
Section 1 – Introduction and Document Requirements
Section 2 – Project Description
Section 3 – Site Hydrology
Section 4 – Run-off Reduction and Stormwater Quality
Section 5 – Detention and Stormwater Quantity9
Section 6 – Erosion and Sediment Control
Section 7 – General Construction Sequence
Section 8 – Operation and Maintenance
References
List of Appendices
Appendix ANotice of Intent; MS4 Acceptance Form; Notice of Termination Form; SPDES Permit GP 0-15-002
Appendix BUSDA Soils Information; FEMA Map; NWI Map; NYS DEC Environmental Resource Map; OPRHP Cultural Resource Sensitivity Map
Appendix CWater Quality and Run off Reduction Calculation Spreadsheets
Appendix DTR-20 HydroCAD Model
Appendix EConstruction and Maintenance Inspection Checklists; Sample Construction Site Inspection and Maintenance Log Book
Appendix FPre and Post Developed Draiange Basin Maps; Freshwater Wetlands Map

List of Tables

Table 1 - 24 Hour Rainfall Values	10
Table 2 - Pre-Developed Runoff Calculations	11
Table 3 - Post-Developed Runoff Calculations	12
Table 4 - Comparison of Pre- & Post-Developed Peak Flow Rates	14

Clovewood Village of South Blooming Grove Orange County, New York

Contractor's Certification Statement

To be signed by all Contractors and Sub-Contractors performing any site work that involves ground disturbance.

I hereby certify that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the qualified inspector during a site inspection. I also understand that the owner or operator must comply with the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I am aware that there are significant penalties for submitting false information that I do not believe to be true, including the possibility of fine and imprisonment for knowing violations.

Contractor's Name	
Contractor's Address	
Responsible Agent's Name (Print)	
Responsible Agent's Title	
Responsible Agent's Signature	Date
List SWPPP Components Contractor is responsible for.	

Provide additional Contractor Certification Sheets if more than one contractor will be involved in ground disturbance.

Section 1 – Introduction and Document Requirements

This Stormwater Pollution Prevention Plan is prepared for Clovewood, a proposed multi-family residential development comprised of approximately 600 dwelling units situated on approximately 708 acres of land which lies on the east side of NYS Route 208 and County Route 27 (a.k.a. Clove Road) within the Village of South Blooming Grove. The property is bounded on the north by the Village of South Blooming Grove – Town of Blooming Grove municipal boundary, on the east by the ridgeline of Schunnemunk Mountain, on the south primarily by vacant land and on the west by NYS Route 208 and Clove Road. The site is identified as Tax Lot Section 208 Block 1 Lot 2 and Lot 3 on current Village of South Blooming Grove tax maps and lies entirely within the Village's RC-1 and RR Zoning Districts. The project's purpose is to serve the housing needs of South Blooming Grove and surrounding communities.

This SWPPP is prepared to minimize potential impacts to the watershed from the development. Potential impacts include soil erosion during site construction and the introduction of pollutants such as garbage, construction debris, chemicals and sediments from roof tops, roadways, construction equipment and people both during and after construction. The SWPPP also addresses potential downstream impacts such as flooding and channel erosion caused by the conversion of natural areas to impervious surfaces which increases the rate and volume of stormwater run-off.

Stormwater quantity management, run-off reduction practices, stormwater quality control measures and erosion control measures have been designed and will be implemented in conformance with NYS SPDES Permit GP-0-20-001 requirements. The text of the SPDES Permit, together with associated Permit Forms, can be found in Appendix A of this document. The specific best management practices to be implemented are based on standardized criteria as set forth in the NYS Stormwater Design Manual, (Jan. 2015 ed., hereinafter referred to as the Manual) and the NYS Standards for Erosion and Sediment Control, (Nov. 2016 ed.).

Planned improvements include the construction of the 600 residential structures with associated roadways and parking areas. Four community center facilities are also proposed. Accessory improvements include such features as sidewalks, playground areas, water and sewer utilities and underground telephone, electric and gas. A more detailed project description can be found in Section 2 of this report.

The 708 acre site lies entirely within the Lower Hudson River Drainage Basin, Hudson-Wappingers Sub Basin, Moodna Creek watershed. The site slopes from its highest elevations at the ridge of

Schunnemunk Mountain on the east downward toward the lowest elevations of the site in the southwest. Run off leaves the site via Perry Creek to the north and three unnamed tributaries to Satterly Creek to the south. The property is currently improved by the remains of a former county club known as the Lake Ann Country Club. The remains of the county club are concentrated in the north western extremities of the site leaving the majority parcel as vacant woodland.

A review of State and Federal data reveal that there are no flood plains, inventoried state wetlands or impaired waters in the area of the development. Several areas of federal wetland exist within the parcel and all of these wetland areas will be preserved by the design of the subdivision. One wetland area is large enough to eligible for inclusion in the NYS wetland inventory. This wetland area has been afforded the same protections as if it were a listed NYS wetland area. A more detailed description of existing site hydrology can be found in Section 3 of this report with associated regulatory mapping and supporting information located in Appendix B.

Stormwater management will be accomplished via an open and closed storm drain infrastructure which consists roof leaders, splash blocks, rain-gardens, drainage swales, catch basins, pipes, culverts, bio-retention areas, and stormwater detention ponds. Run-off reduction practices will be implemented in an effort to retain stormwater run-off at its source with the primary run-off reduction practice used on the Clovewood project being rain gardens on individual lots, where practical, or bioretention practices for larger impervious areas. Approximately 50% of the site is slated to remain as permanent open space allowing for substantial reduction in water quality needs due to the preservation of the existing natural landscape. A minimum 100-foot riparian buffer is being proposed from all wetland areas allowing for additional stormwater quality reductions. All stream channel crossings will be by means of open bottom culverts. Impervious area reduction will be accomplished by the planting of trees in the areas adjacent to buildings and roadways. The conservation type subdivision design proposed for the Clovewood development results in substantial reductions in roadway lengths and thereby much less impervious area as compared a conventional type subdivision. Additional description of run-off reduction measures and water quality volume can be found in Section 4 of this report with supporting maps and worksheets included in Appendix C. Detention will be provided to limit peak post-developed flow rates to pre-developed levels. A TR-20 Hydrologic Analysis has been performed for the 1-, 2-, 10-, 25- and 100-year storm events and attenuation of the peak discharge rates for the aforementioned storms will satisfy SPDES permit requirements for Channel Protection (Cpv), Over bank Flood Control (Qp) and Extreme Flood Control (Qf). Given that the properties topographic setting includes the ridge of Schunnemunk Mountain, there is no possibility of run-off from future upstream development entering the site which

eliminates the need to design the stormwater management facilities for the ultimate upstream buildout.

Detention will be accomplished by a system of fourteen stormwater management ponds that area situated throughout the developed area of the site. All stormwater conveyance infrastructure has been sized to safely pass flow rates for the 25-year storm. Stormwater conveyance features that have been designed to allow upstream run-off from undeveloped portions of the site to pass through the developed areas have been sized to accommodate the 100-year storm event. A more detailed description of stormwater quantity control, including a pre and post developed hydrologic analysis, can be found in Section 5 of this report. The supporting HydroCAD model based on TR-20 methodology can be found in Appendix D. Drainage Basin Maps depicting the pre and post developed hydrologic conditions can be found in Append F.

Erosion control will be accomplished via means of temporary and permanent erosion control measures. Erosion control features will be implemented prior to the start of construction activities. The design and placement of the erosion control practices can be found on the Erosion Control Plan sheet of the Clovewood drawings with associated construction details being found on in the Erosion Control Details sheet. Erosion control measures shall be inspected daily by a "Trained Contractor" to be employed by the excavation company. The project Sponsor seeks a waiver from the Village of South Blooming Grove as the MS4 regulatory entity to allow for an increase in the area allowed to be disturbed at any one time from 5 acres to 15 acres given the scale of the project. If the waiver is granted, a thorough review and report by a "Qualified Inspector" must be performed at least twice every seven days as compared to once per seven days if the area of disturbance was limited to five acres. Defects noted shall be corrected immediately. Weekly inspection logs shall be kept at the project site and made available for review by the Regulatory Agency having jurisdiction. A more detailed discussion of erosion and sediment control can be found in Section 6 of this report with Erosion Control Checklists and a sample Construction Site Logbook located in Appendix E. Maintenance of erosion control measures will be the responsibility of the project sponsor. Included in the erosion control plan is a general sequence of construction.

A "Notice of Intent" and "MS4 Acceptance" Form has been completed and will be filed with the New York State Department of Environmental Conservation to obtain coverage under the SPDES Permit. A copy of these Forms can be found in Appendix A. All contractors and subcontractors involved in activities which will result in site disturbance, or effect stormwater runoff, will be required to familiarize themselves with both this written SWPPP and the water quality, quantity and erosion control measures shown on the approved Site Plan. Earthwork contractors will need to attest to their

familiarity with the stormwater documents by signing of the written Certification found at the beginning of this report.

A copy of the approved Clovewood Subdivision Plan, this written Stormwater Pollution Prevention Plan report, signed Contractor Certification Statement, completed Notice of Intent, completed MS4 Acceptance Form and Department of Environmental Conservation acknowledgement letter with the site specific permit number will be kept at the construction site. All Maintenance Inspection Checklists and the Construction Site Log Book will also be kept at the construction site and made available for review by regulatory agencies. Upon completion of construction activities and vegetative stabilization of the built site, a "Notice of Termination" will be filed with the New York State Department of Environmental Conservation to terminate SPDES Permit coverage.

By implementing the above best management practices, stormwater quality objectives shall meet or exceed those required by the New York State SPDES Permit for Construction Activities.

Section 2 – Project Description

The 708 acres comprising Clovewood are currently improved by the remains of the Lake Ann Country Club. These improvements include 47 single family structures, four single story multi-family structures, several outbuildings, roadways the remains of a former golf course and Lake Ann itself, which is a man-made lake. Several existing trails also traverse the property. The presence of stone walls reveals prior agricultural uses of the property and a review of USDA aerial surveys from the USDA Soil Survey of Orange County, NY, taken in the 1970's, indicate that the western portions of the property were being farmed at that time.

Soils on the site are comprised predominantly of Mardin types soils which make up approximately 50% of the land area, with the second most predominant soil type being Swartswood type soil comprising approximately 25% of the land area. The aforementioned soils are of hydrologic soil groups D and C respectively. The remaining acreage is a mix of silt loams, sand and gravels, and water surface area with hydrologic soil classifications ranging from A to D. Areas of the south western portion of the property, comprised of Udorthents type sand and gravel show evidence of prior mining activities.

Topography on the site varies from relatively flat in the central western portions the site, adjacent to Clove Road in the area of wetland #1, too steeply sloping in the easternmost extremities of the site

comprising the ridgeline of Schunnemunk Mountain. The highest elevations on the ridge are found to be approximately 1,370 feet above sea level with the lowest elevation of the site, lying in the southwesterly corner of the property, having an elevation of approximately 480 feet above sea level. The resultant elevation change is computed to be approximately 890 feet. A preliminary analysis of slopes reveals that approximately 20% of the property is sloping at less than 10%, approximately 70% of the site slopes in the range of 10% to 15%, with the remaining 10% of the site being sloped in excess of 15%.

Cover conditions on the site are found to include approximately 592 acres of woodland, 54 acres of meadow and brush, 42 acres of old golf course area, 14 acres of lawn in the area of the former country club, 35 acres of wetlands, and 5 acres of impervious surfaces from the country clubs' structures and roadways.

Proposed improvements include the construction of 600 detached dwelling units, four community centers with associated improvements, park and playground areas and other improvements such as utilities, roadways, sidewalks and the stormwater management system.

Access to the site will be by means of two connection points to the existing road network. The southerly entrance will connect directly to NYS Route 208 with the northerly entrance connecting to Clove Road. The entry points will convey vehicle and pedestrian traffic onto approximately 32,000 linear feet of new roadway and approximately 65,000 linear feet of new, five-foot-wide sidewalk.

14 stormwater management ponds and 54 bio-retention areas will accomplish the majority of the stormwater management objectives. Sanitary sewer will be accomplished by a new, on-site sewage treatment plant that will discharge treated sewage to one of the existing on-site tributaries to Satterly Creek. A new gravity collection system comprised of sewer mains and manholes, together with one proposed sewer pump station, will convey raw sewage to the plant. Water supply will be accomplished by a new central water system comprised of multiple on-site water wells, new distribution piping, fire hydrants and multiple on-site water storage tanks.

Total post developed impervious area is computed to be approximately 73.5 acres. Subtracting the five acres of existing impervious area, which will be reclaimed, results in a net increase in impervious area of approximately 68.5 acres. The total area of land to be disturbed as a part of the construction activities is computed to be approximately 249.4 acres. This acreage includes areas of grading and stormwater management facilities which will ultimately either be replanted with vegetation or become

new water surface area. Within this disturbed area will be approximately 109 acres of lawns, landscaping and recreational areas.

Section 3 – Site Hydrology

The Clovewood site lies entirely within the Lower Hudson River Drainage Basin, Hudson-Wappingers Sub Basin, Moodna Creek watershed. Stormwater from the site discharges in two general directions. The northern portions of the site comprise the headwaters of Perry Creek and discharge off-site to the north to form Perry Creek. Perry Creek then flows to the north and west for approximately three miles to connect with Moodna Creek. The remaining majority of the site discharges to the south via two existing box culverts under New York State Route 208 and one existing box culvert that discharges under CR 27 then under Route 208 to then continue flowing to the south and west into Satterly Creek. Satterly Creek continues its course of drainage to the west until its confluence with Moodna Creek just east of the Village of Washingtonville.

Several areas of regulated wetland exist on the site. The most prominent wetland area lies in the central western extremities of the site, adjacent to Clove Road and comprising the water surface of Lake Anne. The area is identified as Wetland Area #1 can be seen on the project's freshwater wetland map, a copy of which can be found in Appendix F. Although the wetland is not currently identified as a New York State freshwater wetland, the New York State Department of Environmental Conservation has indicated that, given its 23-acre size, approximately 4.5 acres of which is the water surface of Lake Anne, it would be eligible for inclusion in the NYS wetland inventory. In consideration of this the DEC has indicated that they would like the project sponsor to consider applying the states freshwater wetland protections to Wetland #1 as if it was a state regulated wetland. The sponsor has agreed to do so. In addition to Wetland Area #1 there are fourteen additional wetland areas identified as federal wetland "E" through "T" and having a cumulative size of approximately 11.8 acres. A single non-jurisdictional wetland, identified as wetland "P", is also present on the site and has an area of approximately 0.4 acres.

Given the size and slope of the property, several on-site streams have formed which convey runoff from the upper portions of the site to the discharge points described above. Sixteen distinct stream channels have been identified on the property having a total area of approximately 2.1 acres. The stream locations can also be found on the wetland map in Appendix F.

There is no proposed disturbance or fill within any of the wetlands. Approximately 2,280 LF of temporary disturbance is proposed within the voluntary 100-foot buffer to Wetland #1 for the purposes of installing a gravity sewer main and force main. It is noted that the area within which the disturbance is proposed is already improved by an existing dirt road that has historically been the main access point the property. Approximately 295 linear feet of various drainage channels or ephemeral stream will be piped or rerouted due to the development. All other crossing will be open bottom crossings that will maintain the existing stream channels natural stream bottom.

Section 4 – Run-off Reduction and Stormwater Quality

Water quality objectives for Clovewood are based on the 90% rule as set forth in Chapter 4 - Unified Sizing Criteria in the *NYS Stormwater Design Manual* (the Manual). The specific goal is to capture and treat run-off from 90% of the 24-hour rainfall events that can be expected to occur at a site. The volume of water to be treated is directly proportional to the area that is tributary to the practice and the amount of impervious cover within that area. The 90th Percentile – 24-hour Rainfall value for the Clovewood property, as interpolated from Figure 4.1 of the Design Manual, is taken to be 1.42 inches. The resultant water quality volume, or WQv, as computed using the Unified Sizing Criteria is found to be 402,329 cubic feet.

Run-off Reduction is an important component of water quality. Run off reduction measures encourage the recharge of surface water into the aquifer by reducing the volume of storm water run-off leaving the site. Run off reduction is best accomplished by leaving areas in their natural state, which the Clovewood development does by virtue of its clustered design and preservation of open space. Where improvements are proposed, run off reduction is typically accomplished by infiltrating stormwater into the underlying soil and by managing stormwater in a distributed manner via multiple, widely spaced practices placed near the impervious source.

The Run-off Reduction objective set forth by the Design Manual is to reduce the volume of run-off equal to 100% of the computed water quality volume. The primary means of meeting this goal in accomplished through infiltration. Site constraints, such as seasonal high groundwater, shallow depth to bedrock or soils having a low permeability, can preclude the ability to reduce 100% of the water quality volume. In this circumstance a minimum runoff reduction volume (RRv) must be met.

The soils found on the Clovewood site are a mix of soils belonging to hydrologic soil groups A, B, C and D with the most prevalent soil being Mardin soil of hydrologic soil group D. USDA soil

descriptions together with a map of the various soil types can be found in Appendix B. The soil class, and its corresponding infiltrative capacity, combined with the topographic setting, the presence of wetlands, and the presence of shallow bedrock in some areas, precludes reduction of 100% of the water quality volume for the Clovewood project. The computed minimum runoff reduction volume using the RRv formula found in Chapter 4 of the Design Manual is found to be 89,107 cubic feet. This value will be met by implementing 59 bio-retention areas spaced widely throughout the site together with the area reductions through tree planting and preservation of open space.

The bio-retention areas will provide a total of approximately 281,300 square feet of filter area and 337,560 cubic feet of water quality volume capacity of which approximately 135,024 cubic feet is credited toward run-off reduction volume. As can be seen the bio retention areas provide approximately 84% of the required water quality volume. The remaining 16%, or 64,769 cubic feet, of water quality volume will be treated using the standard wet pond stormwater management practice. In addition to these practices, approximately 1600 street trees will be planted in 40-foot intervals on both sides of the proposed roadways providing 100 SF per tree, or approximately 3.67 total acres, of impervious area reduction. Finally, approximately 50% of the site, or approximately 350 acres, will remain undisturbed as preserved open space.

Computations associated with water quality volume, minimum run-off reduction volume, bio-retention filter sizing and tree planting area credit utilizing the NYS DEC Runoff Reduction Worksheets can be found in Appendix C. The net result is that Clovewood will exceed the minimum water quality volume objectives set forth by the Unified Sizing Criteria.

Section 5 – Detention and Stormwater Quantity

An integral part of the stormwater pollution prevention plan calls for the attenuation of peak runoff flow rates to pre-developed levels. Doing so mitigates against the adverse impacts caused by the conversion of natural areas to impervious surfaces and the increased speed at which rain water sheds these areas. Attenuation of peak flow rates is accomplished by detaining stormwater run-off in a pond or reservoir to be released slowly over an extended period of time.

A hydrologic analysis has been performed for the Clovewood site utilizing HydroCAD stormwater modeling software. HydroCAD methodology is based on the National Resources Conservation Service (NRCS - formerly SCS) TR-20 watershed analysis model. To compute the analysis, the amount of rainfall that can be expected for a given storm event, together with the distribution of that

rainfall over a given time interval, must be determined. The Northeast Regional Climate Center (NRCC), in collaboration with Cornell University and the National Resource Conservation Service, publishes an interactive Web Tool for extreme precipitation analysis. The Web Tool provides site specific rainfall data based on a project's geographic location. The NYS Department of Environmental Conservation encourages the use of NRCC data when possible.

Rainfall values for the Clovewood site as taken from the NRCC Web Tool are summarized in the following table:

Table 1 - 24 Hour Rainfall Values					
Storm Frequency	Rainfall (in.)				
1 year	2.63				
2 year	3.22				
10 year	4.83				
25 year	6.09				
100 year	8.68				

Source: precip.eas.cornell.edu

A pre-developed hydrologic model was prepared utilizing the pre-developed drainage catchment areas depicted on the Pre-Developed Drainage Basin Map located in Appendix F. Six pre-developed sub catchments were identified. They are labeled as Basins A through F on the Drainage Basin Map. Five of the catchments flow toward four points at which channelized flow leaves the property. The sixth catchment, identified as Basin "F", is comprised of a relatively small area of land lying in the easterly extremity of the site and which sheet flows off site to the north. This land area lies within an area proposed as open space area with no proposed changes between the pre- and post- developed condition. As such there is no further discussion or analysis of the Basin F.

These four points at which channelized flow leaves the property were taken to be the four points of analysis for comparison of the pre and post developed condition. The analysis points coincide with the inlets of existing culverts described as follows: Analysis Point #4 (AP4) was taken to be an approximate 3.4-foot-wide by 2.6-foot-high concrete box culvert that flows under NYS Route 208 at the southern limits of the drainage area. Basin D is tributary to AP4. Analysis Point #3 is a concrete box culvert approximately 8 feet wide by 3.9 feet high also flowing under NYS Route 208 just south of an existing commercial plaza which lies near the intersection of Route 208 with Clover Road.

Basin C is tributary to AP3. Analysis Point #2, which carries the largest flows, is the inlet of an existing concrete box culvert approximately 20.6 feet wide by 6.8 feet high and is located on the County Route 27 leg of the "Y" intersection of Route 27 and Route 208. Flow from the Analysis Point 3 culvert discharges toward a second box culvert approximately 50 feet downstream that carries flows under Route 208. The latter culvert is approximately 13.5 feet wide by 8 feet high and was not modeled in the analysis. Basins A and B are tributary to AP2. Analysis Point 5 is the point at which the start of Perry Creek discharges off the property to the north. Catchment E is tributary to AP5. It is noted that the model does not have an analysis point identified as Analysis Point 1.

Computed pre-developed peak flow rates for the 1-, 10-, 25- and 100-year storm events for the predeveloped sub catchments are summarized as follows:

		Table 2 - Pre-Developed Runoff Calculations					
Basin #	Area (Ac.)	CN	TC (min.)	Q peak 1 Yr. (cfs)	Q peak 10 Yr.(cfs)	Q peak 25 Yr. (cfs)	Q peak 100 Yr. (cfs)
А	37.2	71	28.9	11.7	48.8	74.0	129.5
В	258.6	75	27.1	118.8	411.6	601.4	1010.0
С	300.7	75	23.4	146.7	509.5	744.7	1251.8
D	3.2	77	19.2	2.0	6.4	9.2	15.1
Е	174.5	77	32.0	86.6	277.4	398.6	656.1

With the above data in place, the post developed site conditions were modeled. The build out of the project together with the installation of drainage improvements has the effect of altering the site hydrology in the post developed condition. As a result, the post developed sub catchments are segmented when compared to the pre-developed areas. The delineation of the respective post developed sub catchments are primarily based on the proposed stormwater management practice to which the area is tributary. A map of the post developed sub catchment areas can be found in Appendix F.

The stormwater detention ponds with their respective stage-storage values were calculated. Outlet control structures with orifices of various sizes and elevations were modeled. A summary of the post developed sub catchment areas together with their corresponding peak runoff rates for the 1-, 10-, 25- and 100-year storm events follows:

	Table 3 - Post-Developed Runoff Calculations						
Basin #	Area (Ac.)	CN	TC (min.)	Q peak 1 Yr. (cfs)	Q peak 10 Yr.(cfs)	Q peak 25 Yr. (cfs)	Q peak 100 Yr. (cfs)
Α	37.2	71	29.1	11.6	48.7	73.9	129.3
B1	62.9	79	19.0	44.7	134.6	190.3	307.4
B2	6.1	77	13.9	4.3	13.7	19.7	32.4
В3	26.7	79	19.6	18.7	56.3	79.6	128.6
B4	10.2	82	13.0	10.2	27.6	38.2	60.0
B5	5.5	88	10.6	8.2	18.9	25.0	37.5
B6	8.0	86	13.1	10.0	24.2	32.5	49.5
B7	13.5	81	16.8	11.5	32.2	44.8	71.3
B8	11.9	79	22.3	7.9	23.8	33.7	54.4
B9	5.2	87	18.4	6.0	14.3	19.1	28.8
B10	16.8	84	21.5	15.5	39.8	54.2	83.9
B11	11.6	82	12.2	11.7	32.2	44.4	69.8
B12	24.2	75	15.1	14.0	49.0	71.6	120.1
B13	23.4	71	32.1	7.0	29.2	44.3	77.6
B14	10.0	85	18.7	10.4	25.9	35.0	53.8
B15	6.1	84	7.1	8.2	20.9	28.4	43.9
Basin #	Area (Ac.)	CN	TC (min.)	Q peak 1 Yr. (cfs)	Q peak 10 Yr.(cfs)	Q peak	Q peak

	Table 3 - Post-Developed Runoff Calculations						
						25 Yr. (cfs)	100 Yr. (cfs)
B16	3.7	81	12.5	3.5	9.8	13.6	21.6
C1	9.6	84	10.9	11.4	29.3	39.8	61.6
C2	6.0	87	17.3	7.1	16.7	22.3	33.7
C3	6.3	80	19.4	4.8	13.8	19.4	31.0
C4	7.4	84	15.8	7.7	19.9	27.1	42.0
C5	23.9	69	18.8	7.1	34.3	53.2	95.2
C6	16.3	82	13.6	16.0	43.6	60.0	94.3
C7	19.7	85	12.6	23.5	59.1	80.0	122.7
C8	11.1	60	16.5	0.9	9.9	17.5	35.7
C9	3.8	61	11.0	0.4	4.2	7.4	14.7
C10	21.3	85	15.0	24.0	60.1	81.3	124.7
C11	9.6	80	18.6	7.3	21.3	29.9	47.8
C12	68.3	77	19.0	42.2	136.2	195.7	322.0
C13	68.2	78	20.4	44.1	136.7	194.8	318.3
C14	39.3	77	12.4	28.4	92.0	132.2	217.4
D	2.2	78	14.9	1.6	5.0	7.1	11.6
E1	170.1	77	31.9	84.6	271.2	389.7	641.3
E2	8.8	86	21.6	9.1	22.0	29.7	45.2

To accurately analyze the impacts of the development, a comparison of the pre and post developed peak flow rates at the four respective Analysis Points must be made. A table summarizing of the pre-and post-developed peak flow rates at the four Analysis Points together with the computed decrease in run-off rate follows:

	Table 4 - Comparison of Pre- & Post-Developed Peak Flow				
		Rat	es		
Storm Event	1 Year (cfs)	10 Year (cfs)	25 Year (cfs)	100 Year (cfs)	
		Analysis	Point #2		
Pre-Developed	130.1	460.0	675.0	1138.9	
Post-Developed	95.2	344.3	556.1	1042.5	
Difference	- 34.9	- 115.7	- 118.9	- 96.4	
		Analysis	Point #3		
Pre-Developed	146.7	509.5	744.7	1251.8	
Post-Developed	141.1	482.1	730.9	1244.0	
Difference	- 15	- 48	- 13.8	- 7.8	
	Analysis Point #4				
Pre-Developed	2.0	6.4	9.2	15.1	
Post-Developed	1.6	5.0	7.1	11.6	
Difference	- 0.4	- 1.4	- 2.1	- 3.5	
	Analysis Point #5				
Pre-Developed	86.6	277.4	398.6	656.1	
Post-Developed	85.3	276.1	397.2	654.9	
Difference	- 1.3	- 1.3	- 1.4	- 1.2	

As can be seen in the above table, post developed peak flow rates are at or below pre-developed levels for all storm events at all six of the analysis points. Attenuation of the peak discharge rates for the aforementioned storms will satisfy SPDES permit requirements for Channel Protection (Cpv), Over bank Flood Control (Qp) and Extreme Flood Control (Qf). The pre and post developed HydroCAD model for the 1-, 2-, 10- and 100- year storm events can be found in Appendix D.

Section 6 - Erosion and Sediment Control

Proposed erosion control measures will be in accordance with a publication entitled *New York State Standards and Specifications for Erosion and Sediment Control (Nov. 2016 ed.)*. Erosion control will

be accomplished by means of temporary and permanent measures with the timing of the installation of said measures to be in accordance with the construction sequence found on the Erosion Control Plan sheet of the approved drawings.

Temporary erosion control measures will include stabilized construction entrances, silt fence, temporary sediment traps, temporary diversion swales, stone check dams, inlet protection, mulching, land grading, and temporary topsoil stockpiling stabilization and seeding and haying. Areas to be disturbed shall have the area of disturbance delineated. Areas in proximity to construction activities but that are to remain un-disturbed shall be protected with a perimeter construction fence, or snow fence.

Upon completion of clearing and grubbing activities, topsoil will be stripped and temporary topsoil stockpiles created in locations out of the way of construction activities. Temporary topsoil stockpiles shall also be placed away from potential water courses. Stockpiles will be surrounded with silt fence and immediately stabilized seed and hay per the temporary seeding schedule depicted on the Plans. Temporary seeding will be placed in all areas that are expected to remain disturbed for a period of 14 days. Dust control by means of spraying water shall be incorporated as necessary. The locations of the specific erosion control practices to be implemented, with associated construction details, are depicted on the Clovewood Erosion Control Plans.

Permanent erosion control measures will include downspout splash blocks, rip-rap inlet and outlet protection, grass lined waterways, permanent seeding and landscaping, land grading, mulching, and slope stabilization. Slope stabilization will be accomplished utilizing rolled erosion control matting in all areas of slopes of two horizontal to one vertical or steeper.

Erosion control measures shall be routinely inspected daily by a "*Trained Contractor*" to be employed by the excavation company. The definition of a Trained Contractor and Qualified Inspector can be found in the SPDES Permit text located in Appendix A. Inspection logs identifying site conditions, impacts to adjacent properties or water bodies, defects in erosion control measures, together with photographs of the site, shall be prepared by the Qualified Inspector. Defects identified shall be reported to the project owner in a timely manner which is taken to mean within one business day or less. Corrections shall be made immediately.

All weekly inspection logs shall be kept at the project site in mailbox clearly labeled with the letters "DEC". Any reports and the SWPPP plan shall be made available for review by the Regulatory Agency having jurisdiction. Maintenance of erosion control measures will be the responsibility of the project sponsor. Included in the erosion control plan is a general sequence of construction.

Section 7 – General Construction Sequence

- 1. Obtain necessary approvals and permits from municipal and regulatory agencies.
- 2. Pre-construction meeting with applicable regulatory agencies. Submittal of Notice of Intent.
- 3. Contractors shall sign "Contractor's Certification Statement". Install on site mailbox for SPDES related documents.
- 4. Delineation of limits of clearing and disturbance. Trees to be saved shall be protected with perimeter fence.
- 5. Install stabilized construction entrances at beginning of proposed access roads.
- 6. Install silt fence down-gradient of work areas and all proposed construction areas.
- 7. Excavate temporary sediment traps. Install diversion swales, culverts and rip rap outlets as shown on the erosion control plan.
- 8. Perform clearing and grubbing activities as required for construction. Site disturbance shall not exceed beyond the disturbance limit line depicted on the Site Development Plans. Areas which will remain disturbed for a period of more than 14 days shall be stabilized with rye grass in accordance with the temporary seeding schedule shown on the erosion control plan.
- 9. Strip and stockpile topsoil, stabilize with rye grass seed and perimeter silt fence.
- 10. Perform mass earth work. No more than five acres shall be disturbed at any one time. Complete rough-grading of either roadways, building pads or parking areas as depicted on the Erosion Control phasing plans. Fine grade and stabilize all embankments upon completion of rough grading.
- 11. Upon completion of rough-grading of site in accordance with Site Plan, begin installation of drainage infrastructure. Install utilities within roadway. Areas to remain disturbed for a period of more than 14 days shall be seeded with a temporary mixture of rye grass in accordance with the temporary seeding schedule shown on the erosion control plans.
- 12. Begin excavation for building foundations. Complete proposed stormwater conveyance systems, drainage infrastructure and drainage culverts. Install rip-rap lined inlet and outlet protection. Stabilize catch basins with appropriate protection measures such as silt fence.
- 13. Install roadway and parking lot sub-bas. Pave roadway with base course if feasible.
- 14. Construct buildings and utility connections.
- 15. complete fine-grading of disturbed areas and embankments, amend soils as required. Seed and stabilize with mulch, jute netting or hydro seed.

- 16. Review final stormwater infrastructure improvement checklists. Construct stormwater management appurtenances to permanent size and geometry. Remove any trapped sediment and fines and discard off-site.
- 17. Complete surfacing of roadways and parking lots.
- 18. Upon final grading, placement of rip-rap line channels and establishment of permanent vegetation, remove erosion control measures beginning at the most upstream points and then work downstream.
- 19. Perform any fine-grading and seeding as required. Maintain and repair vegetative cover as required. Maintain and repair wash-outs as required and after each storm event until all erosion control and water quality treatment measures are fully established.
- 20. Upon full build out of the project, and permanent stabilization of all disturbed areas, including at least 80% vegetative ground cover, a final inspection shall be performed and Notice of Termination (NOT) Form submitted to the NYS Department of Environmental Conservation to close the project's SPDES Permit coverage.

Section 8 – Operation and Maintenance

The stormwater management infrastructure will either be maintained by the Clovewood Homeowner's Association or, if mandated by the Village of South Blooming Grove, the Village's DPW. Easements over the stormwater management features will be created to the benefit of the entities that are determined to be responsible for their maintenance. If the municipality takes the responsibility for maintenance there may be a drainage district created to recoup the costs of maintenance of the stormwater manage infrastructure.

Maintenance measures shall include routine mowing of grassed areas, removal of undesirable trees and bush and other woody vegetation and the repairing of wash-outs. Swales shall be cleaned and regarded as needed. Bio-retention and rain garden practices shall be re-mulched every spring and replanted as older planting die off.

Stormwater management ponds shall be cleaned of garbage and floatable materials every spring. Sediment shall be removed from pond forebays once every six years or once the available volume of storage has reached 50%.

References

Federal Emergency Management Agency [FEMA]. (n.d.). FEMA Flood Map Service Center. https://msc.fema.gov/portal.

NYS Department of Environmental Conservation [NYS DEC]. (2015, January). *NYS General Permit for Stormwater Discharges from Construction Activity – GP-0-15-002*. Retrieved from: http://www.dec.ny.gov/chemical/43133.html.

NYS Department of Environmental Conservation [NYS DEC]. (2015, January). *NYS Stormwater Management Design Manual*. Retrieved from: http://www.dec.ny.gov/chemical/29072.html.

NYS Department of Environmental Conservation [NYS DEC]. (2016, November). NYS Standards and Specifications for Erosion and Sediment Control. Retrieved from: http://www.dec.ny.gov/chemical/29066.html.

NYS Department of Environmental Conservation [NYS DEC]. (n.d.). Construction Stormwater Toolbox. http://www.dec.ny.gov/chemical/8694.html.

NYS Department of Environmental Conservation [NYS DEC]. (n.d.). Environmental Resource Mapper. http://www.dec.ny.gov/animals/38801.html.

NYS Office of Parks, Recreation and Historic Preservation [OPRHP]. (n.d.). Cultural Resource Information System (CRIS). https://cris.parks.ny.gov/.

StormTech. (2015). *MC-3500 and MC-4500 Design Manual*. Retrieved from: http://www.stormtech.com/resources/downloads.html#manuals.

United States Department of Agriculture [USDA]. (1986, June). *Urban Hydrology for Small Watersheds, TR-55.* Retrieved from:

https://www.nrcs.usda.gov/Internet/FSE DOCUMENTS/stelprdb1044171.pdf.

United States Department of Agriculture, Natural Resources Conservation Service [NRCS]. (n.d.). Web Soil Survey. https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx.

United States Environmental Protection Agency [EPA]. (n.d.). NHDPlus (National Hydrography Dataset Plus). https://www.epa.gov/waterdata/nhdplus-national-hydrography-dataset-plus.

United States Fish and Wildlife Service. (n.d.). National Wetlands Inventory Wetlands Mapper. https://www.fws.gov/wetlands/data/Mapper.html.

Appendix A

Notice of Intent Form; MS-4 Acceptance Form; Notice of

Termination Form; SPDES Permit GP 0-15-002

NOTICE OF INTENT

New York State Department of Environmental Conservation Division of Water

625 Broadway, 4th Floor **Albany, New York 12233-3505**

NYR			

(for DEC use only)

Stormwater Discharges Associated with Construction Activity Under State Pollutant Discharge Elimination System (SPDES) General Permit # GP-0-15-002 All sections must be completed unless otherwise noted. Failure to complete all items may result in this form being returned to you, thereby delaying your coverage under this General Permit. Applicants must read and understand the conditions of the permit and prepare a Stormwater Pollution Prevention Plan prior to submitting this NOI. Applicants are responsible for identifying and obtaining other DEC permits that may be required.

-IMPORTANT-RETURN THIS FORM TO THE ADDRESS ABOVE

OWNER/OPERATOR MUST SIGN FORM

Owner/Operator Information					
Owner/Operator (Company Nam	ne/Private Owner	Name/Municipality	/ Name)		
Owner/Operator Contact Pers	son Last Name (No	OT CONSULTANT)			
Owner/Operator Contact Pers	son First Name				
Owner/Operator Mailing Addr	ress				
City					
State Zip	-				
Phone (Owner/Operator)	Fax (Own	uer/Operator)			
Email (Owner/Operator)					
Email (Owner, Operator)					
FED TAX ID					
[(no	[

Project Site Information						
Project/Site Name						
Street Address (NOT P.O. BOX)						
Side of Street O North O South O East O West						
City/Town/Village (THAT ISSUES BUILDING PERMIT)						
State Zip County DEC Region						
Name of Nearest Cross Street						
Distance to Nearest Cross Street (Feet) Project In Relation to Cross Street North O South O East O West						
Tax Map Numbers Section-Block-Parcel Tax Map Numbers						
1. Provide the Geographic Coordinates for the project site in NYTM Units. To do this you must go to the NYSDEC Stormwater Interactive Map on the DEC website at: www.dec.ny.gov/imsmaps/stormwater/viewer.htm						
Zoom into your Project Location such that you can accurately click on the centroid of your site. Once you have located your project site, go to the tool boxes on the top and choose "i"(identify). Then click on the center of your site and a new window containing the X, Y coordinates in UTM will pop up. Transcribe these coordinates into the boxes below. For problems with the interactive map use the help function.						
X Coordinates (Easting) Y Coordinates (Northing)						
2. What is the nature of this construction project?						
O New Construction						
O Redevelopment with increase in impervious area						
O Redevelopment with no increase in impervious area						

3. Select the predominant land use for both pre and post development conditions. SELECT ONLY ONE CHOICE FOR EACH

	Pre-Development Existing Land Use	Post-Development Future Land Use
	○ FOREST	○ SINGLE FAMILY HOME Number of Lots
	O PASTURE/OPEN LAND	O SINGLE FAMILY SUBDIVISION
	○ CULTIVATED LAND	O TOWN HOME RESIDENTIAL
	○ SINGLE FAMILY HOME	O MULTIFAMILY RESIDENTIAL
	O SINGLE FAMILY SUBDIVISION	○ INSTITUTIONAL/SCHOOL
	O TOWN HOME RESIDENTIAL	○ INDUSTRIAL
	○ MULTIFAMILY RESIDENTIAL	○ COMMERCIAL
	○ INSTITUTIONAL/SCHOOL	○ MUNICIPAL
	○ INDUSTRIAL	○ ROAD/HIGHWAY
	○ COMMERCIAL	○ RECREATIONAL/SPORTS FIELD
	○ ROAD/HIGHWAY	O BIKE PATH/TRAIL
	O RECREATIONAL/SPORTS FIELD	○ LINEAR UTILITY (water, sewer, gas, etc.)
	○ BIKE PATH/TRAIL	O PARKING LOT
	O LINEAR UTILITY	O CLEARING/GRADING ONLY
	O PARKING LOT	O DEMOLITION, NO REDEVELOPMENT
	OTHER	○ WELL DRILLING ACTIVITY *(Oil, Gas, etc.)
		OTHER
	ote: for gas well drilling, non-high volume In accordance with the larger common plan of	of development or sale,
	enter the total project site area; the total existing impervious area to be disturbed (factivities); and the future impervious area disturbed area. (Round to the nearest tenth	for redevelopment a constructed within the n of an acre.)
	Total Site Total Area To Exist	Future Impervious ting Impervious Area Within
		To Be Disturbed Disturbed Area
5.	Do you plan to disturb more than 5 acres of	f soil at any one time? O Yes O No
6.	Indicate the percentage of each Hydrologic	Soil Group(HSG) at the site.
	A B 8	C D %
7.	Is this a phased project?	\bigcirc Yes \bigcirc No
8.	Enter the planned start and end dates of the disturbance activities.	te End Date - / / / / / / / / / / / / / / / / / /

area?

9.	. Identify the nearest surface waterbody(ies) to which construction site : discharge.	runof	f w	7ill		\
Nam	-					
		· · ·	•	'		
9a	a. Type of waterbody identified in Question 9?					
	○ Wetland / State Jurisdiction On Site (Answer 9b)					
	O Wetland / State Jurisdiction Off Site					
	O Wetland / Federal Jurisdiction On Site (Answer 9b)					
	O Wetland / Federal Jurisdiction Off Site					
	O Stream / Creek On Site					
	O Stream / Creek Off Site					
	O River On Site 9b. How was the wetland in	Jon+ -	fic	.do		
	O River Off Site	CIICI	тте	a:		
	O Lake On Site O Regulatory Map					
	O Lake Off Site O Delineated by Consult	ant				
	O Other Type On Site O Delineated by Army Co	rps (of I	Engi	neer	s
	Other Type Off Site Other (identify)					
10	O. Has the surface waterbody(ies) in question 9 been identified as a 303(d) segment in Appendix E of GP-0-15-002?	Y	es	\bigcirc N	0	
	505(a, 505;;;;;;; 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-					
11	1. Is this project located in one of the Watersheds identified in Appendix C of GP-0-15-002?	O Y	es	0 N	0	
12	2. Is the project located in one of the watershed areas associated with AA and AA-S classified	○ Y	20	O N	•	
	waters?	 .		0 1	•	
	If no, skip question 13.					
13	3. Does this construction activity disturb land with no existing impervious cover and where the Soil Slope Phase is	O		<u> </u>		
	identified as an E or F on the USDA Soil Survey?	○ Y	25	O N	O	
	If Yes, what is the acreage to be disturbed?					
1 /	Mill the presidet digtumb goilg within a State					
14	4. Will the project disturb soils within a State regulated wetland or the protected 100 foot adjacent	() Y	es	\bigcirc N	0	

15.	Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)?	io O Un	lknown
16.	What is the name of the municipality/entity that owns the separate s system?	storm se	wer
17.	Does any runoff from the site enter a sewer classified as a Combined Sewer?	lo O Un	lknown
18.	Will future use of this site be an agricultural property as defined by the NYS Agriculture and Markets Law?	O Yes	O No
19.	Is this property owned by a state authority, state agency, federal government or local government?	O Yes	O No
20.	Is this a remediation project being done under a Department approved work plan? (i.e. CERCLA, RCRA, Voluntary Cleanup Agreement, etc.)	○ Yes	O No
21.	Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS Standards and Specifications for Erosion and Sediment Control (aka Blue Book)?	O Yes	O No
22.	Does this construction activity require the development of a SWPPP that includes the post-construction stormwater management practice component (i.e. Runoff Reduction, Water Quality and Quantity Control practices/techniques)? If No, skip questions 23 and 27-39.	○ Yes	O No
23.	Has the post-construction stormwater management practice component of the SWPPP been developed in conformance with the current NYS Stormwater Management Design Manual?	O Yes	○ No

	_																																				_	
24	4.	T]	he	Sto	orn	nwa	te:	r I	Po]	Llu	ıti	on	Pr	cev	en	ti	on	Pl	.an	(5	SWE	PP) 7	was	р	re	paı	red	l b	у:								
	\bigcirc 1	Pro	fes	si	ona	al	En	gi	ne	er	(P	. E	.)																									
	0:	Soi	l a	nd	Wa	ate	r	Co	ns	erv	<i>r</i> at	io	n 1	Dis	str	ic	t	(SV	VCD)																		
	O Registered Landscape Architect (R.L.A)																																					
	0	Cer	tif	ie	d 1	Pro	fe	ss	io	na]	Ιi	n	Ero	osi	lon	ı a	nd	Se	edi	me	nt	Cc	nt	ro.	L (CF	ES	C)										
	Owner/Operator Other																																					
	L																																					
		_																																				
SWP	PP	Pre	pai	rer	•			Ι		Ι					Ι	Π	Т	T	Τ	Τ	Τ		Τ		Π	Τ	Τ	Τ	Τ		T	Τ	Τ	l			T	
																																			Ш	Ш		\sqcup
Con	tac	t N	Iame	e (La	st	, :	Spa I	ce	,	Fir	st	;)		_		_	Т			г	<u> </u>	_	1			Т		Т		Т		_					_
																																L			Ш	Ш		
Mai	lin	g A	dd	res	s																												_					_
Cit	У																																					
Sta	te	Zi	.p																																			
							-																															
Pho	ne											,								Fa:	x											_						
		-				-																	-				-											
Ema	il										J												J				1					J						
		+															T									İ		İ					T		\forall		1	٦
4																					_																	$-\!$
																																						/

SWPPP Preparer Certification

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-15-002. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

First	Nan	ne .									MΙ						
Last 1	Name	2	·														
Sig	natı	ıre	,							1							
											Dat	te					
													/		/		

25.	Has a construction sequence schedule for t practices been prepared?	the planned management
26.	Select all of the erosion and sediment coremployed on the project site:	ntrol practices that will be
	Temporary Structural	Vegetative Measures
	○ Check Dams	O Brush Matting
	\bigcirc Construction Road Stabilization	O Dune Stabilization
	O Dust Control	\bigcirc Grassed Waterway
	○ Earth Dike	\bigcirc Mulching
	○ Level Spreader	\bigcirc Protecting Vegetation
	○ Perimeter Dike/Swale	O Recreation Area Improvement
	○ Pipe Slope Drain	○ Seeding
	O Portable Sediment Tank	○ Sodding
	O Rock Dam	\bigcirc Straw/Hay Bale Dike
	○ Sediment Basin	O Streambank Protection
	○ Sediment Traps	○ Temporary Swale
	○ Silt Fence	O Topsoiling
	O Stabilized Construction Entrance	O Vegetating Waterways
	\bigcirc Storm Drain Inlet Protection	Permanent Structural
	○ Straw/Hay Bale Dike	
	O Temporary Access Waterway Crossing	O Debris Basin
	○ Temporary Stormdrain Diversion	O Diversion
	○ Temporary Swale	\bigcirc Grade Stabilization Structure
	O Turbidity Curtain	○ Land Grading
	○ Water bars	\bigcirc Lined Waterway (Rock)
		O Paved Channel (Concrete)
	<u>Biotechnical</u>	O Paved Flume
	O Brush Matting	\bigcirc Retaining Wall
	○ Wattling	\bigcirc Riprap Slope Protection
	_	\bigcirc Rock Outlet Protection
Otl	ner	O Streambank Protection

Post-construction Stormwater Management Practice (SMP) Requirements

Important: Completion of Questions 27-39 is not required
 if response to Question 22 is No.

- 27. Identify all site planning practices that were used to prepare the final site plan/layout for the project.
 - O Preservation of Undisturbed Areas
 - O Preservation of Buffers
 - O Reduction of Clearing and Grading
 - O Locating Development in Less Sensitive Areas
 - O Roadway Reduction
 - O Sidewalk Reduction
 - O Driveway Reduction
 - O Cul-de-sac Reduction
 - O Building Footprint Reduction
 - O Parking Reduction
- 27a. Indicate which of the following soil restoration criteria was used to address the requirements in Section 5.1.6("Soil Restoration") of the Design Manual (2010 version).
 - O All disturbed areas will be restored in accordance with the Soil Restoration requirements in Table 5.3 of the Design Manual (see page 5-22).
 - O Compacted areas were considered as impervious cover when calculating the **WQv Required**, and the compacted areas were assigned a post-construction Hydrologic Soil Group (HSG) designation that is one level less permeable than existing conditions for the hydrology analysis.
- 28. Provide the total Water Quality Volume (WQv) required for this project (based on final site plan/layout).

Total	$\mathbf{W}\mathbf{Q}\mathbf{v}$	Rec	quire	d
				acre-feet

29. Identify the RR techniques (Area Reduction), RR techniques(Volume Reduction) and Standard SMPs with RRv Capacity in Table 1 (See Page 9) that were used to reduce the Total WQv Required(#28).

Also, provide in Table 1 the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Note: Redevelopment projects shall use Tables 1 and 2 to identify the SMPs used to treat and/or reduce the WQv required. If runoff reduction techniques will not be used to reduce the required WQv, skip to question 33a after identifying the SMPs.

Table 1 - Runoff Reduction (RR) Techniques and Standard Stormwater Management Practices (SMPs)

	Total Contributing		rota	I Cor	ıtr	:1bu	ting
RR Techniques (Area Reduction)	Area (acres)	Im	erv	ious	Ar	ea(acres)
○ Conservation of Natural Areas (RR-1)		and/or					
O Sheetflow to Riparian Buffers/Filters Strips (RR-2)		and/or					
○ Tree Planting/Tree Pit (RR-3)		and/or			•		
O Disconnection of Rooftop Runoff (RR-4)		and/or			•		
RR Techniques (Volume Reduction)							
\bigcirc Vegetated Swale (RR-5) $\cdots\cdots$	• • • • • • • • • • • • • • • • • • • •	• • • • •			•		
○ Rain Garden (RR-6) ······	• • • • • • • • • • • • • • • • • • • •	• • • • •			•		
○ Stormwater Planter (RR-7)	• • • • • • • • • • • • • • • • • • • •				•		
○ Rain Barrel/Cistern (RR-8)	• • • • • • • • • • • • • • • • • • • •				•		
O Porous Pavement (RR-9)	• • • • • • • • • • • • • • • • • • • •				_إ•		
○ Green Roof (RR-10)	• • • • • • • • • • • • • • • • • • • •	• • • • •					
Standard SMPs with RRv Capacity							
○ Infiltration Trench (I-1) ······	• • • • • • • • • • • • • • • • • • • •				•		
O Infiltration Basin (I-2) ······							
Opry Well (I-3)							
O Underground Infiltration System (I-4)							
○ Bioretention (F-5)							
Opry Swale (0-1)							
© 21, 5mare (0 1)							
Standard SMPs							
O Micropool Extended Detention (P-1)	• • • • • • • • • • • • • • • • • • • •						
○ Wet Pond (P-2) · · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • •	• • • •					
○ Wet Extended Detention (P-3) ······	• • • • • • • • • • • • • • • • • • • •	• • • • •					
O Multiple Pond System (P-4)	• • • • • • • • • • • • • • • • • • •	• • • •					
O Pocket Pond (P-5) ·····		• • • • •					
○ Surface Sand Filter (F-1) ······	• • • • • • • • • • • • • • • • • • • •						
○ Underground Sand Filter (F-2) ······	• • • • • • • • • • • • • • • • • • •						
O Perimeter Sand Filter (F-3) ······	• • • • • • • • • • • • • • • • • • • •						
Organic Filter (F-4)	• • • • • • • • • • • • • • • • • • • •						
○ Shallow Wetland (W-1)	• • • • • • • • • • • • • • • • • • • •						
O Extended Detention Wetland (W-2)							
O Pond/Wetland System (W-3)							
O Pocket Wetland (W-4)							
○ Wet Swale (0-2)							

Table 2 -Alternative SMPs (DO NOT INCLUDE PRACTICES BEING USED FOR PRETREATMENT ONLY) Total Contributing Alternative SMP Impervious Area(acres) ○ Hydrodynamic \bigcirc Wet Vault O Media Filter Other Provide the name and manufacturer of the Alternative SMPs (i.e. proprietary practice(s)) being used for WQv treatment. Name Manufacturer Note: Redevelopment projects which do not use RR techniques, shall use questions 28, 29, 33 and 33a to provide SMPs used, total WQv required and total WQv provided for the project. 30. Indicate the Total RRv provided by the RR techniques (Area/Volume Reduction) and Standard SMPs with RRv capacity identified in question 29. Total RRv provided acre-feet 31. Is the Total RRv provided (#30) greater than or equal to the total WQv required (#28). O Yes O No If Yes, go to question 36. If No, go to question 32. 32. Provide the Minimum RRv required based on HSG. [Minimum RRv Required = (P)(0.95)(Ai)/12, Ai=(S)(Aic)] Minimum RRv Required acre-feet 32a. Is the Total RRv provided (#30) greater than or equal to the O Yes O No Minimum RRv Required (#32)? If Yes, go to question 33. Note: Use the space provided in question #39 to summarize the specific site limitations and justification for not reducing 100% of WQv required (#28). A detailed evaluation of the specific site limitations and justification for not reducing 100% of the WQv required (#28) must also be included in the If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.

33. Identify the Standard SMPs in Table 1 and, if applicable, the Alternative SMPs in Table 2 that were used to treat the remaining total WQv(=Total WQv Required in 28 - Total RRv Provided in 30).
Also, provide in Table 1 and 2 the total <u>impervious</u> area that contributes runoff to each practice selected.
Note: Use Tables 1 and 2 to identify the SMPs used on Redevelopment projects.

33a.	Indicate the Total WQv provided (i.e. WQv treated) by the SMPs identified in question #33 and Standard SMPs with RRv Capacity identified in question 29.
	WQv Provided acre-feet
<u>Note</u> :	For the standard SMPs with RRv capacity, the WQv provided by each practice = the WQv calculated using the contributing drainage area to the practice - RRv provided by the practice. (See Table 3.5 in Design Manual)
34.	Provide the sum of the Total RRv provided (#30) and the WQv provided (#33a).
35.	Is the sum of the RRv provided (#30) and the WQv provided (#33a) greater than or equal to the total WQv required (#28)? \bigcirc Yes \bigcirc No
	If Yes, go to question 36. If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.
36.	Provide the total Channel Protection Storage Volume (CPv) required and provided or select waiver (36a), if applicable.

CPv Required CPv Provided

acre-feet acre-feet acre-feet

- 36a. The need to provide channel protection has been waived because:
 - O Site discharges directly to tidal waters or a fifth order or larger stream.
 - O Reduction of the total CPv is achieved on site through runoff reduction techniques or infiltration systems.
- 37. Provide the Overbank Flood (Qp) and Extreme Flood (Qf) control criteria or select waiver (37a), if applicable.

Total Overbank Flood Control Criteria (Qp) Pre-Development Post-development CFS CF

Total Extreme Flood Control Criteria (Qf)

ost-dev	elopment
-	CFS

37a.	The	ne	ed t	o n	nee	et 1	the	e Q	p a	and	Q	f cr	it	eri	la l	has	be	eer	ı w	ai	vec	l b	ec	au	se	:							
	○ Site discharges directly to tidal waters or a fifth order or larger stream.																																
		0	or a									_					Qp	ar	nd	Qf	;												
			cont	cro.	ls	ar	e ı	not	r	equ	iir	ed																					
2.0	TT	_	1			. 0-						24				- D	.		.		1												
38.	pos	t-c	long onst ped?	ruc																		en					0	Ye	s	0	No		
			, Id ion								r	espo	ns	ibl	.e f	Eor	tŀ	ne	10	ng	te	rm	ı										
																																†]
39.			is s																							ust	if	ica	ati	on			
			pace																							tic	n.						

4285089826

40.	Identify other DEC permits, existing and new, that are required for the project/facility.	nis	
	O Air Pollution Control		
	○ Coastal Erosion		
	○ Hazardous Waste		
	○ Long Island Wells		
	○ Mined Land Reclamation		
	○ Solid Waste		
	O Navigable Waters Protection / Article 15		
	○ Water Quality Certificate		
	○ Dam Safety		
	○ Water Supply		
	○ Freshwater Wetlands/Article 24		
	○ Tidal Wetlands		
	○ Wild, Scenic and Recreational Rivers		
	O Stream Bed or Bank Protection / Article 15		
	○ Endangered or Threatened Species(Incidental Take Permit)		
	○ Individual SPDES		
	○ SPDES Multi-Sector GP		
	Other		
	○ None		
41.	Does this project require a US Army Corps of Engineers Wetland Permit? If Yes, Indicate Size of Impact.	O Yes	O No
42.	Is this project subject to the requirements of a regulated, traditional land use control MS4? (If No, skip question 43)	○ Yes	O No
43.	Has the "MS4 SWPPP Acceptance" form been signed by the principal executive officer or ranking elected official and submitted along with this NOI?	O Yes	O No
44.	If this NOI is being submitted for the purpose of continuing or transcoverage under a general permit for stormwater runoff from construction		

activities, please indicate the former SPDES number assigned.

Owner/Operator Certification

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

MI
Date

NYS Department of Environmental Conservation Division of Water 625 Broadway, 4th Floor Albany, New York 12233-3505

MS4 Stormwater Pollution Prevention Plan (SWPPP) Acceptance Form

for

Construction Activities Seeking Authorization Under SPDES General Permit *(NOTE: Attach Completed Form to Notice Of Intent and Submit to Address Above)

I.	Project Owner/Operator Information
1.	Owner/Operator Name:
2.	Contact Person:
3.	Street Address:
4.	City/State/Zip:
II.	Project Site Information
5.	Project/Site Name:
6.	Street Address:
7.	City/State/Zip:
III.	Stormwater Pollution Prevention Plan (SWPPP) Review and Acceptance Information
8.	SWPPP Reviewed by:
9.	Title/Position:
10	. Date Final SWPPP Reviewed and Accepted:
IV	. Regulated MS4 Information
11	. Name of MS4:
12	. MS4 SPDES Permit Identification Number: NYR20A
13	s. Contact Person:
14	Street Address:
15	5. City/State/Zip:
16	i. Telephone Number:

MS4 SWPPP Acceptance Form - continued
V. Certification Statement - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative
I hereby certify that the final Stormwater Pollution Prevention Plan (SWPPP) for the construction project identified in question 5 has been reviewed and meets the substantive requirements in the SPDES General Permit For Stormwater Discharges from Municipal Separate Storm Sewer Systems (MS4s). Note: The MS4, through the acceptance of the SWPPP, assumes no responsibility for the accuracy and adequacy of the design included in the SWPPP. In addition, review and acceptance of the SWPPP by the MS4 does not relieve the owner/operator or their SWPPP preparer of responsibility or liability for errors or omissions in the plan.
Printed Name:
Title/Position:
Signature:
Date:
VI. Additional Information

(NYS DEC - MS4 SWPPP Acceptance Form - January 2015)

New York State Department of Environmental Conservation

Division of Water 625 Broadway, 4th Floor

Albany, New York 12233-3505

(NOTE: Submit completed form to address above)

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity

Please indicate your permit identification number: NYR						
I. Owner or Operator Information						
1. Owner/Operator Name:						
2. Street Address:						
3. City/State/Zip:						
4. Contact Person:	4a.Telephone:					
4b. Contact Person E-Mail:						
II. Project Site Information						
5. Project/Site Name:						
6. Street Address:						
7. City/Zip:						
8. County:						
III. Reason for Termination						
9a. □ All disturbed areas have achieved final stabilization in acco SWPPP. *Date final stabilization completed (month/year): _	rdance with the general permit and					
9b. Permit coverage has been transferred to new owner/operare permit identification number: NYR (Note: Permit coverage can not be terminated by owner/operator obtains coverage under the general permit)	<u> </u>					
9c. □ Other (Explain on Page 2)						
IV. Final Site Information:						
10a. Did this construction activity require the development of a S stormwater management practices? □ yes □ no (If no,	WPPP that includes post-construction go to question 10f.)					
10b. Have all post-construction stormwater management practic constructed? □ yes □ no (If no, explain on Page 2)	es included in the final SWPPP been					
10c. Identify the entity responsible for long-term operation and m	aintenance of practice(s)?					

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the **SPDES General Permit for Construction Activity - continued** 10d. Has the entity responsible for long-term operation and maintenance been given a copy of the operation and maintenance plan required by the general permit? □ yes 10e. Indicate the method used to ensure long-term operation and maintenance of the post-construction stormwater management practice(s): □ Post-construction stormwater management practice(s) and any right-of-way(s) needed to maintain practice(s) have been deeded to the municipality. □ Executed maintenance agreement is in place with the municipality that will maintain the post-construction stormwater management practice(s). □ For post-construction stormwater management practices that are privately owned, a mechanism is in place that requires operation and maintenance of the practice(s) in accordance with the operation and maintenance plan, such as a deed covenant in the owner or operator's deed of record. □ For post-construction stormwater management practices that are owned by a public or private institution (e.g. school, university or hospital), government agency or authority, or public utility; policy and procedures are in place that ensures operation and maintenance of the practice(s) in accordance with the operation and maintenance plan. 10f. Provide the total area of impervious surface (i.e. roof, pavement, concrete, gravel, etc.) constructed within the disturbance area? (acres) 11. Is this project subject to the requirements of a regulated, traditional land use control MS4? (If Yes, complete section VI - "MS4 Acceptance" statement V. Additional Information/Explanation: (Use this section to answer questions 9c. and 10b., if applicable) VI. MS4 Acceptance - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative (Note: Not required when 9b. is checked -transfer of coverage) I have determined that it is acceptable for the owner or operator of the construction project identified in

Date:

question 5 to submit the Notice of Termination at this time.

Printed Name:
Title/Position:

Signature:

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity - continued

VII. Qualified Inspector Certification - Final Stabilization:

I hereby certify that all disturbed areas have achieved final stabilization as of the general permit, and that all temporary, structural erosion and sedim been removed. Furthermore, I understand that certifying false, incorrect of violation of the referenced permit and the laws of the State of New York a criminal, civil and/or administrative proceedings.	nent control measures have or inaccurate information is a					
Printed Name:						
Title/Position:						
Signature:	Date:					
VIII. Qualified Inspector Certification - Post-construction Stormwat	er Management Practice(s):					
hereby certify that all post-construction stormwater management practices have been constructed in conformance with the SWPPP. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.						
Printed Name:						
Title/Position:						
Signature:	Date:					
IX. Owner or Operator Certification						
hereby certify that this document was prepared by me or under my direction or supervision. My determination, based upon my inquiry of the person(s) who managed the construction activity, or those persons directly responsible for gathering the information, is that the information provided in this document is true, accurate and complete. Furthermore, I understand that certifying false, incorrect or naccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.						
Printed Name:						
Title/Position:						
Signature:	Date:					

(NYS DEC Notice of Termination - January 2015)

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES

From

CONSTRUCTION ACTIVITY

Permit No. GP- 0-20-001

Issued Pursuant to Article 17, Titles 7, 8 and Article 70

of the Environmental Conservation Law

Effective Date: January 29, 2020 Expiration Date: January 28, 2025

John J. Ferguson

Chief Permit Administrator

Authorized Signature

Date

Address:

NYS DEC

Division of Environmental Permits

625 Broadway, 4th Floor Albany, N.Y. 12233-1750

PREFACE

Pursuant to Section 402 of the Clean Water Act ("CWA"), stormwater *discharges* from certain *construction activities* are unlawful unless they are authorized by a *National Pollutant Discharge Elimination System* ("NPDES") permit or by a state permit program. New York administers the approved State Pollutant Discharge Elimination System (SPDES) program with permits issued in accordance with the New York State Environmental Conservation Law (ECL) Article 17, Titles 7, 8 and Article 70.

An owner or operator of a construction activity that is eligible for coverage under this permit must obtain coverage prior to the commencement of construction activity. Activities that fit the definition of "construction activity", as defined under 40 CFR 122.26(b)(14)(x), (15)(i), and (15)(ii), constitute construction of a point source and therefore, pursuant to ECL section 17-0505 and 17-0701, the owner or operator must have coverage under a SPDES permit prior to commencing construction activity. The owner or operator cannot wait until there is an actual discharge from the construction site to obtain permit coverage.

*Note: The italicized words/phrases within this permit are defined in Appendix A.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES FROM CONSTRUCTION ACTIVITIES

Table of Contents

Part 1. I	PERMIT COVERAGE AND LIMITATIONS	1
A.	Permit Application	
B.	Effluent Limitations Applicable to Discharges from Construction Activities	1
C.	Post-construction Stormwater Management Practice Requirements	
D.	Maintaining Water Quality	8
E.	Eligibility Under This General Permit	9
F.	Activities Which Are Ineligible for Coverage Under This General Permit	9
Part II. I	PERMIT COVERAGE	12
A.	How to Obtain Coverage	12
B.	Notice of Intent (NOI) Submittal	13
C.	Permit Authorization	13
D.	General Requirements For Owners or Operators With Permit Coverage	15
E.	Permit Coverage for Discharges Authorized Under GP-0-15-002	17
F.	Change of Owner or Operator	
Part III.	STORMWATER POLLUTION PREVENTION PLAN (SWPPP)	18
A.	General SWPPP Requirements	18
B.	Required SWPPP Contents	20
C.	Required SWPPP Components by Project Type	24
Part IV.	INSPECTION AND MAINTENANCE REQUIREMENTS	
A.	General Construction Site Inspection and Maintenance Requirements	24
B.	Contractor Maintenance Inspection Requirements	
C.	Qualified Inspector Inspection Requirements	
Part V.	TERMINATION OF PERMIT COVERAGE	
A.	Termination of Permit Coverage	29
Part VI.	REPORTING AND RETENTION RECORDS	
A.	Record Retention	
B.	Addresses	
Part VII	. STANDARD PERMIT CONDITIONS	
A.	Duty to Comply	
B.	Continuation of the Expired General Permit	
C.	Enforcement	32
D.	Need to Halt or Reduce Activity Not a Defense	
E.	Duty to Mitigate	33
F.	Duty to Provide Information	33
G.	Other Information	
H.	Signatory Requirements	33
l.	Property Rights	
J.	Severability	35

K.	Requirement to Obtain Coverage Under an Alternative Permit	35
L.	Proper Operation and Maintenance	
M.	Inspection and Entry	
N.	Permit Actions	
Ο.	Definitions	37
P.	Re-Opener Clause	37
Q.	Penalties for Falsification of Forms and Reports	37
R.	Other Permits	
APPE	NDIX A – Acronyms and Definitions	39
Acro	nyms	39
Defi	nitions	40
APPE	NDIX B – Required SWPPP Components by Project Type	48
	e 1	
Tabl	e 2	50
APPE	NDIX C – Watersheds Requiring Enhanced Phosphorus Removal	52
	NDIX D – Watersheds with Lower Disturbance Threshold	
APPE	NDIX E – 303(d) Segments Impaired by Construction Related Pollutant(s)	59
	NDIX F – List of NYS DEC Regional Offices	
	<u> </u>	

Part 1. PERMIT COVERAGE AND LIMITATIONS

A. Permit Application

This permit authorizes stormwater discharges to surface waters of the State from the following construction activities identified within 40 CFR Parts 122.26(b)(14)(x), 122.26(b)(15)(i) and 122.26(b)(15)(ii), provided all of the eligibility provisions of this permit are met:

- Construction activities involving soil disturbances of one (1) or more acres; including disturbances of less than one acre that are part of a larger common plan of development or sale that will ultimately disturb one or more acres of land; excluding routine maintenance activity that is performed to maintain the original line and grade, hydraulic capacity or original purpose of a facility;
- Construction activities involving soil disturbances of less than one (1) acre
 where the Department has determined that a SPDES permit is required for
 stormwater discharges based on the potential for contribution to a violation of a
 water quality standard or for significant contribution of pollutants to surface
 waters of the State.
- 3. Construction activities located in the watershed(s) identified in Appendix D that involve soil disturbances between five thousand (5,000) square feet and one (1) acre of land.

B. Effluent Limitations Applicable to Discharges from Construction Activities

Discharges authorized by this permit must achieve, at a minimum, the effluent limitations in Part I.B.1. (a) - (f) of this permit. These limitations represent the degree of effluent reduction attainable by the application of best practicable technology currently available.

1. Erosion and Sediment Control Requirements - The *owner or operator* must select, design, install, implement and maintain control measures to *minimize* the *discharge* of *pollutants* and prevent a violation of the *water quality standards*. The selection, design, installation, implementation, and maintenance of these control measures must meet the non-numeric effluent limitations in Part I.B.1.(a) – (f) of this permit and be in accordance with the New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016, using sound engineering judgment. Where control measures are not designed in conformance with the design criteria included in the technical standard, the *owner or operator* must include in the *Stormwater Pollution Prevention Plan* ("SWPPP") the reason(s) for the

deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the technical standard.

- a. **Erosion and Sediment Controls.** Design, install and maintain effective erosion and sediment controls to *minimize* the *discharge* of *pollutants* and prevent a violation of the *water quality standards*. At a minimum, such controls must be designed, installed and maintained to:
 - (i) *Minimize* soil erosion through application of runoff control and soil stabilization control measure to *minimize pollutant discharges*;
 - (ii) Control stormwater *discharges*, including both peak flowrates and total stormwater volume, to *minimize* channel and *streambank* erosion and scour in the immediate vicinity of the *discharge* points;
 - (iii) Minimize the amount of soil exposed during construction activity;
 - (iv) Minimize the disturbance of steep slopes;
 - (v) *Minimize* sediment *discharges* from the site;
 - (vi) Provide and maintain *natural buffers* around surface waters, direct stormwater to vegetated areas and maximize stormwater infiltration to reduce *pollutant discharges*, unless *infeasible*;
 - (vii) Minimize soil compaction. Minimizing soil compaction is not required where the intended function of a specific area of the site dictates that it be compacted;
 - (viii) Unless *infeasible*, preserve a sufficient amount of topsoil to complete soil restoration and establish a uniform, dense vegetative cover; and
 - (ix) *Minimize* dust. On areas of exposed soil, *minimize* dust through the appropriate application of water or other dust suppression techniques to control the generation of pollutants that could be discharged from the site.
- b. **Soil Stabilization**. In areas where soil disturbance activity has temporarily or permanently ceased, the application of soil stabilization measures must be initiated by the end of the next business day and completed within fourteen (14) days from the date the current soil disturbance activity ceased. For construction sites that *directly discharge* to one of the 303(d) segments

listed in Appendix E or is located in one of the watersheds listed in Appendix C, the application of soil stabilization measures must be initiated by the end of the next business day and completed within seven (7) days from the date the current soil disturbance activity ceased. See Appendix A for definition of *Temporarily Ceased*.

- c. **Dewatering**. *Discharges* from *dewatering* activities, including *discharges* from *dewatering* of trenches and excavations, must be managed by appropriate control measures.
- d. Pollution Prevention Measures. Design, install, implement, and maintain effective pollution prevention measures to *minimize* the *discharge* of pollutants and prevent a violation of the water quality standards. At a minimum, such measures must be designed, installed, implemented and maintained to:
 - (i) Minimize the discharge of pollutants from equipment and vehicle washing, wheel wash water, and other wash waters. This applies to washing operations that use clean water only. Soaps, detergents and solvents cannot be used:
 - (ii) Minimize the exposure of building materials, building products, construction wastes, trash, landscape materials, fertilizers, pesticides, herbicides, detergents, sanitary waste, hazardous and toxic waste, and other materials present on the site to precipitation and to stormwater. Minimization of exposure is not required in cases where the exposure to precipitation and to stormwater will not result in a discharge of pollutants, or where exposure of a specific material or product poses little risk of stormwater contamination (such as final products and materials intended for outdoor use); and
 - (iii) Prevent the *discharge* of *pollutants* from spills and leaks and implement chemical spill and leak prevention and response procedures.
- e. **Prohibited** *Discharges*. The following *discharges* are prohibited:
 - (i) Wastewater from washout of concrete;
 - (ii) Wastewater from washout and cleanout of stucco, paint, form release oils, curing compounds and other construction materials;

- (iii) Fuels, oils, or other *pollutants* used in vehicle and equipment operation and maintenance;
- (iv) Soaps or solvents used in vehicle and equipment washing; and
- (v) Toxic or hazardous substances from a spill or other release.
- f. Surface Outlets. When discharging from basins and impoundments, the outlets shall be designed, constructed and maintained in such a manner that sediment does not leave the basin or impoundment and that erosion at or below the outlet does not occur.

C. Post-construction Stormwater Management Practice Requirements

- 1. The owner or operator of a construction activity that requires post-construction stormwater management practices pursuant to Part III.C. of this permit must select, design, install, and maintain the practices to meet the performance criteria in the New York State Stormwater Management Design Manual ("Design Manual"), dated January 2015, using sound engineering judgment. Where post-construction stormwater management practices ("SMPs") are not designed in conformance with the performance criteria in the Design Manual, the owner or operator must include in the SWPPP the reason(s) for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is equivalent to the technical standard.
- 2. The *owner or operator* of a *construction activity* that requires post-construction stormwater management practices pursuant to Part III.C. of this permit must design the practices to meet the applicable *sizing criteria* in Part I.C.2.a., b., c. or d. of this permit.

a. Sizing Criteria for New Development

- (i) Runoff Reduction Volume ("RRv"): Reduce the total Water Quality Volume ("WQv") by application of RR techniques and standard SMPs with RRv capacity. The total WQv shall be calculated in accordance with the criteria in Section 4.2 of the Design Manual.
- (ii) Minimum RRv and Treatment of Remaining Total WQv: Construction activities that cannot meet the criteria in Part I.C.2.a.(i) of this permit due to site limitations shall direct runoff from all newly constructed impervious areas to a RR technique or standard SMP with RRv capacity unless infeasible. The specific site limitations that prevent the reduction of 100% of the WQv shall be documented in the SWPPP.

For each impervious area that is not directed to a RR technique or standard SMP with RRv capacity, the SWPPP must include documentation which demonstrates that all options were considered and for each option explains why it is considered infeasible.

In no case shall the runoff reduction achieved from the newly constructed impervious areas be less than the Minimum RRv as calculated using the criteria in Section 4.3 of the Design Manual. The remaining portion of the total WQv that cannot be reduced shall be treated by application of standard SMPs.

- (iii) Channel Protection Volume ("Cpv"): Provide 24 hour extended detention of the post-developed 1-year, 24-hour storm event; remaining after runoff reduction. The Cpv requirement does not apply when:
 - (1) Reduction of the entire Cpv is achieved by application of runoff reduction techniques or infiltration systems, or
 - (2) The site discharges directly to tidal waters, or fifth order or larger streams.
- (iv) Overbank Flood Control Criteria ("Qp"): Requires storage to attenuate the post-development 10-year, 24-hour peak discharge rate (Qp) to predevelopment rates. The Qp requirement does not apply when:
 - (1) the site discharges directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.
- (v) Extreme Flood Control Criteria ("Qf"): Requires storage to attenuate the post-development 100-year, 24-hour peak discharge rate (Qf) to predevelopment rates. The Qf requirement does not apply when:
 - (1) the site discharges directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.

b. Sizing Criteria for New Development in Enhanced Phosphorus Removal Watershed

(i) Runoff Reduction Volume (RRv): Reduce the total Water Quality Volume (WQv) by application of RR techniques and standard SMPs with RRv capacity. The total WQv is the runoff volume from the 1-year, 24 hour design storm over the post-developed watershed and shall be

calculated in accordance with the criteria in Section 10.3 of the Design Manual.

(ii) Minimum RRv and Treatment of Remaining Total WQv: Construction activities that cannot meet the criteria in Part I.C.2.b.(i) of this permit due to site limitations shall direct runoff from all newly constructed impervious areas to a RR technique or standard SMP with RRv capacity unless infeasible. The specific site limitations that prevent the reduction of 100% of the WQv shall be documented in the SWPPP. For each impervious area that is not directed to a RR technique or standard SMP with RRv capacity, the SWPPP must include documentation which demonstrates that all options were considered and for each option explains why it is considered infeasible.

In no case shall the runoff reduction achieved from the newly constructed *impervious areas* be less than the Minimum RRv as calculated using the criteria in Section 10.3 of the Design Manual. The remaining portion of the total WQv that cannot be reduced shall be treated by application of standard SMPs.

- (iii) Channel Protection Volume (Cpv): Provide 24 hour extended detention of the post-developed 1-year, 24-hour storm event; remaining after runoff reduction. The Cpv requirement does not apply when:
 - (1) Reduction of the entire Cpv is achieved by application of runoff reduction techniques or infiltration systems, or
 - (2) The site *discharge*s directly to tidal waters, or fifth order or larger streams.
- (iv) Overbank Flood Control Criteria (Qp): Requires storage to attenuate the post-development 10-year, 24-hour peak discharge rate (Qp) to predevelopment rates. The Qp requirement does not apply when:
 - (1) the site *discharges* directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.
- (v) Extreme Flood Control Criteria (Qf): Requires storage to attenuate the post-development 100-year, 24-hour peak *discharge* rate (Qf) to predevelopment rates. The Qf requirement does not apply when:
 - (1) the site *discharges* directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.

c. Sizing Criteria for Redevelopment Activity

- (i) Water Quality Volume (WQv): The WQv treatment objective for redevelopment activity shall be addressed by one of the following options. Redevelopment activities located in an Enhanced Phosphorus Removal Watershed (see Part III.B.3. and Appendix C of this permit) shall calculate the WQv in accordance with Section 10.3 of the Design Manual. All other redevelopment activities shall calculate the WQv in accordance with Section 4.2 of the Design Manual.
 - (1) Reduce the existing *impervious cover* by a minimum of 25% of the total disturbed, *impervious area*. The Soil Restoration criteria in Section 5.1.6 of the Design Manual must be applied to all newly created pervious areas, or
 - (2) Capture and treat a minimum of 25% of the WQv from the disturbed, *impervious area* by the application of standard SMPs; or reduce 25% of the WQv from the disturbed, *impervious area* by the application of RR techniques or standard SMPs with RRv capacity., or
 - (3) Capture and treat a minimum of 75% of the WQv from the disturbed, *impervious area* as well as any additional runoff from tributary areas by application of the alternative practices discussed in Sections 9.3 and 9.4 of the Design Manual., or
 - (4) Application of a combination of 1, 2 and 3 above that provide a weighted average of at least two of the above methods. Application of this method shall be in accordance with the criteria in Section 9.2.1(B) (IV) of the Design Manual.

If there is an existing post-construction stormwater management practice located on the site that captures and treats runoff from the *impervious area* that is being disturbed, the WQv treatment option selected must, at a minimum, provide treatment equal to the treatment that was being provided by the existing practice(s) if that treatment is greater than the treatment required by options 1-4 above.

- (ii) Channel Protection Volume (Cpv): Not required if there are no changes to hydrology that increase the discharge rate from the project site.
- (iii) Overbank Flood Control Criteria (Qp): Not required if there are no changes to hydrology that increase the discharge rate from the project site.
- (iv) Extreme Flood Control Criteria (Qf): Not required if there are no changes to hydrology that increase the *discharge* rate from the project site

d. Sizing Criteria for Combination of Redevelopment Activity and New Development

Construction projects that include both New Development and Redevelopment Activity shall provide post-construction stormwater management controls that meet the sizing criteria calculated as an aggregate of the Sizing Criteria in Part I.C.2.a. or b. of this permit for the New Development portion of the project and Part I.C.2.c of this permit for Redevelopment Activity portion of the project.

D. Maintaining Water Quality

The Department expects that compliance with the conditions of this permit will control discharges necessary to meet applicable water quality standards. It shall be a violation of the ECL for any discharge to either cause or contribute to a violation of water quality standards as contained in Parts 700 through 705 of Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York, such as:

- 1. There shall be no increase in turbidity that will cause a substantial visible contrast to natural conditions;
- 2. There shall be no increase in suspended, colloidal or settleable solids that will cause deposition or impair the waters for their best usages; and
- 3. There shall be no residue from oil and floating substances, nor visible oil film, nor globules of grease.

If there is evidence indicating that the stormwater *discharge*s authorized by this permit are causing, have the reasonable potential to cause, or are contributing to a violation of the *water quality standards*; the *owner or operator* must take appropriate corrective action in accordance with Part IV.C.5. of this general permit and document in accordance with Part IV.C.4. of this general permit. To address the *water quality standard* violation the *owner or operator* may need to provide additional information, include and implement appropriate controls in the SWPPP to correct the problem, or obtain an individual SPDES permit.

If there is evidence indicating that despite compliance with the terms and conditions of this general permit it is demonstrated that the stormwater *discharges* authorized by this permit are causing or contributing to a violation of *water quality standards*, or if the Department determines that a modification of the permit is necessary to prevent a violation of *water quality standards*, the authorized *discharges* will no longer be eligible for coverage under this permit. The Department may require the *owner or operator* to obtain an individual SPDES permit to continue discharging.

E. Eligibility Under This General Permit

- 1. This permit may authorize all *discharges* of stormwater from *construction* activity to surface waters of the State and groundwaters except for ineligible discharges identified under subparagraph F. of this Part.
- 2. Except for non-stormwater *discharges* explicitly listed in the next paragraph, this permit only authorizes stormwater *discharges*; including stormwater runoff, snowmelt runoff, and surface runoff and drainage, from *construction activities*.
- 3. Notwithstanding paragraphs E.1 and E.2 above, the following non-stormwater discharges are authorized by this permit: those listed in 6 NYCRR 750-1.2(a)(29)(vi), with the following exception: "Discharges from firefighting activities are authorized only when the firefighting activities are emergencies/unplanned"; waters to which other components have not been added that are used to control dust in accordance with the SWPPP; and uncontaminated discharges from construction site de-watering operations. All non-stormwater discharges must be identified in the SWPPP. Under all circumstances, the owner or operator must still comply with water quality standards in Part I.D of this permit.
- 4. The *owner or operator* must maintain permit eligibility to *discharge* under this permit. Any *discharges* that are not compliant with the eligibility conditions of this permit are not authorized by the permit and the *owner or operator* must either apply for a separate permit to cover those ineligible *discharges* or take steps necessary to make the *discharge* eligible for coverage.

F. Activities Which Are Ineligible for Coverage Under This General Permit

All of the following are **not** authorized by this permit:

- 1. *Discharge*s after *construction activities* have been completed and the site has undergone *final stabilization*;
- 2. *Discharges* that are mixed with sources of non-stormwater other than those expressly authorized under subsection E.3. of this Part and identified in the SWPPP required by this permit;
- 3. *Discharges* that are required to obtain an individual SPDES permit or another SPDES general permit pursuant to Part VII.K. of this permit;
- 4. Construction activities or discharges from construction activities that may adversely affect an endangered or threatened species unless the owner or

operator has obtained a permit issued pursuant to 6 NYCRR Part 182 for the project or the Department has issued a letter of non-jurisdiction for the project. All documentation necessary to demonstrate eligibility shall be maintained on site in accordance with Part II.D.2 of this permit;

- 5. *Discharges* which either cause or contribute to a violation of *water quality standards* adopted pursuant to the *ECL* and its accompanying regulations;
- 6. Construction activities for residential, commercial and institutional projects:
 - a. Where the *discharge*s from the *construction activities* are tributary to waters of the state classified as AA or AA-s; and
 - b. Which are undertaken on land with no existing impervious cover, and
 - c. Which disturb one (1) or more acres of land designated on the current United States Department of Agriculture ("USDA") Soil Survey as Soil Slope Phase "D", (provided the map unit name is inclusive of slopes greater than 25%), or Soil Slope Phase "E" or "F" (regardless of the map unit name), or a combination of the three designations.
- 7. Construction activities for linear transportation projects and linear utility projects:
 - a. Where the *discharges* from the *construction activities* are tributary to waters of the state classified as AA or AA-s: and
 - b. Which are undertaken on land with no existing *impervious cover*, and
 - c. Which disturb two (2) or more acres of land designated on the current USDA Soil Survey as Soil Slope Phase "D" (provided the map unit name is inclusive of slopes greater than 25%), or Soil Slope Phase "E" or "F" (regardless of the map unit name), or a combination of the three designations.

- 8. Construction activities that have the potential to affect an historic property, unless there is documentation that such impacts have been resolved. The following documentation necessary to demonstrate eligibility with this requirement shall be maintained on site in accordance with Part II.D.2 of this permit and made available to the Department in accordance with Part VII.F of this permit:
 - a. Documentation that the construction activity is not within an archeologically sensitive area indicated on the sensitivity map, and that the construction activity is not located on or immediately adjacent to a property listed or determined to be eligible for listing on the National or State Registers of Historic Places, and that there is no new permanent building on the construction site within the following distances from a building, structure, or object that is more than 50 years old, or if there is such a new permanent building on the construction site within those parameters that NYS Office of Parks, Recreation and Historic Preservation (OPRHP), a Historic Preservation Commission of a Certified Local Government, or a qualified preservation professional has determined that the building, structure, or object more than 50 years old is not historically/archeologically significant.
 - 1-5 acres of disturbance 20 feet
 - 5-20 acres of disturbance 50 feet
 - 20+ acres of disturbance 100 feet, or
 - b. DEC consultation form sent to OPRHP, and copied to the NYS DEC Agency Historic Preservation Officer (APO), and
 - (i) the State Environmental Quality Review (SEQR) Environmental Assessment Form (EAF) with a negative declaration or the Findings Statement, with documentation of OPRHP's agreement with the resolution; or
 - (ii) documentation from OPRHP that the *construction activity* will result in No Impact; or
 - (iii) documentation from OPRHP providing a determination of No Adverse Impact; or
 - (iv) a Letter of Resolution signed by the owner/operator, OPRHP and the DEC APO which allows for this construction activity to be eligible for coverage under the general permit in terms of the State Historic Preservation Act (SHPA); or
 - c. Documentation of satisfactory compliance with Section 106 of the National Historic Preservation Act for a coterminous project area:

- (i) No Affect
- (ii) No Adverse Affect
- (iii) Executed Memorandum of Agreement, or

d. Documentation that:

- (i) SHPA Section 14.09 has been completed by NYS DEC or another state agency.
- 9. *Discharge*s from *construction activities* that are subject to an existing SPDES individual or general permit where a SPDES permit for *construction activity* has been terminated or denied; or where the *owner or operator* has failed to renew an expired individual permit.

Part II. PERMIT COVERAGE

A. How to Obtain Coverage

- An owner or operator of a construction activity that is not subject to the requirements of a regulated, traditional land use control MS4 must first prepare a SWPPP in accordance with all applicable requirements of this permit and then submit a completed Notice of Intent (NOI) to the Department to be authorized to discharge under this permit.
- 2. An owner or operator of a construction activity that is subject to the requirements of a regulated, traditional land use control MS4 must first prepare a SWPPP in accordance with all applicable requirements of this permit and then have the SWPPP reviewed and accepted by the regulated, traditional land use control MS4 prior to submitting the NOI to the Department. The owner or operator shall have the "MS4 SWPPP Acceptance" form signed in accordance with Part VII.H., and then submit that form along with a completed NOI to the Department.
- 3. The requirement for an owner or operator to have its SWPPP reviewed and accepted by the regulated, traditional land use control MS4 prior to submitting the NOI to the Department does not apply to an owner or operator that is obtaining permit coverage in accordance with the requirements in Part II.F. (Change of Owner or Operator) or where the owner or operator of the construction activity is the regulated, traditional land use control MS4. This exemption does not apply to construction activities subject to the New York City Administrative Code.

B. Notice of Intent (NOI) Submittal

 Prior to December 21, 2020, an owner or operator shall use either the electronic (eNOI) or paper version of the NOI that the Department prepared. Both versions of the NOI are located on the Department's website (http://www.dec.ny.gov/). The paper version of the NOI shall be signed in accordance with Part VII.H. of this permit and submitted to the following address:

> NOTICE OF INTENT NYS DEC, Bureau of Water Permits 625 Broadway, 4th Floor Albany, New York 12233-3505

- 2. Beginning December 21, 2020 and in accordance with EPA's 2015 NPDES Electronic Reporting Rule (40 CFR Part 127), the *owner or operator* must submit the NOI electronically using the *Department's* online NOI.
- 3. The *owner or operator* shall have the SWPPP preparer sign the "SWPPP Preparer Certification" statement on the NOI prior to submitting the form to the Department.
- 4. As of the date the NOI is submitted to the Department, the *owner or operator* shall make the NOI and SWPPP available for review and copying in accordance with the requirements in Part VII.F. of this permit.

C. Permit Authorization

- 1. An *owner or operator* shall not *commence construction activity* until their authorization to *discharge* under this permit goes into effect.
- 2. Authorization to *discharge* under this permit will be effective when the *owner or operator* has satisfied all of the following criteria:
 - a. project review pursuant to the State Environmental Quality Review Act ("SEQRA") have been satisfied, when SEQRA is applicable. See the Department's website (http://www.dec.ny.gov/) for more information,
 - b. where required, all necessary Department permits subject to the *Uniform Procedures Act ("UPA")* (see 6 NYCRR Part 621), or the equivalent from another New York State agency, have been obtained, unless otherwise notified by the Department pursuant to 6 NYCRR 621.3(a)(4). *Owners or operators* of *construction activities* that are required to obtain *UPA* permits

must submit a preliminary SWPPP to the appropriate DEC Permit Administrator at the Regional Office listed in Appendix F at the time all other necessary *UPA* permit applications are submitted. The preliminary SWPPP must include sufficient information to demonstrate that the *construction activity* qualifies for authorization under this permit,

- c. the final SWPPP has been prepared, and
- d. a complete NOI has been submitted to the Department in accordance with the requirements of this permit.
- 3. An *owner or operator* that has satisfied the requirements of Part II.C.2 above will be authorized to *discharge* stormwater from their *construction activity* in accordance with the following schedule:
 - a. For *construction activities* that are <u>not</u> subject to the requirements of a *regulated, traditional land use control MS4*:
 - (i) Five (5) business days from the date the Department receives a complete electronic version of the NOI (eNOI) for construction activities with a SWPPP that has been prepared in conformance with the design criteria in the technical standard referenced in Part III.B.1 and the performance criteria in the technical standard referenced in Parts III.B., 2 or 3, for construction activities that require post-construction stormwater management practices pursuant to Part III.C.; or
 - (ii) Sixty (60) business days from the date the Department receives a complete NOI (electronic or paper version) for *construction activities* with a SWPPP that has <u>not</u> been prepared in conformance with the design criteria in technical standard referenced in Part III.B.1. or, for *construction activities* that require post-construction stormwater management practices pursuant to Part III.C., the *performance criteria* in the technical standard referenced in Parts III.B., 2 or 3, or;
 - (iii) Ten (10) business days from the date the Department receives a complete paper version of the NOI for construction activities with a SWPPP that has been prepared in conformance with the design criteria in the technical standard referenced in Part III.B.1 and the performance criteria in the technical standard referenced in Parts III.B., 2 or 3, for construction activities that require post-construction stormwater management practices pursuant to Part III.C.

- b. For *construction activities* that are subject to the requirements of a *regulated, traditional land use control MS4*:
 - (i) Five (5) business days from the date the Department receives both a complete electronic version of the NOI (eNOI) and signed "MS4 SWPPP Acceptance" form, or
 - (ii) Ten (10) business days from the date the Department receives both a complete paper version of the NOI and signed "MS4 SWPPP Acceptance" form.
- 4. Coverage under this permit authorizes stormwater discharges from only those areas of disturbance that are identified in the NOI. If an owner or operator wishes to have stormwater discharges from future or additional areas of disturbance authorized, they must submit a new NOI that addresses that phase of the development, unless otherwise notified by the Department. The owner or operator shall not commence construction activity on the future or additional areas until their authorization to discharge under this permit goes into effect in accordance with Part II.C. of this permit.

D. General Requirements For Owners or Operators With Permit Coverage

- The owner or operator shall ensure that the provisions of the SWPPP are implemented from the commencement of construction activity until all areas of disturbance have achieved final stabilization and the Notice of Termination ("NOT") has been submitted to the Department in accordance with Part V. of this permit. This includes any changes made to the SWPPP pursuant to Part III.A.4. of this permit.
- 2. The owner or operator shall maintain a copy of the General Permit (GP-0-20-001), NOI, NOI Acknowledgment Letter, SWPPP, MS4 SWPPP Acceptance form, inspection reports, responsible contractor's or subcontractor's certification statement (see Part III.A.6.), and all documentation necessary to demonstrate eligibility with this permit at the construction site until all disturbed areas have achieved final stabilization and the NOT has been submitted to the Department. The documents must be maintained in a secure location, such as a job trailer, on-site construction office, or mailbox with lock. The secure location must be accessible during normal business hours to an individual performing a compliance inspection.
- 3. The *owner or operator* of a *construction activity* shall not disturb greater than five (5) acres of soil at any one time without prior written authorization from the Department or, in areas under the jurisdiction of a *regulated*, *traditional land*

use control MS4, the regulated, traditional land use control MS4 (provided the regulated, traditional land use control MS4 is not the owner or operator of the construction activity). At a minimum, the owner or operator must comply with the following requirements in order to be authorized to disturb greater than five (5) acres of soil at any one time:

- a. The owner or operator shall have a qualified inspector conduct at least two (2) site inspections in accordance with Part IV.C. of this permit every seven (7) calendar days, for as long as greater than five (5) acres of soil remain disturbed. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
- b. In areas where soil disturbance activity has temporarily or permanently ceased, the application of soil stabilization measures must be initiated by the end of the next business day and completed within seven (7) days from the date the current soil disturbance activity ceased. The soil stabilization measures selected shall be in conformance with the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016.
- c. The *owner or operator* shall prepare a phasing plan that defines maximum disturbed area per phase and shows required cuts and fills.
- d. The *owner or operator* shall install any additional site-specific practices needed to protect water quality.
- e. The *owner or operator* shall include the requirements above in their SWPPP.
- 4. In accordance with statute, regulations, and the terms and conditions of this permit, the Department may suspend or revoke an *owner's or operator's* coverage under this permit at any time if the Department determines that the SWPPP does not meet the permit requirements or consistent with Part VII.K..
- 5. Upon a finding of significant non-compliance with the practices described in the SWPPP or violation of this permit, the Department may order an immediate stop to all activity at the site until the non-compliance is remedied. The stop work order shall be in writing, describe the non-compliance in detail, and be sent to the *owner or operator*.
- 6. For construction activities that are subject to the requirements of a regulated, traditional land use control MS4, the owner or operator shall notify the

regulated, traditional land use control MS4 in writing of any planned amendments or modifications to the post-construction stormwater management practice component of the SWPPP required by Part III.A. 4. and 5. of this permit. Unless otherwise notified by the regulated, traditional land use control MS4, the owner or operator shall have the SWPPP amendments or modifications reviewed and accepted by the regulated, traditional land use control MS4 prior to commencing construction of the post-construction stormwater management practice.

E. Permit Coverage for Discharges Authorized Under GP-0-15-002

 Upon renewal of SPDES General Permit for Stormwater Discharges from Construction Activity (Permit No. GP-0-15-002), an owner or operator of a construction activity with coverage under GP-0-15-002, as of the effective date of GP- 0-20-001, shall be authorized to discharge in accordance with GP- 0-20-001, unless otherwise notified by the Department.

An *owner or operator* may continue to implement the technical/design components of the post-construction stormwater management controls provided that such design was done in conformance with the technical standards in place at the time of initial project authorization. However, they must comply with the other, non-design provisions of GP-0-20-001.

F. Change of Owner or Operator

- 1. When property ownership changes or when there is a change in operational control over the construction plans and specifications, the original *owner or operator* must notify the new *owner or operator*, in writing, of the requirement to obtain permit coverage by submitting a NOI with the Department. For *construction activities* subject to the requirements of a *regulated, traditional land use control MS4*, the original *owner or operator* must also notify the MS4, in writing, of the change in ownership at least 30 calendar days prior to the change in ownership.
- 2. Once the new owner or operator obtains permit coverage, the original owner or operator shall then submit a completed NOT with the name and permit identification number of the new owner or operator to the Department at the address in Part II.B.1. of this permit. If the original owner or operator maintains ownership of a portion of the construction activity and will disturb soil, they must maintain their coverage under the permit.
- 3. Permit coverage for the new *owner or operator* will be effective as of the date the Department receives a complete NOI, provided the original *owner or*

operator was not subject to a sixty (60) business day authorization period that has not expired as of the date the Department receives the NOI from the new owner or operator.

Part III. STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

A. General SWPPP Requirements

- 1. A SWPPP shall be prepared and implemented by the owner or operator of each construction activity covered by this permit. The SWPPP must document the selection, design, installation, implementation and maintenance of the control measures and practices that will be used to meet the effluent limitations in Part I.B. of this permit and where applicable, the post-construction stormwater management practice requirements in Part I.C. of this permit. The SWPPP shall be prepared prior to the submittal of the NOI. The NOI shall be submitted to the Department prior to the commencement of construction activity. A copy of the completed, final NOI shall be included in the SWPPP.
- 2. The SWPPP shall describe the erosion and sediment control practices and where required, post-construction stormwater management practices that will be used and/or constructed to reduce the *pollutants* in stormwater *discharges* and to assure compliance with the terms and conditions of this permit. In addition, the SWPPP shall identify potential sources of pollution which may reasonably be expected to affect the quality of stormwater *discharges*.
- 3. All SWPPs that require the post-construction stormwater management practice component shall be prepared by a *qualified professional* that is knowledgeable in the principles and practices of stormwater management and treatment.
- 4. The owner or operator must keep the SWPPP current so that it at all times accurately documents the erosion and sediment controls practices that are being used or will be used during construction, and all post-construction stormwater management practices that will be constructed on the site. At a minimum, the owner or operator shall amend the SWPPP, including construction drawings:
 - a. whenever the current provisions prove to be ineffective in minimizing *pollutants* in stormwater *discharges* from the site;

- b. whenever there is a change in design, construction, or operation at the construction site that has or could have an effect on the discharge of pollutants;
- c. to address issues or deficiencies identified during an inspection by the *qualified inspector,* the Department or other regulatory authority; and
- d. to document the final construction conditions.
- 5. The Department may notify the *owner or operator* at any time that the SWPPP does not meet one or more of the minimum requirements of this permit. The notification shall be in writing and identify the provisions of the SWPPP that require modification. Within fourteen (14) calendar days of such notification, or as otherwise indicated by the Department, the *owner or operator* shall make the required changes to the SWPPP and submit written notification to the Department that the changes have been made. If the *owner or operator* does not respond to the Department's comments in the specified time frame, the Department may suspend the *owner's or operator's* coverage under this permit or require the *owner or operator* to obtain coverage under an individual SPDES permit in accordance with Part II.D.4. of this permit.
- 6. Prior to the commencement of construction activity, the owner or operator must identify the contractor(s) and subcontractor(s) that will be responsible for installing, constructing, repairing, replacing, inspecting and maintaining the erosion and sediment control practices included in the SWPPP; and the contractor(s) and subcontractor(s) that will be responsible for constructing the post-construction stormwater management practices included in the SWPPP. The owner or operator shall have each of the contractors and subcontractors identify at least one person from their company that will be responsible for implementation of the SWPPP. This person shall be known as the trained contractor. The owner or operator shall ensure that at least one trained contractor is on site on a daily basis when soil disturbance activities are being performed.

The *owner or operator* shall have each of the contractors and subcontractors identified above sign a copy of the following certification statement below before they commence any *construction activity*:

"I hereby certify under penalty of law that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the *qualified inspector* during a site inspection. I also understand that the *owner or operator* must comply with

the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater *discharges* from *construction activities* and that it is unlawful for any person to cause or contribute to a violation of *water quality standards*. Furthermore, I am aware that there are significant penalties for submitting false information, that I do not believe to be true, including the possibility of fine and imprisonment for knowing violations"

In addition to providing the certification statement above, the certification page must also identify the specific elements of the SWPPP that each contractor and subcontractor will be responsible for and include the name and title of the person providing the signature; the name and title of the *trained contractor* responsible for SWPPP implementation; the name, address and telephone number of the contracting firm; the address (or other identifying description) of the site; and the date the certification statement is signed. The *owner or operator* shall attach the certification statement(s) to the copy of the SWPPP that is maintained at the *construction site*. If new or additional contractors are hired to implement measures identified in the SWPPP after construction has commenced, they must also sign the certification statement and provide the information listed above.

7. For projects where the Department requests a copy of the SWPPP or inspection reports, the *owner or operator* shall submit the documents in both electronic (PDF only) and paper format within five (5) business days, unless otherwise notified by the Department.

B. Required SWPPP Contents

- 1. Erosion and sediment control component All SWPPPs prepared pursuant to this permit shall include erosion and sediment control practices designed in conformance with the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016. Where erosion and sediment control practices are not designed in conformance with the design criteria included in the technical standard, the *owner or operator* must demonstrate *equivalence* to the technical standard. At a minimum, the erosion and sediment control component of the SWPPP shall include the following:
 - a. Background information about the scope of the project, including the location, type and size of project

- b. A site map/construction drawing(s) for the project, including a general location map. At a minimum, the site map shall show the total site area; all improvements; areas of disturbance; areas that will not be disturbed; existing vegetation; on-site and adjacent off-site surface water(s); floodplain/floodway boundaries; wetlands and drainage patterns that could be affected by the construction activity; existing and final contours; locations of different soil types with boundaries; material, waste, borrow or equipment storage areas located on adjacent properties; and location(s) of the stormwater discharge(s);
- c. A description of the soil(s) present at the site, including an identification of the Hydrologic Soil Group (HSG);
- d. A construction phasing plan and sequence of operations describing the intended order of *construction activities*, including clearing and grubbing, excavation and grading, utility and infrastructure installation and any other activity at the site that results in soil disturbance;
- e. A description of the minimum erosion and sediment control practices to be installed or implemented for each *construction activity* that will result in soil disturbance. Include a schedule that identifies the timing of initial placement or implementation of each erosion and sediment control practice and the minimum time frames that each practice should remain in place or be implemented;
- f. A temporary and permanent soil stabilization plan that meets the requirements of this general permit and the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016, for each stage of the project, including initial land clearing and grubbing to project completion and achievement of *final stabilization*;
- g. A site map/construction drawing(s) showing the specific location(s), size(s), and length(s) of each erosion and sediment control practice;
- h. The dimensions, material specifications, installation details, and operation and maintenance requirements for all erosion and sediment control practices. Include the location and sizing of any temporary sediment basins and structural practices that will be used to divert flows from exposed soils;
- i. A maintenance inspection schedule for the contractor(s) identified in Part III.A.6. of this permit, to ensure continuous and effective operation of the erosion and sediment control practices. The maintenance inspection

schedule shall be in accordance with the requirements in the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016;

- j. A description of the pollution prevention measures that will be used to control litter, construction chemicals and construction debris from becoming a pollutant source in the stormwater discharges;
- k. A description and location of any stormwater discharges associated with industrial activity other than construction at the site, including, but not limited to, stormwater discharges from asphalt plants and concrete plants located on the construction site; and
- I. Identification of any elements of the design that are not in conformance with the design criteria in the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016. Include the reason for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is equivalent to the technical standard.
- 2. Post-construction stormwater management practice component The owner or operator of any construction project identified in Table 2 of Appendix B as needing post-construction stormwater management practices shall prepare a SWPPP that includes practices designed in conformance with the applicable sizing criteria in Part I.C.2.a., c. or d. of this permit and the performance criteria in the technical standard, New York State Stormwater Management Design Manual dated January 2015

Where post-construction stormwater management practices are not designed in conformance with the *performance criteria* in the technical standard, the *owner or operator* must include in the SWPPP the reason(s) for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the technical standard.

The post-construction stormwater management practice component of the SWPPP shall include the following:

 a. Identification of all post-construction stormwater management practices to be constructed as part of the project. Include the dimensions, material specifications and installation details for each post-construction stormwater management practice;

- A site map/construction drawing(s) showing the specific location and size of each post-construction stormwater management practice;
- c. A Stormwater Modeling and Analysis Report that includes:
 - Map(s) showing pre-development conditions, including watershed/subcatchments boundaries, flow paths/routing, and design points;
 - (ii) Map(s) showing post-development conditions, including watershed/subcatchments boundaries, flow paths/routing, design points and post-construction stormwater management practices;
 - (iii) Results of stormwater modeling (i.e. hydrology and hydraulic analysis) for the required storm events. Include supporting calculations (model runs), methodology, and a summary table that compares pre and post-development runoff rates and volumes for the different storm events;
 - (iv) Summary table, with supporting calculations, which demonstrates that each post-construction stormwater management practice has been designed in conformance with the *sizing criteria* included in the Design Manual;
 - (v) Identification of any *sizing criteria* that is not required based on the requirements included in Part I.C. of this permit; and
 - (vi) Identification of any elements of the design that are not in conformance with the performance criteria in the Design Manual. Include the reason(s) for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is equivalent to the Design Manual;
- d. Soil testing results and locations (test pits, borings);
- e. Infiltration test results, when required; and
- f. An operations and maintenance plan that includes inspection and maintenance schedules and actions to ensure continuous and effective operation of each post-construction stormwater management practice. The plan shall identify the entity that will be responsible for the long term operation and maintenance of each practice.

3. Enhanced Phosphorus Removal Standards - All construction projects identified in Table 2 of Appendix B that are located in the watersheds identified in Appendix C shall prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the applicable *sizing criteria* in Part I.C.2. b., c. or d. of this permit and the *performance criteria*, Enhanced Phosphorus Removal Standards included in the Design Manual. At a minimum, the post-construction stormwater management practice component of the SWPPP shall include items 2.a - 2.f. above.

C. Required SWPPP Components by Project Type

Unless otherwise notified by the Department, *owners or operators* of *construction activities* identified in Table 1 of Appendix B are required to prepare a SWPPP that only includes erosion and sediment control practices designed in conformance with Part III.B.1 of this permit. *Owners or operators* of the *construction activities* identified in Table 2 of Appendix B shall prepare a SWPPP that also includes post-construction stormwater management practices designed in conformance with Part III.B.2 or 3 of this permit.

Part IV. INSPECTION AND MAINTENANCE REQUIREMENTS

A. General Construction Site Inspection and Maintenance Requirements

- 1. The *owner or operator* must ensure that all erosion and sediment control practices (including pollution prevention measures) and all post-construction stormwater management practices identified in the SWPPP are inspected and maintained in accordance with Part IV.B. and C. of this permit.
- 2. The terms of this permit shall not be construed to prohibit the State of New York from exercising any authority pursuant to the ECL, common law or federal law, or prohibit New York State from taking any measures, whether civil or criminal, to prevent violations of the laws of the State of New York or protect the public health and safety and/or the environment.

B. Contractor Maintenance Inspection Requirements

1. The owner or operator of each construction activity identified in Tables 1 and 2 of Appendix B shall have a trained contractor inspect the erosion and sediment control practices and pollution prevention measures being implemented within the active work area daily to ensure that they are being maintained in effective operating condition at all times. If deficiencies are identified, the contractor shall

begin implementing corrective actions within one business day and shall complete the corrective actions in a reasonable time frame.

- 2. For construction sites where soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and temporary stabilization measures have been applied to all disturbed areas, the trained contractor can stop conducting the maintenance inspections. The trained contractor shall begin conducting the maintenance inspections in accordance with Part IV.B.1. of this permit as soon as soil disturbance activities resume.
- 3. For construction sites where soil disturbance activities have been shut down with partial project completion, the *trained contractor* can stop conducting the maintenance inspections if all areas disturbed as of the project shutdown date have achieved *final stabilization* and all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational.

C. Qualified Inspector Inspection Requirements

The *owner or operator* shall have a *qualified inspector* conduct site inspections in conformance with the following requirements:

[Note: The *trained contractor* identified in Part III.A.6. and IV.B. of this permit **cannot** conduct the *qualified inspector* site inspections unless they meet the *qualified inspector* qualifications included in Appendix A. In order to perform these inspections, the *trained contractor* would have to be a:

- licensed Professional Engineer,
- Certified Professional in Erosion and Sediment Control (CPESC),
- New York State Erosion and Sediment Control Certificate Program holder
- Registered Landscape Architect, or
- someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity].
- 1. A *qualified inspector* shall conduct site inspections for all *construction activities* identified in Tables 1 and 2 of Appendix B, <u>with the exception of</u>:
 - a. the construction of a single family residential subdivision with 25% or less impervious cover at total site build-out that involves a soil disturbance of one (1) or more acres of land but less than five (5) acres and is not located

- in one of the watersheds listed in Appendix C and <u>not</u> directly discharging to one of the 303(d) segments listed in Appendix E;
- the construction of a single family home that involves a soil disturbance of one (1) or more acres of land but less than five (5) acres and is <u>not</u> located in one of the watersheds listed in Appendix C and <u>not</u> directly discharging to one of the 303(d) segments listed in Appendix E;
- c. construction on agricultural property that involves a soil disturbance of one (1) or more acres of land but less than five (5) acres; and
- d. construction activities located in the watersheds identified in Appendix D that involve soil disturbances between five thousand (5,000) square feet and one (1) acre of land.
- 2. Unless otherwise notified by the Department, the *qualified inspector* shall conduct site inspections in accordance with the following timetable:
 - a. For construction sites where soil disturbance activities are on-going, the *qualified inspector* shall conduct a site inspection at least once every seven (7) calendar days.
 - b. For construction sites where soil disturbance activities are on-going and the owner or operator has received authorization in accordance with Part II.D.3 to disturb greater than five (5) acres of soil at any one time, the qualified inspector shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
 - c. For construction sites where soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and temporary stabilization measures have been applied to all disturbed areas, the qualified inspector shall conduct a site inspection at least once every thirty (30) calendar days. The owner or operator shall notify the DOW Water (SPDES) Program contact at the Regional Office (see contact information in Appendix F) or, in areas under the jurisdiction of a regulated, traditional land use control MS4, the regulated, traditional land use control MS4 (provided the regulated, traditional land use control MS4 is not the owner or operator of the construction activity) in writing prior to reducing the frequency of inspections.

- d. For construction sites where soil disturbance activities have been shut down with partial project completion, the qualified inspector can stop conducting inspections if all areas disturbed as of the project shutdown date have achieved *final stabilization* and all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational. The owner or operator shall notify the DOW Water (SPDES) Program contact at the Regional Office (see contact information in Appendix F) or, in areas under the jurisdiction of a regulated, traditional land use control MS4, the regulated, traditional land use control MS4 (provided the regulated, traditional land use control MS4 is not the owner or operator of the construction activity) in writing prior to the shutdown. If soil disturbance activities are not resumed within 2 years from the date of shutdown, the owner or operator shall have the qualified inspector perform a final inspection and certify that all disturbed areas have achieved *final* stabilization, and all temporary, structural erosion and sediment control measures have been removed; and that all post-construction stormwater management practices have been constructed in conformance with the SWPPP by signing the "Final Stabilization" and "Post-Construction" Stormwater Management Practice" certification statements on the NOT. The owner or operator shall then submit the completed NOT form to the address in Part II.B.1 of this permit.
- e. For construction sites that directly *discharge* to one of the 303(d) segments listed in Appendix E or is located in one of the watersheds listed in Appendix C, the *qualified inspector* shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
- 3. At a minimum, the *qualified inspector* shall inspect all erosion and sediment control practices and pollution prevention measures to ensure integrity and effectiveness, all post-construction stormwater management practices under construction to ensure that they are constructed in conformance with the SWPPP, all areas of disturbance that have not achieved *final stabilization*, all points of *discharge* to natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the *construction site*, and all points of *discharge* from the *construction site*.
- 4. The *qualified inspector* shall prepare an inspection report subsequent to each and every inspection. At a minimum, the inspection report shall include and/or address the following:

- a. Date and time of inspection;
- b. Name and title of person(s) performing inspection;
- c. A description of the weather and soil conditions (e.g. dry, wet, saturated) at the time of the inspection;
- d. A description of the condition of the runoff at all points of *discharge* from the *construction site*. This shall include identification of any *discharges* of sediment from the *construction site*. Include *discharges* from conveyance systems (i.e. pipes, culverts, ditches, etc.) and overland flow;
- e. A description of the condition of all natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the construction site which receive runoff from disturbed areas. This shall include identification of any discharges of sediment to the surface waterbody;
- f. Identification of all erosion and sediment control practices and pollution prevention measures that need repair or maintenance;
- g. Identification of all erosion and sediment control practices and pollution prevention measures that were not installed properly or are not functioning as designed and need to be reinstalled or replaced;
- Description and sketch of areas with active soil disturbance activity, areas that have been disturbed but are inactive at the time of the inspection, and areas that have been stabilized (temporary and/or final) since the last inspection;
- Current phase of construction of all post-construction stormwater management practices and identification of all construction that is not in conformance with the SWPPP and technical standards;
- j. Corrective action(s) that must be taken to install, repair, replace or maintain erosion and sediment control practices and pollution prevention measures; and to correct deficiencies identified with the construction of the postconstruction stormwater management practice(s);
- Identification and status of all corrective actions that were required by previous inspection; and

- I. Digital photographs, with date stamp, that clearly show the condition of all practices that have been identified as needing corrective actions. The qualified inspector shall attach paper color copies of the digital photographs to the inspection report being maintained onsite within seven (7) calendar days of the date of the inspection. The qualified inspector shall also take digital photographs, with date stamp, that clearly show the condition of the practice(s) after the corrective action has been completed. The qualified inspector shall attach paper color copies of the digital photographs to the inspection report that documents the completion of the corrective action work within seven (7) calendar days of that inspection.
- 5. Within one business day of the completion of an inspection, the *qualified inspector* shall notify the *owner or operator* and appropriate contractor or subcontractor identified in Part III.A.6. of this permit of any corrective actions that need to be taken. The contractor or subcontractor shall begin implementing the corrective actions within one business day of this notification and shall complete the corrective actions in a reasonable time frame.
- 6. All inspection reports shall be signed by the *qualified inspector*. Pursuant to Part II.D.2. of this permit, the inspection reports shall be maintained on site with the SWPPP.

Part V. TERMINATION OF PERMIT COVERAGE

A. Termination of Permit Coverage

- An owner or operator that is eligible to terminate coverage under this permit
 must submit a completed NOT form to the address in Part II.B.1 of this permit.
 The NOT form shall be one which is associated with this permit, signed in
 accordance with Part VII.H of this permit.
- 2. An *owner or operator* may terminate coverage when one or more the following conditions have been met:
 - a. Total project completion All construction activity identified in the SWPPP has been completed; <u>and</u> all areas of disturbance have achieved *final* stabilization; <u>and</u> all temporary, structural erosion and sediment control measures have been removed; <u>and</u> all post-construction stormwater management practices have been constructed in conformance with the SWPPP and are operational;

- b. Planned shutdown with partial project completion All soil disturbance activities have ceased; <u>and</u> all areas disturbed as of the project shutdown date have achieved *final stabilization*; <u>and</u> all temporary, structural erosion and sediment control measures have been removed; <u>and</u> all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational;
- c. A new *owner or operator* has obtained coverage under this permit in accordance with Part II.F. of this permit.
- d. The *owner or operator* obtains coverage under an alternative SPDES general permit or an individual SPDES permit.
- 3. For *construction activities* meeting subdivision 2a. or 2b. of this Part, the *owner or operator* shall have the *qualified inspector* perform a final site inspection prior to submitting the NOT. The *qualified inspector* shall, by signing the "*Final Stabilization*" and "Post-Construction Stormwater Management Practice certification statements on the NOT, certify that all the requirements in Part V.A.2.a. or b. of this permit have been achieved.
- 4. For construction activities that are subject to the requirements of a regulated, traditional land use control MS4 and meet subdivision 2a. or 2b. of this Part, the owner or operator shall have the regulated, traditional land use control MS4 sign the "MS4 Acceptance" statement on the NOT in accordance with the requirements in Part VII.H. of this permit. The regulated, traditional land use control MS4 official, by signing this statement, has determined that it is acceptable for the owner or operator to submit the NOT in accordance with the requirements of this Part. The regulated, traditional land use control MS4 can make this determination by performing a final site inspection themselves or by accepting the qualified inspector's final site inspection certification(s) required in Part V.A.3. of this permit.
- 5. For *construction activities* that require post-construction stormwater management practices and meet subdivision 2a. of this Part, the *owner or operator* must, prior to submitting the NOT, ensure one of the following:
 - a. the post-construction stormwater management practice(s) and any right-ofway(s) needed to maintain such practice(s) have been deeded to the municipality in which the practice(s) is located,

- b. an executed maintenance agreement is in place with the municipality that will maintain the post-construction stormwater management practice(s),
- c. for post-construction stormwater management practices that are privately owned, the *owner or operator* has a mechanism in place that requires operation and maintenance of the practice(s) in accordance with the operation and maintenance plan, such as a deed covenant in the *owner or operator*'s deed of record,
- d. for post-construction stormwater management practices that are owned by a public or private institution (e.g. school, university, hospital), government agency or authority, or public utility; the *owner or operator* has policy and procedures in place that ensures operation and maintenance of the practices in accordance with the operation and maintenance plan.

Part VI. REPORTING AND RETENTION RECORDS

A. Record Retention

The *owner or operator* shall retain a copy of the NOI, NOI Acknowledgment Letter, SWPPP, MS4 SWPPP Acceptance form and any inspection reports that were prepared in conjunction with this permit for a period of at least five (5) years from the date that the Department receives a complete NOT submitted in accordance with Part V. of this general permit.

B. Addresses

With the exception of the NOI, NOT, and MS4 SWPPP Acceptance form (which must be submitted to the address referenced in Part II.B.1 of this permit), all written correspondence requested by the Department, including individual permit applications, shall be sent to the address of the appropriate DOW Water (SPDES) Program contact at the Regional Office listed in Appendix F.

Part VII. STANDARD PERMIT CONDITIONS

A. Duty to Comply

The *owner or operator* must comply with all conditions of this permit. All contractors and subcontractors associated with the project must comply with the terms of the SWPPP. Any non-compliance with this permit constitutes a violation of the Clean Water

Act (CWA) and the ECL and is grounds for an enforcement action against the *owner or operator* and/or the contractor/subcontractor; permit revocation, suspension or modification; or denial of a permit renewal application. Upon a finding of significant non-compliance with this permit or the applicable SWPPP, the Department may order an immediate stop to all *construction activity* at the site until the non-compliance is remedied. The stop work order shall be in writing, shall describe the non-compliance in detail, and shall be sent to the *owner or operator*.

If any human remains or archaeological remains are encountered during excavation, the *owner or operator* must immediately cease, or cause to cease, all *construction activity* in the area of the remains and notify the appropriate Regional Water Engineer (RWE). *Construction activity* shall not resume until written permission to do so has been received from the RWE.

B. Continuation of the Expired General Permit

This permit expires five (5) years from the effective date. If a new general permit is not issued prior to the expiration of this general permit, an *owner or operator* with coverage under this permit may continue to operate and *discharge* in accordance with the terms and conditions of this general permit, if it is extended pursuant to the State Administrative Procedure Act and 6 NYCRR Part 621, until a new general permit is issued.

C. Enforcement

Failure of the *owner or operator*, its contractors, subcontractors, agents and/or assigns to strictly adhere to any of the permit requirements contained herein shall constitute a violation of this permit. There are substantial criminal, civil, and administrative penalties associated with violating the provisions of this permit. Fines of up to \$37,500 per day for each violation and imprisonment for up to fifteen (15) years may be assessed depending upon the nature and degree of the offense.

D. Need to Halt or Reduce Activity Not a Defense

It shall not be a defense for an *owner or operator* in an enforcement action that it would have been necessary to halt or reduce the *construction activity* in order to maintain compliance with the conditions of this permit.

E. Duty to Mitigate

The *owner or operator* and its contractors and subcontractors shall take all reasonable steps to *minimize* or prevent any *discharge* in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.

F. Duty to Provide Information

The *owner or operator* shall furnish to the Department, within a reasonable specified time period of a written request, all documentation necessary to demonstrate eligibility and any information to determine compliance with this permit or to determine whether cause exists for modifying or revoking this permit, or suspending or denying coverage under this permit, in accordance with the terms and conditions of this permit. The NOI, SWPPP and inspection reports required by this permit are public documents that the *owner or operator* must make available for review and copying by any person within five (5) business days of the *owner or operator* receiving a written request by any such person to review these documents. Copying of documents will be done at the requester's expense.

G. Other Information

When the *owner or operator* becomes aware that they failed to submit any relevant facts, or submitted incorrect information in the NOI or in any of the documents required by this permit, or have made substantive revisions to the SWPPP (e.g. the scope of the project changes significantly, the type of post-construction stormwater management practice(s) changes, there is a reduction in the sizing of the post-construction stormwater management practice, or there is an increase in the disturbance area or *impervious area*), which were not reflected in the original NOI submitted to the Department, they shall promptly submit such facts or information to the Department using the contact information in Part II.A. of this permit. Failure of the *owner or operator* to correct or supplement any relevant facts within five (5) business days of becoming aware of the deficiency shall constitute a violation of this permit.

H. Signatory Requirements

- 1. All NOIs and NOTs shall be signed as follows:
 - a. For a corporation these forms shall be signed by a responsible corporate officer. For the purpose of this section, a responsible corporate officer means:

- a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation; or
- (ii) the manager of one or more manufacturing, production or operating facilities, provided the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures;
- b. For a partnership or sole proprietorship these forms shall be signed by a general partner or the proprietor, respectively; or
- c. For a municipality, State, Federal, or other public agency these forms shall be signed by either a principal executive officer or ranking elected official. For purposes of this section, a principal executive officer of a Federal agency includes:
 - (i) the chief executive officer of the agency, or
 - (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of EPA).
- 2. The SWPPP and other information requested by the Department shall be signed by a person described in Part VII.H.1. of this permit or by a duly authorized representative of that person. A person is a duly authorized representative only if:
 - a. The authorization is made in writing by a person described in Part VII.H.1. of this permit;
 - b. The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity, such as the position of plant manager, operator of a well or a well field,

superintendent, position of *equivalent* responsibility, or an individual or position having overall responsibility for environmental matters for the company. (A duly authorized representative may thus be either a named individual or any individual occupying a named position) and,

- c. The written authorization shall include the name, title and signature of the authorized representative and be attached to the SWPPP.
- 3. All inspection reports shall be signed by the *qualified inspector* that performs the inspection.
- 4. The MS4 SWPPP Acceptance form shall be signed by the principal executive officer or ranking elected official from the *regulated, traditional land use control MS4,* or by a duly authorized representative of that person.

It shall constitute a permit violation if an incorrect and/or improper signatory authorizes any required forms, SWPPP and/or inspection reports.

I. Property Rights

The issuance of this permit does not convey any property rights of any sort, nor any exclusive privileges, nor does it authorize any injury to private property nor any invasion of personal rights, nor any infringement of Federal, State or local laws or regulations. *Owners or operators* must obtain any applicable conveyances, easements, licenses and/or access to real property prior to *commencing construction activity*.

J. Severability

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit shall not be affected thereby.

K. Requirement to Obtain Coverage Under an Alternative Permit

1. The Department may require any owner or operator authorized by this permit to apply for and/or obtain either an individual SPDES permit or another SPDES general permit. When the Department requires any discharger authorized by a general permit to apply for an individual SPDES permit, it shall notify the discharger in writing that a permit application is required. This notice shall

include a brief statement of the reasons for this decision, an application form, a statement setting a time frame for the owner or operator to file the application for an individual SPDES permit, and a deadline, not sooner than 180 days from owner or operator receipt of the notification letter, whereby the authorization to discharge under this general permit shall be terminated. Applications must be submitted to the appropriate Permit Administrator at the Regional Office. The Department may grant additional time upon demonstration, to the satisfaction of the Department, that additional time to apply for an alternative authorization is necessary or where the Department has not provided a permit determination in accordance with Part 621 of this Title.

2. When an individual SPDES permit is issued to a discharger authorized to discharge under a general SPDES permit for the same discharge(s), the general permit authorization for outfalls authorized under the individual SPDES permit is automatically terminated on the effective date of the individual permit unless termination is earlier in accordance with 6 NYCRR Part 750.

L. Proper Operation and Maintenance

The *owner or operator* shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the *owner or operator* to achieve compliance with the conditions of this permit and with the requirements of the SWPPP.

M. Inspection and Entry

The *owner or operator* shall allow an authorized representative of the Department, EPA, applicable county health department, or, in the case of a *construction site* which *discharges* through an *MS4*, an authorized representative of the *MS4* receiving the discharge, upon the presentation of credentials and other documents as may be required by law, to:

- Enter upon the owner's or operator's premises where a regulated facility or activity is located or conducted or where records must be kept under the conditions of this permit;
- 2. Have access to and copy at reasonable times, any records that must be kept under the conditions of this permit; and

- Inspect at reasonable times any facilities or equipment (including monitoring and control equipment), practices or operations regulated or required by this permit.
- 4. Sample or monitor at reasonable times, for purposes of assuring permit compliance or as otherwise authorized by the Act or ECL, any substances or parameters at any location.

N. Permit Actions

This permit may, at any time, be modified, suspended, revoked, or renewed by the Department in accordance with 6 NYCRR Part 621. The filing of a request by the *owner or operator* for a permit modification, revocation and reissuance, termination, a notification of planned changes or anticipated noncompliance does not limit, diminish and/or stay compliance with any terms of this permit.

O. Definitions

Definitions of key terms are included in Appendix A of this permit.

P. Re-Opener Clause

- 1. If there is evidence indicating potential or realized impacts on water quality due to any stormwater discharge associated with construction activity covered by this permit, the owner or operator of such discharge may be required to obtain an individual permit or alternative general permit in accordance with Part VII.K. of this permit or the permit may be modified to include different limitations and/or requirements.
- Any Department initiated permit modification, suspension or revocation will be conducted in accordance with 6 NYCRR Part 621, 6 NYCRR 750-1.18, and 6 NYCRR 750-1.20.

Q. Penalties for Falsification of Forms and Reports

In accordance with 6NYCRR Part 750-2.4 and 750-2.5, any person who knowingly makes any false material statement, representation, or certification in any application, record, report or other document filed or required to be maintained under this permit, including reports of compliance or noncompliance shall, upon conviction, be punished in accordance with ECL §71-1933 and or Articles 175 and 210 of the New York State Penal Law.

R. Other Permits

Nothing in this permit relieves the *owner or operator* from a requirement to obtain any other permits required by law.

APPENDIX A – Acronyms and Definitions

Acronyms

APO – Agency Preservation Officer

BMP - Best Management Practice

CPESC - Certified Professional in Erosion and Sediment Control

Cpv – Channel Protection Volume

CWA – Clean Water Act (or the Federal Water Pollution Control Act, 33 U.S.C. §1251 et seq)

DOW - Division of Water

EAF – Environmental Assessment Form

ECL - Environmental Conservation Law

EPA – U. S. Environmental Protection Agency

HSG – Hydrologic Soil Group

MS4 – Municipal Separate Storm Sewer System

NOI – Notice of Intent

NOT – Notice of Termination

NPDES - National Pollutant Discharge Elimination System

OPRHP – Office of Parks, Recreation and Historic Places

Qf – Extreme Flood

Qp - Overbank Flood

RRv - Runoff Reduction Volume

RWE – Regional Water Engineer

SEQR - State Environmental Quality Review

SEQRA - State Environmental Quality Review Act

SHPA – State Historic Preservation Act

SPDES – State Pollutant Discharge Elimination System

SWPPP – Stormwater Pollution Prevention Plan

TMDL - Total Maximum Daily Load

UPA – Uniform Procedures Act

USDA - United States Department of Agriculture

WQv - Water Quality Volume

Definitions

All definitions in this section are solely for the purposes of this permit.

Agricultural Building – a structure designed and constructed to house farm implements, hay, grain, poultry, livestock or other horticultural products; excluding any structure designed, constructed or used, in whole or in part, for human habitation, as a place of employment where agricultural products are processed, treated or packaged, or as a place used by the public.

Agricultural Property –means the land for construction of a barn, *agricultural building*, silo, stockyard, pen or other structural practices identified in Table II in the "Agricultural Management Practices Catalog for Nonpoint Source Pollution in New York State" prepared by the Department in cooperation with agencies of New York Nonpoint Source Coordinating Committee (dated June 2007).

Alter Hydrology from Pre to Post-Development Conditions - means the post-development peak flow rate(s) has increased by more than 5% of the pre-developed condition for the design storm of interest (e.g. 10 yr and 100 yr).

Combined Sewer - means a sewer that is designed to collect and convey both "sewage" and "stormwater".

Commence (Commencement of) Construction Activities - means the initial disturbance of soils associated with clearing, grading or excavation activities; or other construction related activities that disturb or expose soils such as demolition, stockpiling of fill material, and the initial installation of erosion and sediment control practices required in the SWPPP. See definition for "Construction Activity(ies)" also.

Construction Activity(ies) - means any clearing, grading, excavation, filling, demolition or stockpiling activities that result in soil disturbance. Clearing activities can include, but are not limited to, logging equipment operation, the cutting and skidding of trees, stump removal and/or brush root removal. Construction activity does not include routine maintenance that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of a facility.

Construction Site – means the land area where *construction activity(ies)* will occur. See definition for "*Commence (Commencement of) Construction Activities*" and "*Larger Common Plan of Development or Sale*" also.

Dewatering – means the act of draining rainwater and/or groundwater from building foundations, vaults or excavations/trenches.

Direct Discharge (to a specific surface waterbody) - means that runoff flows from a construction site by overland flow and the first point of discharge is the specific surface waterbody, or runoff flows from a construction site to a separate storm sewer system

and the first point of discharge from the separate storm sewer system is the specific surface waterbody.

Discharge(s) - means any addition of any pollutant to waters of the State through an outlet or *point source*.

Embankment –means an earthen or rock slope that supports a road/highway.

Endangered or Threatened Species – see 6 NYCRR Part 182 of the Department's rules and regulations for definition of terms and requirements.

Environmental Conservation Law (ECL) - means chapter 43-B of the Consolidated Laws of the State of New York, entitled the Environmental Conservation Law.

Equivalent (Equivalence) – means that the practice or measure meets all the performance, longevity, maintenance, and safety objectives of the technical standard and will provide an equal or greater degree of water quality protection.

Final Stabilization - means that all soil disturbance activities have ceased and a uniform, perennial vegetative cover with a density of eighty (80) percent over the entire pervious surface has been established; or other equivalent stabilization measures, such as permanent landscape mulches, rock rip-rap or washed/crushed stone have been applied on all disturbed areas that are not covered by permanent structures, concrete or pavement.

General SPDES permit - means a SPDES permit issued pursuant to 6 NYCRR Part 750-1.21 and Section 70-0117 of the ECL authorizing a category of discharges.

Groundwater(s) - means waters in the saturated zone. The saturated zone is a subsurface zone in which all the interstices are filled with water under pressure greater than that of the atmosphere. Although the zone may contain gas-filled interstices or interstices filled with fluids other than water, it is still considered saturated.

Historic Property – means any building, structure, site, object or district that is listed on the State or National Registers of Historic Places or is determined to be eligible for listing on the State or National Registers of Historic Places.

Impervious Area (Cover) - means all impermeable surfaces that cannot effectively infiltrate rainfall. This includes paved, concrete and gravel surfaces (i.e. parking lots, driveways, roads, runways and sidewalks); building rooftops and miscellaneous impermeable structures such as patios, pools, and sheds.

Infeasible – means not technologically possible, or not economically practicable and achievable in light of best industry practices.

Larger Common Plan of Development or Sale - means a contiguous area where multiple separate and distinct *construction activities* are occurring, or will occur, under one plan. The term "plan" in "larger common plan of development or sale" is broadly defined as any announcement or piece of documentation (including a sign, public notice or hearing, marketing plan, advertisement, drawing, permit application, State Environmental Quality Review Act (SEQRA) environmental assessment form or other documents, zoning request, computer design, etc.) or physical demarcation (including boundary signs, lot stakes, surveyor markings, etc.) indicating that *construction activities* may occur on a specific plot.

For discrete construction projects that are located within a larger common plan of development or sale that are at least 1/4 mile apart, each project can be treated as a separate plan of development or sale provided any interconnecting road, pipeline or utility project that is part of the same "common plan" is not concurrently being disturbed.

Minimize – means reduce and/or eliminate to the extent achievable using control measures (including best management practices) that are technologically available and economically practicable and achievable in light of best industry practices.

Municipal Separate Storm Sewer (MS4) - a conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, or storm drains):

- (i) Owned or operated by a State, city, town, borough, county, parish, district, association, or other public body (created by or pursuant to State law) having jurisdiction over disposal of sewage, industrial wastes, stormwater, or other wastes, including special districts under State law such as a sewer district, flood control district or drainage district, or similar entity, or an Indian tribe or an authorized Indian tribal organization, or a designated and approved management agency under section 208 of the CWA that discharges to surface waters of the State;
- (ii) Designed or used for collecting or conveying stormwater;
- (iii) Which is not a combined sewer, and
- (iv) Which is not part of a Publicly Owned Treatment Works (POTW) as defined at 40 CFR 122.2.

National Pollutant Discharge Elimination System (NPDES) - means the national system for the issuance of wastewater and stormwater permits under the Federal Water Pollution Control Act (Clean Water Act).

Natural Buffer –means an undisturbed area with natural cover running along a surface water (e.g. wetland, stream, river, lake, etc.).

New Development – means any land disturbance that does not meet the definition of Redevelopment Activity included in this appendix.

New York State Erosion and Sediment Control Certificate Program – a certificate program that establishes and maintains a process to identify and recognize individuals who are capable of developing, designing, inspecting and maintaining erosion and sediment control plans on projects that disturb soils in New York State. The certificate program is administered by the New York State Conservation District Employees Association.

NOI Acknowledgment Letter - means the letter that the Department sends to an owner or operator to acknowledge the Department's receipt and acceptance of a complete Notice of Intent. This letter documents the owner's or operator's authorization to discharge in accordance with the general permit for stormwater discharges from *construction activity*.

Nonpoint Source - means any source of water pollution or pollutants which is not a discrete conveyance or *point source* permitted pursuant to Title 7 or 8 of Article 17 of the Environmental Conservation Law (see ECL Section 17-1403).

Overbank –means flow events that exceed the capacity of the stream channel and spill out into the adjacent floodplain.

Owner or Operator - means the person, persons or legal entity which owns or leases the property on which the *construction activity* is occurring; an entity that has operational control over the construction plans and specifications, including the ability to make modifications to the plans and specifications; and/or an entity that has day-to-day operational control of those activities at a project that are necessary to ensure compliance with the permit conditions.

Performance Criteria – means the design criteria listed under the "Required Elements" sections in Chapters 5, 6 and 10 of the technical standard, New York State Stormwater Management Design Manual, dated January 2015. It does not include the Sizing Criteria (i.e. WQv, RRv, Cpv, Qp and Qf) in Part I.C.2. of the permit.

Point Source - means any discernible, confined and discrete conveyance, including but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, vessel or other floating craft, or landfill leachate collection system from which *pollutants* are or may be discharged.

Pollutant - means dredged spoil, filter backwash, solid waste, incinerator residue, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand and industrial, municipal, agricultural waste and ballast discharged into water; which may cause or might reasonably be expected to cause pollution of the waters of the state in contravention of the standards or guidance values adopted as provided in 6 NYCRR Parts 700 et seq.

Qualified Inspector - means a person that is knowledgeable in the principles and practices of erosion and sediment control, such as a licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, New York State Erosion and Sediment Control Certificate Program holder or other Department endorsed individual(s).

It can also mean someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided that person has training in the principles and practices of erosion and sediment control. Training in the principles and practices of erosion and sediment control means that the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect has received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect shall receive four (4) hours of training every three (3) years.

It can also mean a person that meets the *Qualified Professional* qualifications in addition to the *Qualified Inspector* qualifications.

Note: Inspections of any post-construction stormwater management practices that include structural components, such as a dam for an impoundment, shall be performed by a licensed Professional Engineer.

Qualified Professional - means a person that is knowledgeable in the principles and practices of stormwater management and treatment, such as a licensed Professional Engineer, Registered Landscape Architect or other Department endorsed individual(s). Individuals preparing SWPPPs that require the post-construction stormwater management practice component must have an understanding of the principles of hydrology, water quality management practice design, water quantity control design, and, in many cases, the principles of hydraulics. All components of the SWPPP that involve the practice of engineering, as defined by the NYS Education Law (see Article 145), shall be prepared by, or under the direct supervision of, a professional engineer licensed to practice in the State of New York.

Redevelopment Activity(ies) – means the disturbance and reconstruction of existing impervious area, including impervious areas that were removed from a project site within five (5) years of preliminary project plan submission to the local government (i.e. site plan, subdivision, etc.).

Regulated, Traditional Land Use Control MS4 - means a city, town or village with land use control authority that is authorized to discharge under New York State DEC's

SPDES General Permit For Stormwater Discharges from Municipal Separate Stormwater Sewer Systems (MS4s) or the City of New York's Individual SPDES Permit for their Municipal Separate Storm Sewer Systems (NY-0287890).

Routine Maintenance Activity - means *construction activity* that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of a facility, including, but not limited to:

- Re-grading of gravel roads or parking lots,
- Cleaning and shaping of existing roadside ditches and culverts that maintains the approximate original line and grade, and hydraulic capacity of the ditch,
- Cleaning and shaping of existing roadside ditches that does not maintain the approximate original grade, hydraulic capacity and purpose of the ditch if the changes to the line and grade, hydraulic capacity or purpose of the ditch are installed to improve water quality and quantity controls (e.g. installing grass lined ditch),
- Placement of aggregate shoulder backing that stabilizes the transition between the road shoulder and the ditch or *embankment*,
- Full depth milling and filling of existing asphalt pavements, replacement of concrete pavement slabs, and similar work that does not expose soil or disturb the bottom six (6) inches of subbase material.
- Long-term use of equipment storage areas at or near highway maintenance facilities.
- Removal of sediment from the edge of the highway to restore a previously existing sheet-flow drainage connection from the highway surface to the highway ditch or *embankment*,
- Existing use of Canal Corp owned upland disposal sites for the canal, and
- Replacement of curbs, gutters, sidewalks and guide rail posts.

Site limitations – means site conditions that prevent the use of an infiltration technique and or infiltration of the total WQv. Typical site limitations include: seasonal high groundwater, shallow depth to bedrock, and soils with an infiltration rate less than 0.5 inches/hour. The existence of site limitations shall be confirmed and documented using actual field testing (i.e. test pits, soil borings, and infiltration test) or using information from the most current United States Department of Agriculture (USDA) Soil Survey for the County where the project is located.

Sizing Criteria – means the criteria included in Part I.C.2 of the permit that are used to size post-construction stormwater management control practices. The criteria include; Water Quality Volume (WQv), Runoff Reduction Volume (RRv), Channel Protection Volume (Cpv), *Overbank* Flood (Qp), and Extreme Flood (Qf).

State Pollutant Discharge Elimination System (SPDES) - means the system established pursuant to Article 17 of the ECL and 6 NYCRR Part 750 for issuance of permits authorizing discharges to the waters of the state.

Steep Slope – means land area designated on the current United States Department of Agriculture ("USDA") Soil Survey as Soil Slope Phase "D", (provided the map unit name is inclusive of slopes greater than 25%), or Soil Slope Phase E or F, (regardless of the map unit name), or a combination of the three designations.

Streambank – as used in this permit, means the terrain alongside the bed of a creek or stream. The bank consists of the sides of the channel, between which the flow is confined.

Stormwater Pollution Prevention Plan (SWPPP) – means a project specific report, including construction drawings, that among other things: describes the construction activity(ies), identifies the potential sources of pollution at the *construction site*; describes and shows the stormwater controls that will be used to control the pollutants (i.e. erosion and sediment controls; for many projects, includes post-construction stormwater management controls); and identifies procedures the *owner or operator* will implement to comply with the terms and conditions of the permit. See Part III of the permit for a complete description of the information that must be included in the SWPPP.

Surface Waters of the State - shall be construed to include lakes, bays, sounds, ponds, impounding reservoirs, springs, rivers, streams, creeks, estuaries, marshes, inlets, canals, the Atlantic ocean within the territorial seas of the state of New York and all other bodies of surface water, natural or artificial, inland or coastal, fresh or salt, public or private (except those private waters that do not combine or effect a junction with natural surface waters), which are wholly or partially within or bordering the state or within its jurisdiction. Waters of the state are further defined in 6 NYCRR Parts 800 to 941.

Temporarily Ceased – means that an existing disturbed area will not be disturbed again within 14 calendar days of the previous soil disturbance.

Temporary Stabilization - means that exposed soil has been covered with material(s) as set forth in the technical standard, New York Standards and Specifications for Erosion and Sediment Control, to prevent the exposed soil from eroding. The materials can include, but are not limited to, mulch, seed and mulch, and erosion control mats (e.g. jute twisted yarn, excelsior wood fiber mats).

Total Maximum Daily Loads (TMDLs) - A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and *nonpoint sources*. It is a calculation of the maximum amount of a pollutant that a waterbody can receive on a daily basis and still meet *water quality standards*, and an allocation of that amount to the pollutant's sources. A TMDL stipulates wasteload allocations (WLAs) for *point source* discharges, load allocations (LAs) for *nonpoint sources*, and a margin of safety (MOS).

Trained Contractor - means an employee from the contracting (construction) company, identified in Part III.A.6., that has received four (4) hours of Department endorsed

training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the *trained contractor* shall receive four (4) hours of training every three (3) years.

It can also mean an employee from the contracting (construction) company, identified in Part III.A.6., that meets the *qualified inspector* qualifications (e.g. licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, New York State Erosion and Sediment Control Certificate Program holder, or someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity).

The *trained contractor* is responsible for the day to day implementation of the SWPPP.

Uniform Procedures Act (UPA) Permit - means a permit required under 6 NYCRR Part 621 of the Environmental Conservation Law (ECL), Article 70.

Water Quality Standard - means such measures of purity or quality for any waters in relation to their reasonable and necessary use as promulgated in 6 NYCRR Part 700 et seq.

APPENDIX B – Required SWPPP Components by Project Type

Table 1 Construction Activities that Require the Preparation of a SWPPP That Only Includes Erosion and Sediment Controls

The following construction activities that involve soil disturbances of one (1) or more acres of land, but less than five (5) acres:

- Single family home <u>not</u> located in one of the watersheds listed in Appendix C or <u>not</u> directly discharging to one of the 303(d) segments listed in Appendix E
- Single family residential subdivisions with 25% or less impervious cover at total site build-out and <u>not located in one of the watersheds listed in Appendix C and not directly discharging to one of the</u> 303(d) segments listed in Appendix E
- Construction of a barn or other agricultural building, silo, stock yard or pen.

The following construction activities that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land:

All construction activities located in the watersheds identified in Appendix D that involve soil disturbances between five thousand (5,000) square feet and one (1) acre of land.

- Installation of underground, linear utilities; such as gas lines, fiber-optic cable, cable TV, electric, telephone, sewer mains, and water mains
- Environmental enhancement projects, such as wetland mitigation projects, stormwater retrofits and stream restoration projects
- · Pond construction
- Linear bike paths running through areas with vegetative cover, including bike paths surfaced with an impervious cover
- · Cross-country ski trails and walking/hiking trails
- Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that are not part of residential, commercial or institutional development;
- Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that include incidental shoulder or curb work along an existing highway to support construction of the sidewalk, bike path or walking path.
- · Slope stabilization projects
- Slope flattening that changes the grade of the site, but does not significantly change the runoff characteristics

Table 1 (Continued) Construction Activities that Require the Preparation of a SWPPP

THAT ONLY INCLUDES EROSION AND SEDIMENT CONTROLS

- · Spoil areas that will be covered with vegetation
- Vegetated open space projects (i.e. recreational parks, lawns, meadows, fields, downhill ski trails) excluding projects that alter hydrology from pre to post development conditions,
- Athletic fields (natural grass) that do not include the construction or reconstruction of *impervious* area and do not alter hydrology from pre to post development conditions
- Demolition project where vegetation will be established, and no redevelopment is planned
- Overhead electric transmission line project that does not include the construction of permanent access roads or parking areas surfaced with *impervious cover*
- Structural practices as identified in Table II in the "Agricultural Management Practices Catalog for Nonpoint Source Pollution in New York State", excluding projects that involve soil disturbances of greater than five acres and construction activities that include the construction or reconstruction of impervious area
- Temporary access roads, median crossovers, detour roads, lanes, or other temporary impervious areas that will be restored to pre-construction conditions once the construction activity is complete

Table 2

CONSTRUCTION ACTIVITIES THAT REQUIRE THE PREPARATION OF A SWPPP THAT INCLUDES POST-CONSTRUCTION STORMWATER MANAGEMENT PRACTICES

- Single family home located in one of the watersheds listed in Appendix C or *directly discharging* to one of the 303(d) segments listed in Appendix E
- · Single family home that disturbs five (5) or more acres of land
- Single family residential subdivisions located in one of the watersheds listed in Appendix C or directly discharging to one of the 303(d) segments listed in Appendix E
- Single family residential subdivisions that involve soil disturbances of between one (1) and five (5) acres of land with greater than 25% impervious cover at total site build-out
- Single family residential subdivisions that involve soil disturbances of five (5) or more acres of land, and single family residential subdivisions that involve soil disturbances of less than five (5) acres that are part of a larger common plan of development or sale that will ultimately disturb five or more acres of land
- Multi-family residential developments; includes duplexes, townhomes, condominiums, senior housing complexes, apartment complexes, and mobile home parks
- Airports
- · Amusement parks
- · Breweries, cideries, and wineries, including establishments constructed on agricultural land
- Campgrounds
- Cemeteries that include the construction or reconstruction of impervious area (>5% of disturbed area) or alter the hydrology from pre to post development conditions
- · Commercial developments
- Churches and other places of worship
- Construction of a barn or other agricultural building (e.g. silo) and structural practices as identified in Table II in the "Agricultural Management Practices Catalog for Nonpoint Source Pollution in New York State" that include the construction or reconstruction of *impervious area*, excluding projects that involve soil disturbances of less than five acres.
- Golf courses
- · Institutional development; includes hospitals, prisons, schools and colleges
- Industrial facilities; includes industrial parks
- Landfills
- Municipal facilities; includes highway garages, transfer stations, office buildings, POTW's, water treatment plants, and water storage tanks
- Office complexes
- · Playgrounds that include the construction or reconstruction of impervious area
- · Sports complexes
- Racetracks; includes racetracks with earthen (dirt) surface
- Road construction or reconstruction, including roads constructed as part of the construction activities listed in Table 1

Table 2 (Continued)

CONSTRUCTION ACTIVITIES THAT REQUIRE THE PREPARATION OF A SWPPP THAT INCLUDES POST-CONSTRUCTION STORMWATER MANAGEMENT PRACTICES

- Parking lot construction or reconstruction, including parking lots constructed as part of the construction activities listed in Table 1
- Athletic fields (natural grass) that include the construction or reconstruction of impervious area (>5% of disturbed area) or *alter the hydrology from pre to post development* conditions
- Athletic fields with artificial turf
- Permanent access roads, parking areas, substations, compressor stations and well drilling pads, surfaced with *impervious cover*, and constructed as part of an over-head electric transmission line project, wind-power project, cell tower project, oil or gas well drilling project, sewer or water main project or other linear utility project
- Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that are part of a residential, commercial or institutional development
- Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that are part of a highway construction or reconstruction project
- All other construction activities that include the construction or reconstruction of *impervious area* or alter the hydrology from pre to post development conditions, and are not listed in Table 1

APPENDIX C – Watersheds Requiring Enhanced Phosphorus Removal

Watersheds where *owners or operators* of construction activities identified in Table 2 of Appendix B must prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the Enhanced Phosphorus Removal Standards included in the technical standard, New York State Stormwater Management Design Manual ("Design Manual").

- Entire New York City Watershed located east of the Hudson River Figure 1
- Onondaga Lake Watershed Figure 2
- Greenwood Lake Watershed -Figure 3
- Oscawana Lake Watershed Figure 4
- Kinderhook Lake Watershed Figure 5

Figure 1 - New York City Watershed East of the Hudson

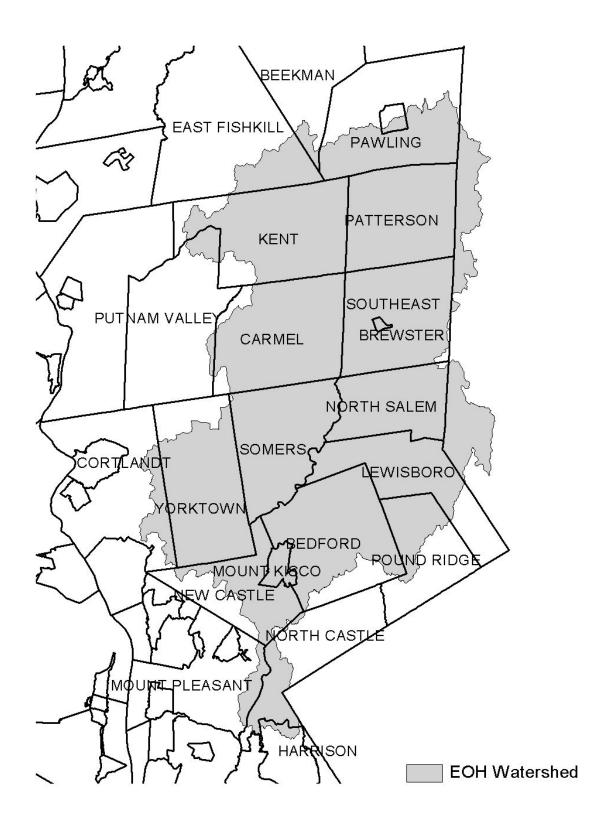


Figure 2 - Onondaga Lake Watershed

Figure 3 - Greenwood Lake Watershed

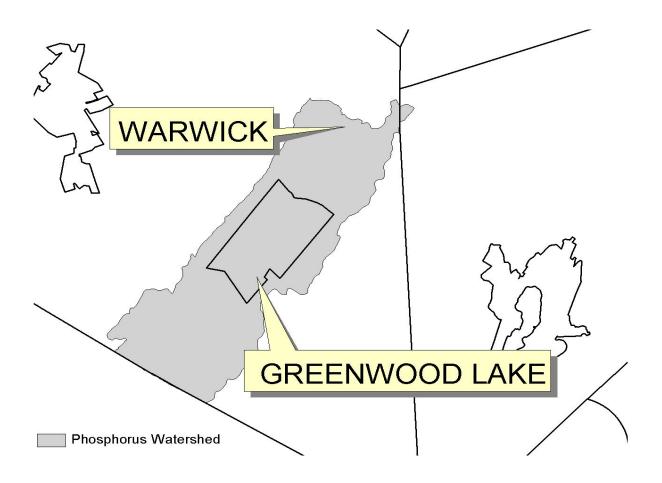


Figure 4 - Oscawana Lake Watershed

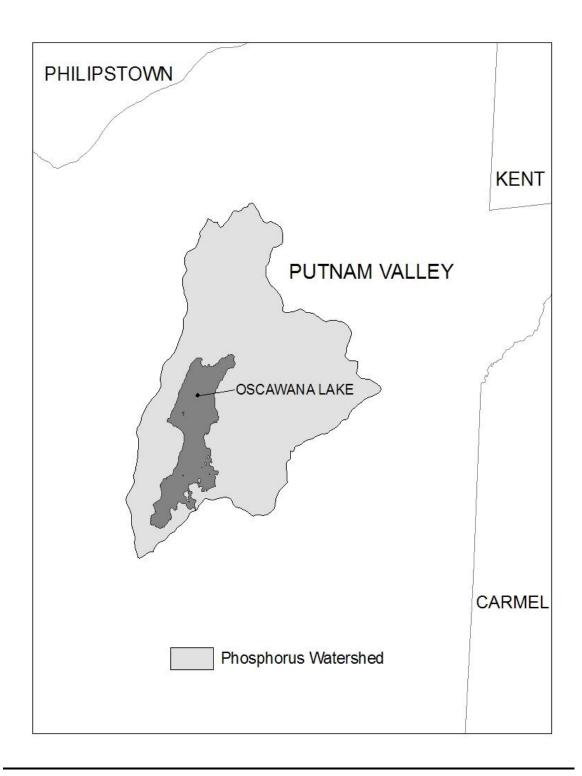
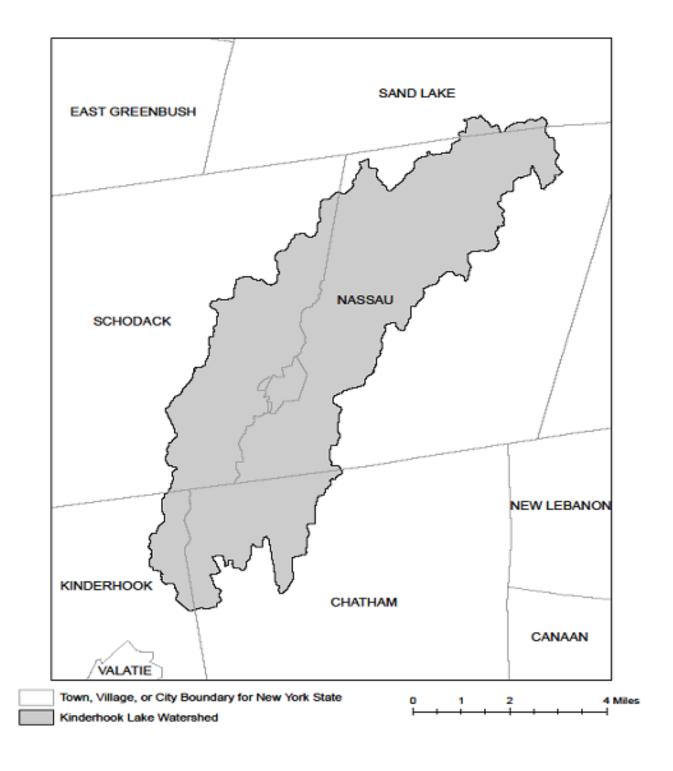



Figure 5 - Kinderhook Lake Watershed

APPENDIX D - Watersheds with Lower Disturbance Threshold

Watersheds where *owners or operators* of construction activities that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land must obtain coverage under this permit.

Entire New York City Watershed that is located east of the Hudson River - See Figure 1 in Appendix C

APPENDIX E – 303(d) Segments Impaired by Construction Related Pollutant(s)

List of 303(d) segments impaired by pollutants related to *construction activity* (e.g. silt, sediment or nutrients). The list was developed using "The Final New York State 2016 Section 303(d) List of Impaired Waters Requiring a TMDL/Other Strategy" dated November 2016. *Owners or operators* of single family home and single family residential subdivisions with 25% or less total impervious cover at total site build-out that involve soil disturbances of one or more acres of land, but less than 5 acres, and *directly discharge* to one of the listed segments below shall prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the New York State Stormwater Management Design Manual ("Design Manual"), dated January 2015.

COUNTY	WATERBODY	POLLUTANT
Albany	Ann Lee (Shakers) Pond, Stump Pond	Nutrients
Albany	Basic Creek Reservoir	Nutrients
Allegany	Amity Lake, Saunders Pond	Nutrients
Bronx	Long Island Sound, Bronx	Nutrients
Bronx	Van Cortlandt Lake	Nutrients
Broome	Fly Pond, Deer Lake, Sky Lake	Nutrients
Broome	Minor Tribs to Lower Susquehanna (north)	Nutrients
Broome	Whitney Point Lake/Reservoir	Nutrients
Cattaraugus	Allegheny River/Reservoir	Nutrients
Cattaraugus	Beaver (Alma) Lake	Nutrients
Cattaraugus	Case Lake	Nutrients
Cattaraugus	Linlyco/Club Pond	Nutrients
Cayuga	Duck Lake	Nutrients
Cayuga	Little Sodus Bay	Nutrients
Chautauqua	Bear Lake	Nutrients
Chautauqua	Chadakoin River and tribs	Nutrients
Chautauqua	Chautauqua Lake, North	Nutrients
Chautauqua	Chautauqua Lake, South	Nutrients
Chautauqua	Findley Lake	Nutrients
Chautauqua	Hulburt/Clymer Pond	Nutrients
Clinton	Great Chazy River, Lower, Main Stem	Silt/Sediment
Clinton	Lake Champlain, Main Lake, Middle	Nutrients
Clinton	Lake Champlain, Main Lake, North	Nutrients
Columbia	Kinderhook Lake	Nutrients
Columbia	Robinson Pond	Nutrients
Cortland	Dean Pond	Nutrients

Fall Kill and tribs	Nutrients
Hillside Lake	Nutrients
Wappingers Lake	Nutrients
Wappingers Lake	Silt/Sediment
Beeman Creek and tribs	Nutrients
Ellicott Creek, Lower, and tribs	Silt/Sediment
Ellicott Creek, Lower, and tribs	Nutrients
Green Lake	Nutrients
Little Sister Creek, Lower, and tribs	Nutrients
Murder Creek, Lower, and tribs	Nutrients
Rush Creek and tribs	Nutrients
Scajaquada Creek, Lower, and tribs	Nutrients
Scajaquada Creek, Middle, and tribs	Nutrients
Scajaquada Creek, Upper, and tribs	Nutrients
South Branch Smoke Cr, Lower, and tribs	Silt/Sediment
South Branch Smoke Cr, Lower, and tribs	Nutrients
Lake Champlain, Main Lake, South	Nutrients
Lake Champlain, South Lake	Nutrients
Willsboro Bay	Nutrients
Bigelow Creek and tribs	Nutrients
Black Creek, Middle, and minor tribs	Nutrients
Black Creek, Upper, and minor tribs	Nutrients
Bowen Brook and tribs	Nutrients
LeRoy Reservoir	Nutrients
Oak Orchard Cr, Upper, and tribs	Nutrients
Tonawanda Creek, Middle, Main Stem	Nutrients
Schoharie Reservoir	Silt/Sediment
Sleepy Hollow Lake	Silt/Sediment
Steele Creek tribs	Silt/Sediment
Steele Creek tribs	Nutrients
Moon Lake	Nutrients
Hendrix Creek	Nutrients
Prospect Park Lake	Nutrients
Mill Creek/South Branch, and tribs	Nutrients
Christie Creek and tribs	Nutrients
Conesus Lake	Nutrients
Mill Creek and minor tribs	Silt/Sediment
Black Creek, Lower, and minor tribs	Nutrients
Buck Pond Nutrients	
Buck Pong	Nutrients
	Hillside Lake Wappingers Lake Beeman Creek and tribs Ellicott Creek, Lower, and tribs Ellicott Creek, Lower, and tribs Green Lake Little Sister Creek, Lower, and tribs Murder Creek, Lower, and tribs Scajaquada Creek, Lower, and tribs Scajaquada Creek, Lower, and tribs Scajaquada Creek, Middle, and tribs South Branch Smoke Cr, Lower, and tribs South Branch Smoke Cr, Lower, and tribs Lake Champlain, Main Lake, South Lake Champlain, South Lake Willsboro Bay Bigelow Creek and tribs Black Creek, Middle, and minor tribs Black Creek, Upper, and minor tribs Black Creek, Middle, and minor tribs South Branch Smoke Cr, Lower, and tribs Creek, Wildle, and minor tribs Black Creek, Middle, and minor tribs Stele Creek, Middle, Main Stem Schoharie Reservoir Sleepy Hollow Lake Steele Creek tribs Moon Lake Hendrix Creek Prospect Park Lake Mill Creek/South Branch, and tribs Conesus Lake Mill Creek and minor tribs Black Creek, Lower, and minor tribs Black Creek, Lower, and minor tribs

Monroe	Lake Ontario Shoreline, Western	Nutrients
Monroe	Long Pond	Nutrients
Monroe	Mill Creek and tribs	Nutrients
Monroe	Mill Creek/Blue Pond Outlet and tribs	Nutrients
Monroe	Minor Tribs to Irondequoit Bay	Nutrients
Monroe	Rochester Embayment - East	Nutrients
Monroe	Rochester Embayment - West	Nutrients
Monroe	Shipbuilders Creek and tribs	Nutrients
Monroe	Thomas Creek/White Brook and tribs	Nutrients
Nassau	Beaver Lake	Nutrients
Nassau	Camaans Pond	Nutrients
Nassau	East Meadow Brook, Upper, and tribs	Silt/Sediment
Nassau	East Rockaway Channel	Nutrients
Nassau	Grant Park Pond	Nutrients
Nassau	Hempstead Bay	Nutrients
Nassau	Hempstead Lake	Nutrients
Nassau	Hewlett Bay	Nutrients
Nassau	Hog Island Channel	Nutrients
Nassau	Long Island Sound, Nassau County Waters	Nutrients
Nassau	Massapequa Creek and tribs	Nutrients
Nassau	Milburn/Parsonage Creeks, Upp, and tribs	Nutrients
Nassau	Reynolds Channel, west	Nutrients
Nassau	Tidal Tribs to Hempstead Bay	Nutrients
Nassau	Tribs (fresh) to East Bay	Nutrients
Nassau	Tribs (fresh) to East Bay	Silt/Sediment
Nassau	Tribs to Smith/Halls Ponds	Nutrients
Nassau	Woodmere Channel	Nutrients
New York	Harlem Meer	Nutrients
New York	The Lake in Central Park	Nutrients
Niagara	Bergholtz Creek and tribs	Nutrients
Niagara	Hyde Park Lake	Nutrients
Niagara	Lake Ontario Shoreline, Western	Nutrients
Niagara	Lake Ontario Shoreline, Western	Nutrients
Oneida	Ballou, Nail Creeks and tribs	Nutrients
Onondaga	Harbor Brook, Lower, and tribs	Nutrients
Onondaga	Ley Creek and tribs	Nutrients
Onondaga	Minor Tribs to Onondaga Lake	Nutrients
Onondaga	Ninemile Creek, Lower, and tribs	Nutrients
Onondaga	Onondaga Creek, Lower, and tribs	Nutrients
Onondaga	Onondaga Creek, Middle, and tribs	Nutrients

Onondaga	nondaga	
Onondaga	Onondaga Lake, southern end	Nutrients
Ontario	Great Brook and minor tribs	Silt/Sediment
Ontario	Great Brook and minor tribs	Nutrients
Ontario	Hemlock Lake Outlet and minor tribs	Nutrients
Ontario	Honeoye Lake	Nutrients
Orange	Greenwood Lake	Nutrients
Orange	Monhagen Brook and tribs	Nutrients
Orange	Orange Lake	Nutrients
Orleans	Lake Ontario Shoreline, Western	Nutrients
Orleans	Lake Ontario Shoreline, Western	Nutrients
Oswego	Lake Neatahwanta	Nutrients
Oswego	Pleasant Lake	Nutrients
Putnam	Bog Brook Reservoir	Nutrients
Putnam	Boyd Corners Reservoir	Nutrients
Putnam	Croton Falls Reservoir	Nutrients
Putnam	Diverting Reservoir	Nutrients
Putnam	East Branch Reservoir	Nutrients
Putnam	Lake Carmel	Nutrients
Putnam	Middle Branch Reservoir	Nutrients
Putnam	Oscawana Lake	Nutrients
Putnam	Palmer Lake	Nutrients
Putnam	West Branch Reservoir	Nutrients
Queens	Bergen Basin	Nutrients
Queens	Flushing Creek/Bay	Nutrients
Queens	Jamaica Bay, Eastern, and tribs (Queens)	Nutrients
Queens	Kissena Lake	Nutrients
Queens	Meadow Lake	Nutrients
Queens	Willow Lake	Nutrients
Rensselaer	Nassau Lake	Nutrients
Rensselaer	Snyders Lake	Nutrients
Richmond	Grasmere Lake/Bradys Pond	Nutrients
Rockland	Congers Lake, Swartout Lake	Nutrients
Rockland	Rockland Lake	Nutrients
Saratoga	Ballston Lake	Nutrients
Saratoga	Dwaas Kill and tribs	Silt/Sediment
Saratoga	Dwaas Kill and tribs	Nutrients
Saratoga	Lake Lonely	Nutrients
Saratoga	Round Lake	Nutrients
Saratoga	Tribs to Lake Lonely	Nutrients

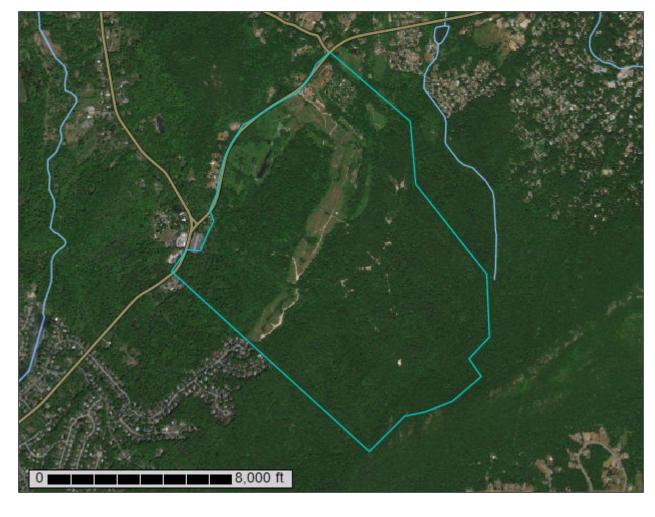
		• ,
Schenectady	Collins Lake	Nutrients
Schenectady	Duane Lake	Nutrients
Schenectady	Mariaville Lake	Nutrients
Schoharie	Engleville Pond	Nutrients
Schoharie	Summit Lake	Nutrients
Seneca	Reeder Creek and tribs	Nutrients
St.Lawrence	Black Lake Outlet/Black Lake	Nutrients
St.Lawrence	Fish Creek and minor tribs	Nutrients
Steuben	Smith Pond	Nutrients
Suffolk	Agawam Lake	Nutrients
Suffolk	Big/Little Fresh Ponds	Nutrients
Suffolk	Canaan Lake	Silt/Sediment
Suffolk	Canaan Lake	Nutrients
Suffolk	Flanders Bay, West/Lower Sawmill Creek	Nutrients
Suffolk	Fresh Pond	Nutrients
Suffolk	Great South Bay, East	Nutrients
Suffolk	Great South Bay, Middle	Nutrients
Suffolk	Great South Bay, West	Nutrients
Suffolk	Lake Ronkonkoma	Nutrients
Suffolk	Long Island Sound, Suffolk County, West	Nutrients
Suffolk	Mattituck (Marratooka) Pond	Nutrients
Suffolk	Meetinghouse/Terrys Creeks and tribs	Nutrients
Suffolk	Mill and Seven Ponds	Nutrients
Suffolk	Millers Pond	Nutrients
Suffolk	Moriches Bay, East	Nutrients
Suffolk	Moriches Bay, West	Nutrients
Suffolk	Peconic River, Lower, and tidal tribs	Nutrients
Suffolk	Quantuck Bay	Nutrients
Suffolk	Shinnecock Bay and Inlet	Nutrients
Suffolk	Tidal tribs to West Moriches Bay	Nutrients
Sullivan	Bodine, Montgomery Lakes	Nutrients
Sullivan	Davies Lake	Nutrients
Sullivan	Evens Lake	Nutrients
Sullivan	Pleasure Lake	Nutrients
Tompkins	Cayuga Lake, Southern End	Nutrients
Tompkins	Cayuga Lake, Southern End	Silt/Sediment
Tompkins	Owasco Inlet, Upper, and tribs	Nutrients
Ulster	Ashokan Reservoir	Silt/Sediment
Ulster	Esopus Creek, Upper, and minor tribs	Silt/Sediment
Warren	Hague Brook and tribs	Silt/Sediment

Warren	Huddle/Finkle Brooks and tribs	Silt/Sediment
Warren	Indian Brook and tribs	Silt/Sediment
Warren	Lake George	Silt/Sediment
Warren	Tribs to L.George, Village of L George	Silt/Sediment
Washington	Cossayuna Lake	Nutrients
Washington	Lake Champlain, South Bay	Nutrients
Washington	Tribs to L.George, East Shore	Silt/Sediment
Washington	Wood Cr/Champlain Canal and minor tribs	Nutrients
Wayne	Port Bay	Nutrients
Westchester	Amawalk Reservoir	Nutrients
Westchester	Blind Brook, Upper, and tribs	Silt/Sediment
Westchester	Cross River Reservoir	Nutrients
Westchester	Lake Katonah	Nutrients
Westchester	Lake Lincolndale	Nutrients
Westchester	Lake Meahagh	Nutrients
Westchester	Lake Mohegan	Nutrients
Westchester	Lake Shenorock	Nutrients
Westchester	Long Island Sound, Westchester (East)	Nutrients
Westchester	Mamaroneck River, Lower	Silt/Sediment
Westchester	Mamaroneck River, Upper, and minor tribs	Silt/Sediment
Westchester	Muscoot/Upper New Croton Reservoir	Nutrients
Westchester	New Croton Reservoir	Nutrients
Westchester	Peach Lake	Nutrients
Westchester	Reservoir No.1 (Lake Isle)	Nutrients
Westchester	Saw Mill River, Lower, and tribs	Nutrients
Westchester	Saw Mill River, Middle, and tribs	Nutrients
Westchester	Sheldrake River and tribs	Silt/Sediment
Westchester	Sheldrake River and tribs	Nutrients
Westchester	Silver Lake	Nutrients
Westchester	Teatown Lake	Nutrients
Westchester	Titicus Reservoir	Nutrients
Westchester	Truesdale Lake	Nutrients
Westchester	Wallace Pond	Nutrients
Wyoming	Java Lake	Nutrients
Wyoming	Silver Lake	Nutrients

APPENDIX F – List of NYS DEC Regional Offices

<u>Region</u>	COVERING THE FOLLOWING COUNTIES:	DIVISION OF ENVIRONMENTAL PERMITS (DEP) PERMIT ADMINISTRATORS	DIVISION OF WATER (DOW) WATER (SPDES) PROGRAM
1	NASSAU AND SUFFOLK	50 CIRCLE ROAD STONY BROOK, NY 11790 Tel. (631) 444-0365	50 CIRCLE ROAD STONY BROOK, NY 11790-3409 Tel. (631) 444-0405
2	BRONX, KINGS, NEW YORK, QUEENS AND RICHMOND	1 HUNTERS POINT PLAZA, 47-40 21ST ST. LONG ISLAND CITY, NY 11101-5407 TEL. (718) 482-4997	1 HUNTERS POINT PLAZA, 47-40 21ST ST. LONG ISLAND CITY, NY 11101-5407 TEL. (718) 482-4933
3	DUTCHESS, ORANGE, PUTNAM, ROCKLAND, SULLIVAN, ULSTER AND WESTCHESTER	21 SOUTH PUTT CORNERS ROAD NEW PALTZ, NY 12561-1696 TEL. (845) 256-3059	100 HILLSIDE AVENUE, SUITE 1W WHITE PLAINS, NY 10603 TEL. (914) 428 - 2505
4	ALBANY, COLUMBIA, DELAWARE, GREENE, MONTGOMERY, OTSEGO, RENSSELAER, SCHENECTADY AND SCHOHARIE	1150 NORTH WESTCOTT ROAD SCHENECTADY, NY 12306-2014 Tel. (518) 357-2069	1130 NORTH WESTCOTT ROAD SCHENECTADY, NY 12306-2014 Tel. (518) 357-2045
5	CLINTON, ESSEX, FRANKLIN, FULTON, HAMILTON, SARATOGA, WARREN AND WASHINGTON	1115 STATE ROUTE 86, Po Box 296 Ray Brook, Ny 12977-0296 Tel. (518) 897-1234	232 GOLF COURSE ROAD WARRENSBURG, NY 12885-1172 TEL. (518) 623-1200
6	HERKIMER, JEFFERSON, LEWIS, ONEIDA AND ST. LAWRENCE	STATE OFFICE BUILDING 317 WASHINGTON STREET WATERTOWN, NY 13601-3787 TEL. (315) 785-2245	STATE OFFICE BUILDING 207 GENESEE STREET UTICA, NY 13501-2885 TEL. (315) 793-2554
7	BROOME, CAYUGA, CHENANGO, CORTLAND, MADISON, ONONDAGA, OSWEGO, TIOGA AND TOMPKINS	615 ERIE BLVD. WEST SYRACUSE, NY 13204-2400 TEL. (315) 426-7438	615 ERIE BLVD. WEST SYRACUSE, NY 13204-2400 TEL. (315) 426-7500
8	CHEMUNG, GENESEE, LIVINGSTON, MONROE, ONTARIO, ORLEANS, SCHUYLER, SENECA, STEUBEN, WAYNE AND YATES	6274 EAST AVON-LIMA ROADAVON, NY 14414-9519 TEL. (585) 226-2466	6274 EAST AVON-LIMA RD. AVON, NY 14414-9519 TEL. (585) 226-2466
9	ALLEGANY, CATTARAUGUS, CHAUTAUQUA, ERIE, NIAGARA AND WYOMING	270 MICHIGAN AVENUE BUFFALO, NY 14203-2999 TEL. (716) 851-7165	270 MICHIGAN AVENUE BUFFALO, NY 14203-2999 TEL. (716) 851-7070

Appendix B


USDA Soils Information; FEMA Map; NWI Map; NYS DEC Environmental Resource Map; OPRHP Cultural Resourse Sensitivity Map

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Orange County, New York

Clovewood

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Orange County, New York	14
Ab—Alden silt loam	14
ANF—Arnot-Lordstown complex, very steep	15
Ca—Canandaigua silt loam	
ErB—Erie gravelly silt loam, 3 to 8 percent slopes	
HLC—Hollis soils, sloping	
HoC—Hoosic gravelly sandy loam, 8 to 15 percent slopes	
MdB—Mardin gravelly silt loam, 3 to 8 percent slopes	
MdC—Mardin gravelly silt loam, 8 to 15 percent slopes	24
MdD—Mardin gravelly silt loam, 15 to 25 percent slopes	
Ra—Raynham silt loam	
SXC—Swartswood and Mardin soils, sloping, very stony	
UH—Udorthents, smoothed	
UnB—Unadilla silt loam, 0 to 8 percent slopes	
W—Water	33
References	
Glossary	37

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

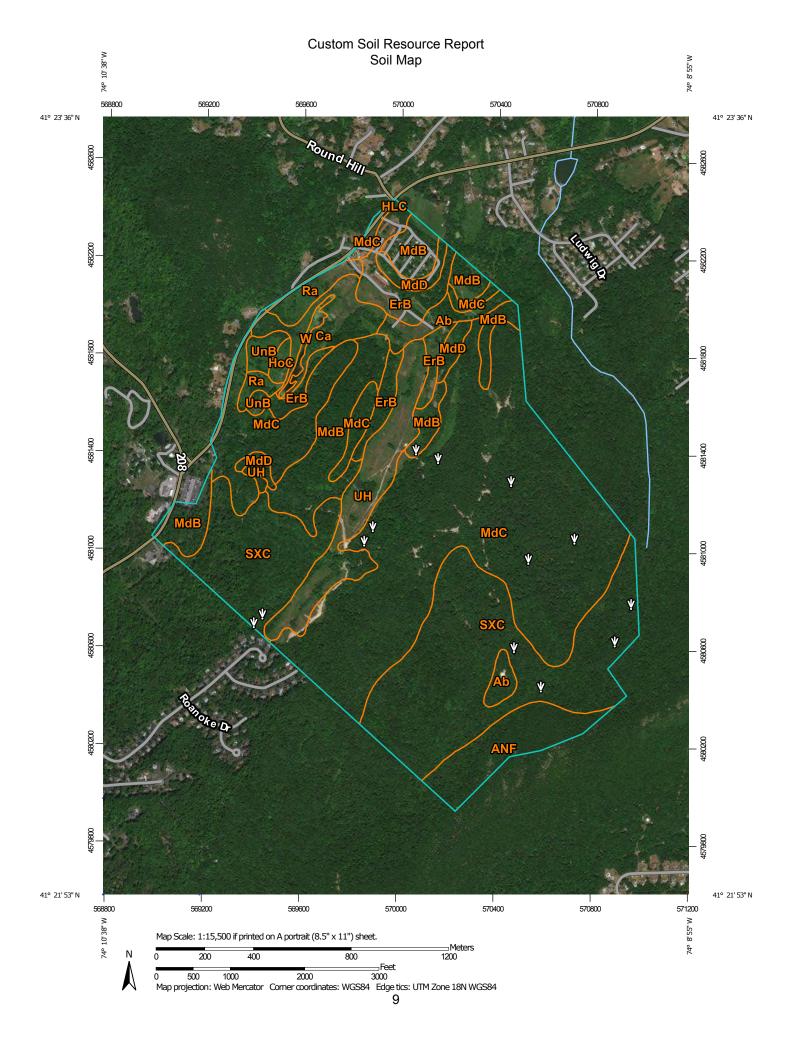
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout ဖ

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

Stony Spot

å

Very Stony Spot

Ŷ

Wet Spot Other

Δ

Special Line Features

Water Features

Streams and Canals

Transportation

Rails ---

Interstate Highways

US Routes

Major Roads

Local Roads

Background

 \sim

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15.800.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Orange County, New York Survey Area Data: Version 18, Oct 8, 2017

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 7, 2013—Feb 26, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Ab	Alden silt loam	14.4	2.0%
ANF	Arnot-Lordstown complex, very steep	29.5	4.2%
Ca	Canandaigua silt loam	20.9	2.9%
ErB	Erie gravelly silt loam, 3 to 8 percent slopes	33.4	4.7%
HLC	Hollis soils, sloping	0.6	0.1%
НоС	Hoosic gravelly sandy loam, 8 to 15 percent slopes		0.4%
MdB	Mardin gravelly silt loam, 3 to 8 percent slopes	68.5	9.7%
MdC	Mardin gravelly silt loam, 8 to 15 percent slopes	286.8	40.5%
MdD	Mardin gravelly silt loam, 15 to 25 percent slopes	11.4	1.6%
Ra	Raynham silt loam	12.1	1.7%
SXC	XC Swartswood and Mardin soils, sloping, very stony		24.9%
UH	Udorthents, smoothed 42.6		6.0%
UnB	Unadilla silt loam, 0 to 8 percent slopes	6.3	0.9%
W	Water	2.9	0.4%
Totals for Area of Interest		708.7	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion

of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Orange County, New York

Ab—Alden silt loam

Map Unit Setting

National map unit symbol: 9vtc Elevation: 300 to 1,500 feet

Mean annual precipitation: 42 to 52 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 135 to 215 days

Farmland classification: Not prime farmland

Map Unit Composition

Alden and similar soils: 80 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Alden

Setting

Landform: Depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Parent material: A silty mantle of local deposition overlying loamy till

Typical profile

H1 - 0 to 9 inches: silt loam H2 - 9 to 36 inches: silt loam

H3 - 36 to 60 inches: gravelly fine sandy loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.57 in/hr) Depth to water table: About 0 inches

Frequency of flooding: None Frequency of ponding: Frequent

Calcium carbonate, maximum in profile: 1 percent Available water storage in profile: High (about 9.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 5w

Hydrologic Soil Group: C/D Hydric soil rating: Yes

Minor Components

Canandaigua

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Carlisle

Percent of map unit: 5 percent Landform: Marshes, swamps Hydric soil rating: Yes

Erie

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: No

Wayland

Percent of map unit: 5 percent Landform: Flood plains Hydric soil rating: Yes

ANF—Arnot-Lordstown complex, very steep

Map Unit Setting

National map unit symbol: 9vtk Elevation: 750 to 1,800 feet

Mean annual precipitation: 42 to 52 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 135 to 215 days

Farmland classification: Not prime farmland

Map Unit Composition

Arnot and similar soils: 65 percent Lordstown and similar soils: 25 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Arnot

Setting

Landform: Benches, ridges, hills

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till derived mainly from acid sandstone, siltstone, and

shale

Typical profile

H1 - 0 to 3 inches: channery silt loam H2 - 3 to 13 inches: very channery silt loam H3 - 13 to 19 inches: unweathered bedrock

Properties and qualities

Slope: 35 to 50 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock Natural drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D Hydric soil rating: No

Description of Lordstown

Setting

Landform: Hills, benches, ridges

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till derived from sandstone and siltstone

Typical profile

Oa - 0 to 2 inches: highly decomposed plant material

H1 - 2 to 7 inches: channery silt loam H2 - 7 to 21 inches: channery loam H3 - 21 to 34 inches: channery loam

H4 - 34 to 43 inches: unweathered bedrock

Properties and qualities

Slope: 35 to 50 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 4.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: C Hydric soil rating: No

Minor Components

Erie

Percent of map unit: 2 percent

Hydric soil rating: No

Mardin

Percent of map unit: 2 percent

Hydric soil rating: No

Rock outcrop

Percent of map unit: 2 percent Hydric soil rating: Unranked

Swartswood

Percent of map unit: 2 percent

Hydric soil rating: No

Wurtsboro

Percent of map unit: 2 percent

Hydric soil rating: No

Ca—Canandaigua silt loam

Map Unit Setting

National map unit symbol: 9vtq

Mean annual precipitation: 42 to 52 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 135 to 215 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Canandaigua and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Canandaigua

Setting

Landform: Depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Silty and clayey glaciolacustrine deposits

Typical profile

H1 - 0 to 8 inches: silt loam H2 - 8 to 35 inches: silty clay loam H3 - 35 to 60 inches: fine sand

Properties and qualities

Slope: 0 to 1 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.20 to 1.98 in/hr)

Depth to water table: About 0 inches Frequency of flooding: None Frequency of ponding: Frequent

Calcium carbonate, maximum in profile: 15 percent

Available water storage in profile: Moderate (about 7.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Alden

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Halsey

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Madalin

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Palms

Percent of map unit: 5 percent Landform: Marshes, swamps Hydric soil rating: Yes

Raynham

Percent of map unit: 5 percent

Hydric soil rating: No

ErB—Erie gravelly silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9vv9

Mean annual precipitation: 42 to 52 inches
Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 135 to 215 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Erie and similar soils: 80 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Erie

Setting

Landform: Drumlinoid ridges, hills, till plains

Landform position (two-dimensional): Footslope, summit Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Loamy till derived from siltstone, sandstone, shale, and limestone

Typical profile

H1 - 0 to 9 inches: gravelly silt loam H2 - 9 to 18 inches: channery silt loam H3 - 18 to 54 inches: channery silt loam H4 - 54 to 70 inches: channery silt loam

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: 10 to 21 inches to fragipan Natural drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 6 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Available water storage in profile: Very low (about 2.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Alden

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Bath

Percent of map unit: 5 percent

Hydric soil rating: No

Mardin

Percent of map unit: 5 percent

Hydric soil rating: No

Wurtsboro

Percent of map unit: 5 percent

Hydric soil rating: No

HLC—Hollis soils, sloping

Map Unit Setting

National map unit symbol: 9vvh

Mean annual precipitation: 42 to 52 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 135 to 215 days

Farmland classification: Not prime farmland

Map Unit Composition

Hollis and similar soils: 80 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hollis

Setting

Landform: Ridges, hills

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: A thin mantle of loamy till derived mainly from schist, granite, and

gneiss

Typical profile

Oa - 0 to 3 inches: highly decomposed plant material

H1 - 3 to 8 inches: gravelly loam H2 - 8 to 18 inches: gravelly loam

H3 - 18 to 22 inches: unweathered bedrock

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Charlton

Percent of map unit: 5 percent

Hydric soil rating: No

Unnamed soils

Percent of map unit: 5 percent

Hydric soil rating: No

Paxton

Percent of map unit: 5 percent

Hydric soil rating: No

Rock outcrop

Percent of map unit: 5 percent Hydric soil rating: Unranked

HoC—Hoosic gravelly sandy loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 9vvm Elevation: 100 to 1,100 feet

Mean annual precipitation: 42 to 52 inches

Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 135 to 215 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Hoosic and similar soils: 80 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hoosic

Setting

Landform: Terraces, deltas, outwash plains
Landform position (two-dimensional): Shoulder
Landform position (three-dimensional): Tread

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Sandy and gravelly glaciofluvial deposits

Typical profile

H1 - 0 to 5 inches: gravelly sandy loam H2 - 5 to 25 inches: very gravelly sandy loam H3 - 25 to 60 inches: very gravelly sand

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): High to very high (1.98

to 19.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Castile

Percent of map unit: 5 percent

Hydric soil rating: No

Chenango

Percent of map unit: 5 percent

Hydric soil rating: No

Fredon

Percent of map unit: 5 percent

Hydric soil rating: No

Oakville

Percent of map unit: 5 percent

Hydric soil rating: No

MdB—Mardin gravelly silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2v30j Elevation: 330 to 2.460 feet

Mean annual precipitation: 31 to 70 inches Mean annual air temperature: 39 to 52 degrees F

Frost-free period: 105 to 180 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Mardin and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mardin

Setting

Landform: Hills, mountains

Landform position (two-dimensional): Summit, shoulder

Landform position (three-dimensional): Interfluve, side slope

Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy till

Typical profile

Ap - 0 to 8 inches: gravelly silt loam
Bw - 8 to 15 inches: gravelly silt loam
E - 15 to 20 inches: gravelly silt loam
Bx - 20 to 72 inches: gravelly silt loam

Properties and qualities

Slope: 3 to 8 percent

Percent of area covered with surface fragments: 0.0 percent Depth to restrictive feature: 14 to 26 inches to fragipan Natural drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.14 in/hr)

Depth to water table: About 13 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Bath

Percent of map unit: 5 percent Landform: Hills, mountains

Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Interfluve, side slope

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Volusia

Percent of map unit: 5 percent Landform: Hills. mountains

Landform position (two-dimensional): Footslope, summit

Landform position (three-dimensional): Base slope, interfluve, side slope

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Lordstown

Percent of map unit: 5 percent Landform: Hills, mountains

Landform position (two-dimensional): Summit, shoulder

Landform position (three-dimensional): Mountaintop, interfluve, crest

Down-slope shape: Convex Across-slope shape: Convex

Hydric soil rating: No

MdC—Mardin gravelly silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2v30l Elevation: 330 to 2,460 feet

Mean annual precipitation: 31 to 70 inches Mean annual air temperature: 39 to 52 degrees F

Frost-free period: 105 to 180 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Mardin and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mardin

Setting

Landform: Hills, mountains

Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Interfluve, side slope

Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy till

Typical profile

Ap - 0 to 8 inches: gravelly silt loam
Bw - 8 to 15 inches: gravelly silt loam
E - 15 to 20 inches: gravelly silt loam
Bx - 20 to 72 inches: gravelly silt loam

Properties and qualities

Slope: 8 to 15 percent

Percent of area covered with surface fragments: 0.0 percent Depth to restrictive feature: 14 to 26 inches to fragipan

Natural drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.14 in/hr)

Depth to water table: About 13 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Volusia

Percent of map unit: 5 percent Landform: Hills, mountains

Landform position (two-dimensional): Footslope, summit

Landform position (three-dimensional): Base slope, interfluve, side slope

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Bath

Percent of map unit: 5 percent Landform: Hills, mountains

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Nose slope, side slope

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Lordstown

Percent of map unit: 5 percent Landform: Hills, mountains

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Mountainflank, side slope, nose slope

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

MdD—Mardin gravelly silt loam, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 2v30p Elevation: 330 to 2.460 feet

Mean annual precipitation: 31 to 70 inches
Mean annual air temperature: 39 to 52 degrees F

Frost-free period: 105 to 180 days

Farmland classification: Not prime farmland

Map Unit Composition

Mardin and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mardin

Setting

Landform: Hills, mountains

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Side slope, head slope

Down-slope shape: Concave Across-slope shape: Linear Parent material: Loamy till

Typical profile

Ap - 0 to 8 inches: gravelly silt loam
Bw - 8 to 15 inches: gravelly silt loam
E - 15 to 20 inches: gravelly silt loam
Bx - 20 to 72 inches: gravelly silt loam

Properties and qualities

Slope: 15 to 25 percent

Percent of area covered with surface fragments: 0.0 percent Depth to restrictive feature: 14 to 26 inches to fragipan

Natural drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.14 in/hr)

Depth to water table: About 13 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Bath

Percent of map unit: 5 percent Landform: Hills, mountains

Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Interfluve, side slope, nose slope

Down-slope shape: Concave, linear

Across-slope shape: Linear Hydric soil rating: No

Volusia

Percent of map unit: 5 percent Landform: Hills, mountains

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Interfluve, side slope

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Lordstown

Percent of map unit: 5 percent Landform: Hills, mountains

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Mountainflank, side slope, nose slope

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Ra—Raynham silt loam

Map Unit Setting

National map unit symbol: 9vwd

Elevation: 50 to 500 feet

Mean annual precipitation: 42 to 52 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 135 to 215 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Raynham, poorly drained, and similar soils: 50 percent

Raynham, somewhat poorly drained, and similar soils: 25 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Raynham, Poorly Drained

Setting

Landform: Lake plains

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Glaciolacustrine, eolian, or old alluvial deposits, comprised

mainly of silt and very fine sand

Typical profile

H1 - 0 to 8 inches: silt loam H2 - 8 to 26 inches: silt loam H3 - 26 to 60 inches: silt loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 6 to 12 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 5 percent

Available water storage in profile: High (about 11.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: C/D Hydric soil rating: Yes

Description of Raynham, Somewhat Poorly Drained

Setting

Landform: Lake plains

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Glaciolacustrine, eolian, or old alluvial deposits, comprised

mainly of silt and very fine sand

Typical profile

H1 - 0 to 8 inches: silt loam H2 - 8 to 26 inches: silt loam H3 - 26 to 60 inches: silt loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 6 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 5 percent

Available water storage in profile: High (about 11.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: C/D Hydric soil rating: No

Minor Components

Canandaigua

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Madalin

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Palms

Percent of map unit: 5 percent Landform: Marshes, swamps Hydric soil rating: Yes

Scio

Percent of map unit: 5 percent Hydric soil rating: No

Unadilla

Percent of map unit: 5 percent

Hydric soil rating: No

SXC—Swartswood and Mardin soils, sloping, very stony

Map Unit Setting

National map unit symbol: 2v30r Elevation: 330 to 2,460 feet

Mean annual precipitation: 31 to 70 inches Mean annual air temperature: 39 to 52 degrees F

Frost-free period: 105 to 180 days

Farmland classification: Not prime farmland

Map Unit Composition

Swartswood, very stony, and similar soils: 40 percent Mardin, very stony, and similar soils: 40 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Swartswood, Very Stony

Setting

Landform: Hills, till plains

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till derived mainly from quartzite, conglomerate, and

sandstone

Typical profile

H1 - 0 to 3 inches: gravelly loam

H2 - 3 to 31 inches: gravelly fine sandy loam H3 - 31 to 60 inches: gravelly fine sandy loam

Properties and qualities

Slope: 8 to 15 percent

Percent of area covered with surface fragments: 1.6 percent Depth to restrictive feature: 20 to 36 inches to fragipan

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.57 in/hr)

Depth to water table: About 23 to 31 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: C Hydric soil rating: No

Description of Mardin, Very Stony

Setting

Landform: Hills, mountains

Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Interfluve, side slope

Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy till

Typical profile

A - 0 to 4 inches: gravelly silt loam
Bw - 4 to 15 inches: gravelly silt loam
E - 15 to 20 inches: gravelly silt loam
Bx - 20 to 72 inches: gravelly silt loam

Properties and qualities

Slope: 8 to 15 percent

Percent of area covered with surface fragments: 1.6 percent Depth to restrictive feature: 14 to 26 inches to fragipan

Natural drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.14 in/hr)

Depth to water table: About 13 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Bath, very stony

Percent of map unit: 5 percent Landform: Hills, mountains

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Nose slope, side slope

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Volusia, very stony

Percent of map unit: 5 percent Landform: Hills, mountains

Landform position (two-dimensional): Footslope, summit

Landform position (three-dimensional): Base slope, interfluve, side slope

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Wurtsboro, very stony

Percent of map unit: 5 percent Landform: Hills, till plains

Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest

Down-slope shape: Concave Across-slope shape: Convex

Hydric soil rating: No

Lordstown

Percent of map unit: 5 percent Landform: Hills, mountains

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Mountainflank, nose slope, side slope

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

UH—Udorthents, smoothed

Map Unit Setting

National map unit symbol: 9vxc

Mean annual precipitation: 42 to 52 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 135 to 215 days

Farmland classification: Not prime farmland

Map Unit Composition

Udorthents and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udorthents

Typical profile

H1 - 0 to 4 inches: channery loam

H2 - 4 to 70 inches: very gravelly sandy loam

Properties and qualities

Slope: 0 to 8 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high

(0.06 to 5.95 in/hr)

Depth to water table: About 36 to 72 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent Available water storage in profile: Low (about 5.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Alden

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Bath

Percent of map unit: 5 percent Hydric soil rating: No

Fredon

Percent of map unit: 5 percent Hydric soil rating: No

Raynham

Percent of map unit: 5 percent Hydric soil rating: No

Wurtsboro

Percent of map unit: 5 percent Hydric soil rating: No

UnB—Unadilla silt loam, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9vxd Elevation: 600 to 1,800 feet

Mean annual precipitation: 42 to 52 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 135 to 215 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Unadilla and similar soils: 75 percent Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Unadilla

Setting

Landform: Lake plains

Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Glaciolacustrine deposits, eolian deposits, or old alluvium,

comprised mainly of silt and very fine sand

Typical profile

H1 - 0 to 8 inches: silt loam H2 - 8 to 44 inches: silt loam

H3 - 44 to 60 inches: stratified very gravelly sand

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 1 percent Available water storage in profile: High (about 9.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Allard

Percent of map unit: 5 percent

Hydric soil rating: No

Collamer

Percent of map unit: 5 percent

Hydric soil rating: No

Chenango

Percent of map unit: 5 percent

Hydric soil rating: No

Raynham

Percent of map unit: 5 percent

Hydric soil rating: No

Scio

Percent of map unit: 5 percent

Hydric soil rating: No

W-Water

Map Unit Setting

National map unit symbol: 9vxh

Mean annual precipitation: 42 to 52 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 135 to 215 days

Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations tables in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations tables should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this

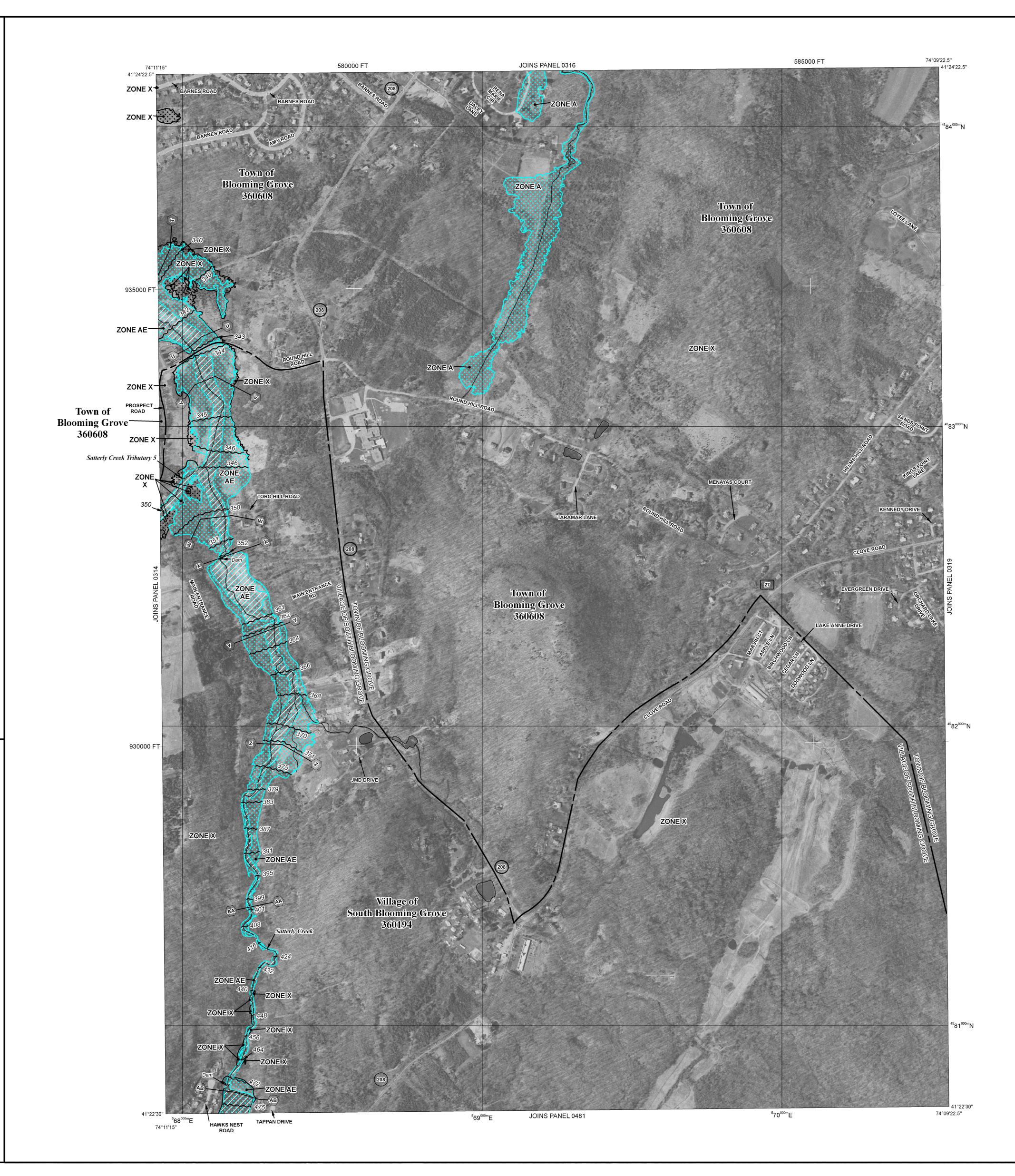
The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 18. The **horizontal datum** was NAD 83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at http://www.ngs.noaa.gov.

Base map information shown on this FIRM was derived from digital orthophotography provided by the New York Sate Office of Cyber Security & Critical Infrastructure Coordination. This information was provided as 30centimeter and 60-centimeter resolution natural color orthoimagery from photography dated April-May 2004.


Based on updated topographic information, this map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. Also, the road to floodplain relationships for unrevised streams may differ from what is shown on previous maps.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact the FEMA Map Service Center at 1-800-358-9616 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study report, and/or digital versions of this map. The FEMA Map Service Center may also be reached by Fax at 1-800-358-9620 and its website at http://msc.fema.gov.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov.

LEGEND

SPECIAL FLOOD HAZARD AREAS SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

The 1% annual flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood.

No Base Flood Elevations determined.

Base Flood Elevations determined.

Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined. ZONE AO

Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also ZONE AR Special Flood Hazard Area formerly protected from the 1% annual chance

> indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood. Area to be protected from 1% annual chance flood by a Federal flood

flood by a flood control system that was subsequently decertified. Zone AR

protection system under construction; no Base Flood Elevations Coastal flood zone with velocity hazard (wave action); no Base Flood

Elevations determined. ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined.

FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

OTHER FLOOD AREAS

ZONE X Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.

OTHER AREAS

ZONE X

•••••

Areas determined to be outside the 0.2% annual chance floodplain. Areas in which flood hazards are undetermined, but possible.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas.

1% annual chance floodplain boundary 0.2% annual chance floodplain boundary

Floodway boundary Zone D boundary

Boundary dividing Special Flood Hazard Area Zones and — boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities.

CBRS and OPA boundary

Base Flood Elevation line and value; elevation in feet* **∼** 513 **∼** ∼ Base Flood Elevation value where uniform within zone; elevation

* Referenced to the North American Vertical Datum of 1988 Cross section line

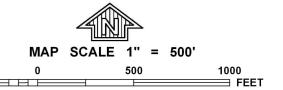
Limited detail cross section line

23)-----(23)

Geographic coordinates referenced to the North American Datum 87°07'45", 32°22'30" of 1983 (NAD 83), Western Hemisphere

1000-meter Universal Transverse Mercator grid values, zone 18N

5000-foot grid ticks: New York State Plane coordinate system, East zone (FIPSZONE 3101), Transverse Mercator projection


DX5510 Bench mark (see explanation in Notes to Users section of this M1.5

> MAP REPOSITORY Refer to listing of Map Repositories on Map Index EFFECTIVE DATE OF COUNTYWIDE

FLOOD INSURANCE RATE MAP August 3, 2009 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL

For community map revision history prior to countywide mapping, refer to the Community Map History table located in the Flood Insurance Study report for this jurisdiction.

To determine if flood insurance is available in this community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

PANEL 0318E

FLOOD INSURANCE RATE MAP

for ORANGE COUNTY, NEW YORK (ALL JURISDICTIONS)

CONTAINS:

<u>COMMUNITY</u> **BLOOMING GROVE,** TOWN OF SOUTH BLOOMING

GROVE, VILLAGE OF

PANEL 318 OF 630 MAP SUFFIX: E

(SEE MAP INDEX FOR FIRM PANEL LAYOUT)

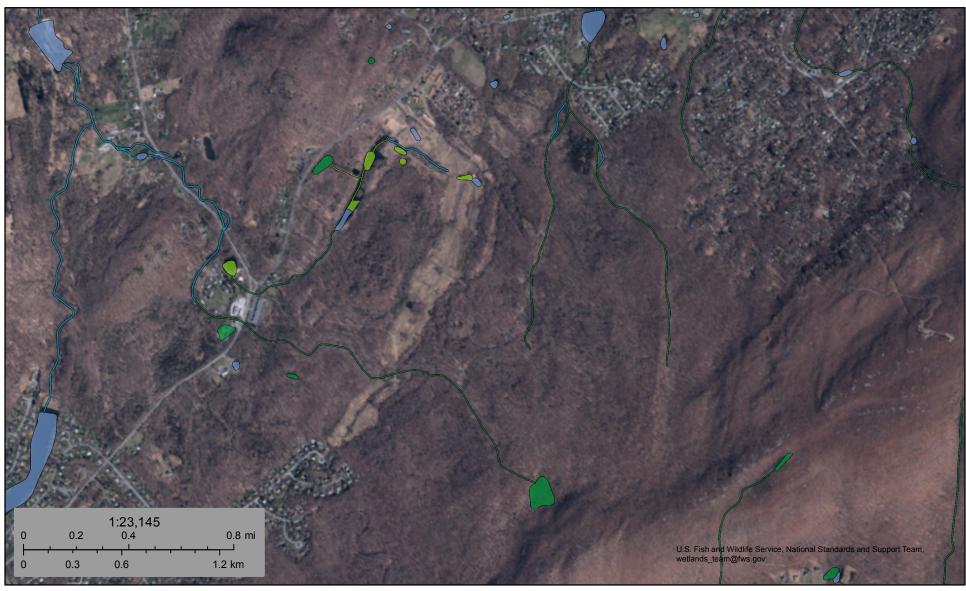
Notice to User: The Map Number shown below should be used when placing map orders; the Community Number shown above should be used on insurance applications for the

36071C0318E **EFFECTIVE DATE**

MAP NUMBER

<u>NUMBER</u>

360608


AUGUST 3, 2009

Federal Emergency Management Agency

U.S. Fish and Wildlife Service

National Wetlands Inventory

Clovewood Image

March 15, 2018

Wetlands

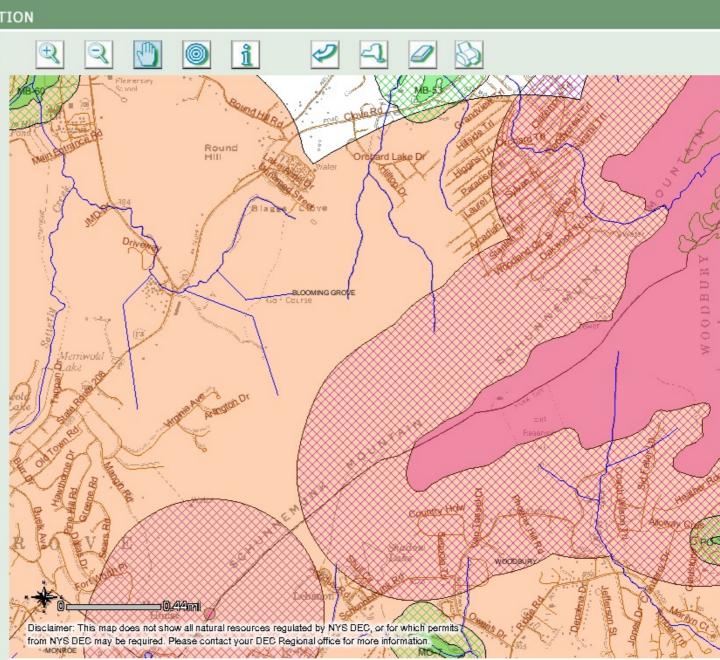
Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Freshwater Pond

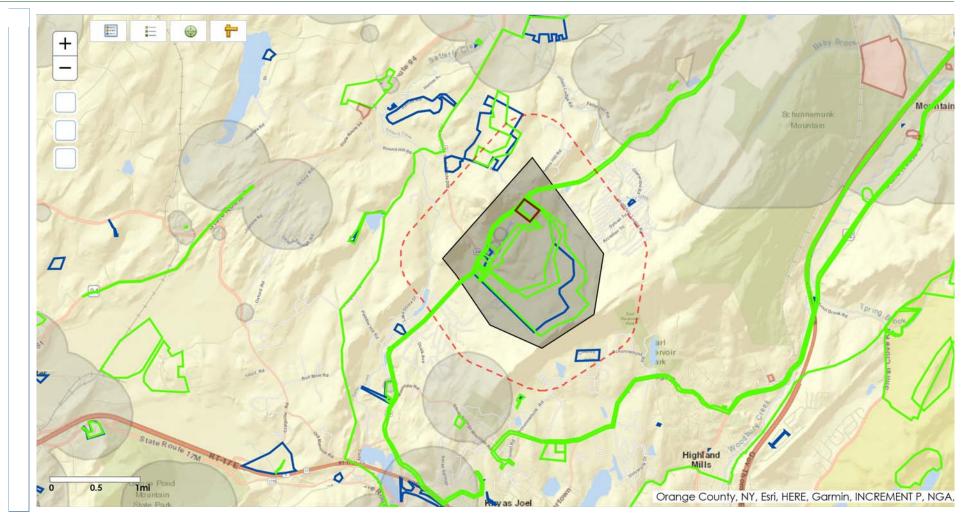

Lake

Other

Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

	KOMITEMIAL	. CONSERVA									
Search	Layers & Legend	Tell Me More									
Need a Permit?	Need a Permit? Contacts Help										
More la Classi Classi Classi Kate-f Wetlar Rare F Natura	Layers & Leger ayers appear as you ified Water Bodies e Geological Featu ified Water Bodies Regulated Freshw nd Checkzone ? Plants and Rare Ar cant Natural Communities Vi round Map dack Park Bounda	ures vater Wetlands munities cinity 2									
Counti		ctivate and									


Welcome Guest User | Contact Us | F/

HOME

SUBMIT

SEARCH COMMUNICATE

© 2018 New York State Office of Parks, Recreation & Historic Preservation. All rights reserved.

Versior

Appendix C

Water Quality and Run off Reduction Calculation Spreadsheets

Version 1.8 Total Water Quality Volume Calculation
Last Updated: 11/09/2015 WQv(acre-feet) = [(P)(Rv)(A)] /12

Is this project subject to Chapter 10 of the NYS Design Manual (i.e. WQv is equal to post-development 1 year runoff volume)?.....

Design Point:

P= 1.42 inch

		Breakdow	n of Subcatchme	nts				
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	i Impervious Rv		WQv (ft³)	Description		
1	4.20	1.40	33%	0.35	7,577	B1		
2	6.10	1.40	23%	0.26	8,067	B2		
3	26.65	7.50	28%	0.30	41,662	В3		
4	10.20	2.25	22%	0.25	13,067	B4		
5	5.50	1.20	22%	0.25	6,984	B5		
6	8.00	1.70	21%	0.24	9,948	В6		
7	13.45	5.20	39%	0.40	27,590	В7		
8	0.00	0.00				B8		
9	4.40	2.25	51%	0.51	11,572	B9		
10	15.60	4.35	4.35	4.35	28%	0.30	24,201	B10
Subtotal (1-30)	ubtotal (1-30) 238.05 73.5		31%	0.33	402,329	Subtotal 1		
Total	238.05	73.50	31%	0.33	402,329	Initial WQv		

	Identify Runoff R	eduction Techniqu	ies By Area
Technique	Total Contributing Area	Contributing Impervious Area	Notes
	(Acre)	(Acre)	
Conservation of Natural Areas	0.00	0.00	minimum 10,000 sf
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to 150 feet
Filter Strips	0.00	0.00	
Tree Planting	0.00	0.00	Up to 100 sf directly connected impervious area may be subtracted per tree
Total	0.00	0.00	

Recalcula	ate WQv after app	lication of Area Re	duction Tech	niques	
	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Runoff Coefficient Rv	WQv (ft³)
"< <initial td="" wqv"<=""><td>238.05</td><td>73.50</td><td>31%</td><td>0.33</td><td>402,329</td></initial>	238.05	73.50	31%	0.33	402,329
Subtract Area	0.00	0.00			
WQv adjusted after Area Reductions	238.05	73.50	31%	0.33	402,329
Disconnection of Rooftops		0.00			
Adjusted WQv after Area Reduction and Rooftop Disconnect	238.05	73.50	31%	0.33	402,329
WQv reduced by Area Reduction techniques					0

Total Water Quality Volume Calculation WQv(acre-feet) = [(P)(Rv)(A)] /12

			(1.7(1.17)									
	Additional Subcatchments											
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Description						
11	11.55	1.90	16%	0.20	11,791	B11						
12	24.40	6.75	28%	0.30	37,603	B12						
13	7.95	2.50	31%	0.33	13,647	B13						
14	3.70	3.30	89%	0.85	16,263	B14						
15	6.05	1.40	23%	0.26	8,054	B15						
16	1.50	0.55	37%	0.38	2,938	B16						
17	5.55	2.45	44%	0.45	12,796	C1						
18	5.95	2.30	39%	0.40	12,204	C2						
19	1.90	0.40	21%	0.24	2,345	C3						
20	7.40	2.50	34%	0.35	13,505	C4						
21	4.85	1.60	33%	0.35	8,673	C5						
22	16.25	4.80	30%	0.32	26,456	C6						
23	19.70	6.00	30%	0.32	32,912	C7						
24	3.80	0.30	8%	0.12	2,371	C8						
25	11.20	5.55	50%	0.50	28,634	C10						
26	1.70	0.70	41%	0.42	3,686	C11						
27	1.30	0.50	38%	0.40	2,655	C13						
28	0.40	0.20	50%	0.50	1,031	E1						
29	8.80	2.55	29%	0.31	14,098	E2						
30												
Subtotal	143.95	46.25	32%	0.34	251,660	Subtotal						

Total Water Quality Volume Calculation WQv(acre-feet) = [(P)(Rv)(A)] /12

		All	Subcatchments			
		Impervious	Percent	Runoff	1440	
Catchment	Total Area	Cover	Impervious	Coefficient	WQv	Description
	(Acres)	(Acres)	%	Rv	(ft³)	
1	4.20	1.40	0.33	0.35	7577.26	B1
2	6.10	1.40	0.23	0.26	8,067	B2
3	26.65	7.50	0.28	0.30	41662.05	В3
4	10.20	2.25	0.22	0.25	13066.91	B4
5	5.50	1.20	0.22	0.25	6984.48	B5
6	8.00	1.70	0.21	0.24	9948.38	В6
7	13.45	5.20	0.39	0.40	27590.00	В7
8	0.00	0.00				B8
9	4.40	2.25	0.51	0.51	11572.08	В9
10	15.60	4.35	0.28	0.30	24200.85	B10
11	11.55	1.90	0.16	0.20	11791.15	B11
12	24.40	6.75	0.28 0.30		37602.81	B12
13	7.95	2.50	0.31	0.33	13646.80	B13
14	3.70	3.30	0.89	0.85	16262.76	B14
15	6.05	1.40	0.23	0.26	8054.06	B15
16	1.50	0.55	0.37	0.38	0.38 2938.12	
17	5.55	2.45	0.44	0.45	12796.29	C1
18	5.95	2.30	0.39	0.40	12203.52	C2
19	1.90	0.40	0.21	0.24	2345.34	C3
20	7.40	2.50	0.34	0.35	13505.05	C4
21	4.85	1.60	0.33	0.35	8672.61	C5
22	16.25	4.80	0.30	0.32	26455.98	C6
23	19.70	6.00	0.30	0.32	32912.12	C7
24	3.80	0.30	0.08	0.12	2371.12	C8
25	11.20	5.55	0.50	0.50	28633.80	C10
26	1.70	0.70	0.41	0.42	3685.54	C11
27	1.30	0.50	0.38	0.40	2654.62	C13
28	0.40	0.20	0.50	0.50	1030.92	E1
29	8.80	2.55	0.29	0.31	14097.83	E2
30						

Minimum RRv

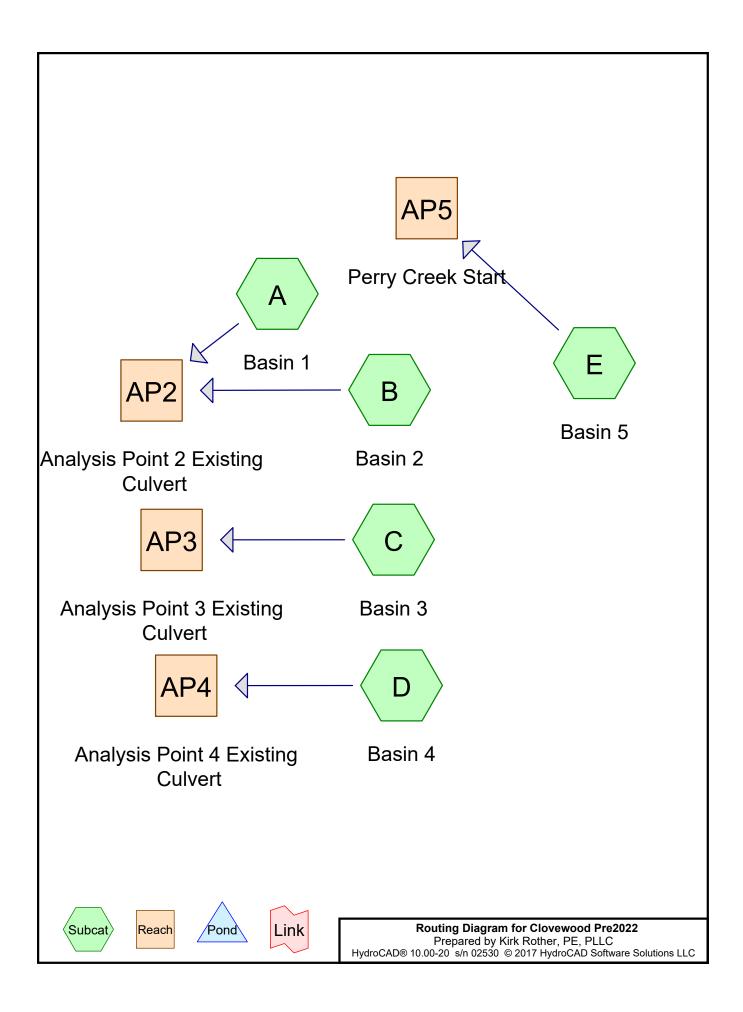
Enter the Soils Da	Enter the Soils Data for the site								
Soil Group	Acres	S							
Α	16.00	55%							
В		40%							
С	57.25	30%							
D	164.80	20%							
Total Area	238.05								
Calculate the Min	imum RRv								
S =	0.25								
Impervious =	73.50	acre							
Precipitation	1.42	in							
Rv	0.95								
Minimum RRv	89,107	ft3							
	2.05	af							

Planning

Practice	Description	Application
Preservation of Undisturbed Areas	Delineate and place into permanent conservation undisturbed forests, native vegetated areas, riparian corridors, wetlands, and natural terrain.	Considered & Applied
Preservation of Buffers	Define, delineate and preserve naturally vegetated buffers along perennial streams, rivers, shorelines and wetlands.	Considered & Applied
Reduction of Clearing and Grading	Limit clearing and grading to the minimum amount needed for roads, driveways, foundations, utilities and stormwater management facilities.	Considered & Applied
Locating Development in Less Sensitive Areas	Avoid sensitive resource areas such as floodplains, steep slopes, erodible soils, wetlands, mature forests and critical habitats by locating development to fit the terrain in areas that will create the least impact.	Considered & Applied
Open Space Design	Use clustering, conservation design or open space design to reduce impervious cover, preserve more open space and protect water resources.	Considered & Applied
Soil Restoration	Restore the original properties and porosity of the soil by deep till and amendment with compost to reduce the generation of runoff and enhance the runoff reduction performance of post construction practices.	Considered & Applied
Roadway	Minimize roadway widths and lengths to reduce site impervious area	Considered &
Reduction Sidewalk Reduction	Minimize sidewalk lengths and widths to reduce site impervious area	Not Applied Considered & Not Applied
Driveway Reduction	Minimize driveway lengths and widths to reduce site impervious area	Considered & Applied
Cul-de-sac Reduction	Minimize the number of cul-de-sacs and incorporate landscaped areas to reduce their impervious cover.	Considered & Applied
Building Footprint Reduction	Reduce the impervious footprint of residences and commercial buildings by using alternate or taller buildings while maintaining the same floor to area ratio.	Considered & Not Applied
Parking Reduction	Reduce imperviousness on parking lots by eliminating unneeded spaces, providing compact car spaces and efficient parking lanes, minimizing stall dimensions, using porous pavement surfaces in overflow parking areas, and using multi-storied parking decks where appropriate.	Considered & Not Applied

						Clov	ewood						
				Bio-rete	ention sizir	ng and run	-off reduct	ion calcula	ition sheet				
	90%	Coef. Of	Depth	Pond	Drain								
	rainfall	Permeability	Media	Depth	Time								
	inches)	(ft/day)	(feet)	(feet)	(days)								
	1.42	0.5	2.5	0.5	2								
Basin	ı #	Area trib	Imp. area			WQv	Bio	Bio	Vol	RRv	Tot. Imp.	Area not	Untreated to
	Bio #	to bio	to bio	% Imp	Rv		Area Req	Area Prv.	Provided	Provided	A in Basin	treat w bio	wet pond
	БЮ #	(acres)	(acres)	70 IIIIp	TV	(cu. ft.)	(sq. ft.)	(sq. ft.)	(cu. ft.)	(cu. ft.)	(acres)	(acres)	shade=yes
D4											1.40	0.00	
B1	1.0	0.65	0.20	20.00/	0.22	1 005	013	1 000	2.160	064	1.40	0.00	
	1A	0.65	0.20	30.8%	0.33	1,095	913	1,800	2,160	864			
	1B	0.45	0.15	33.3% 26.7%	0.35	812	677	1,000	1,200	480			
	1C	1.50	0.40		0.29	2,242	1,869	3,800	4,560	1,824			
	1D	1.60	0.65	40.6%	0.42	3,428	2,857	4,100	4,920	1,968			
		4.20	1.40			7,577	6,314	10,700	12,840	5,136			
В2											1.40	1.00	
DΖ	2A	0.75	0.20	26.7%	0.29	1,121	934	1,200	1,440	576	1.40	1.00	
	2B	0.80	0.20	25.0%	0.28	1,134	945	4,000	4,800	1,920			
	20	1.55	0.40	23.070	0.20	2,255	1,879	5,200	6,240	2,496			
		1.55	0.40			2,233	1,075	3,200	0,240	2,430			
В3				ļ							7.50	4.55	
	3A	0.80	0.20	25.0%	0.28	1,134	945	1,200	1,440	576	7.00	55	
	3B	1.00	0.25	25.0%	0.28	1,418	1,181	2,100	2,520	1,008			
	3C	4.40	1.70	38.6%	0.40	9,021	7,517	7,800	9,360	3,744			
	3D	2.30	0.40	17.4%	0.21	2,448	2,040	6,400	7,680	3,072			
	3E	2.30	0.40	17.4%	0.21	2,448	2,040	8,000	9,600	3,840			
		10.80	2.95			16,469	13,724	25,500	30,600	12,240	<u> </u>		
B4		1	, , , , , , , , , , , , , , , , , , ,								2.25	1.50	
	4A	1.35	0.35	25.9%	0.28	1,972	1,643	2,500	3,000	1,200			
	4B	2.20	0.40	18.2%	0.21	2,423	2,019	3,500	4,200	1,680			
		3.55	0.75			4,394	3,662	6,000	7,200	2,880			

Basir	ı #	Area trib	Imp. area			WQv	Bio	Bio	Vol	RRv	Tot. Imp.	Area not	Untreated to
	Bio#	to bio	to bio	% Imp	Rv		Area Req	Area Prv.	Provided	Provided	A in Basin	treat w bio	wet pond
		(acres)	(acres)			(cu. ft.)	(sq. ft.)	(sq. ft.)	(cu. ft.)	(cu. ft.)	(acres)	(acres)	shade=yes
B5											1.20	0.90	
	5A	2.00	0.30	15.0%	0.19	1,907	1,589	5,200	6,240	2,496	1		
В6											1.70	1.40	1
	6A	1.60	0.30	18.8%	0.22	1,804	1,503	8,500	10,200	4,080			
В7											5.20	4.60	
	7A	1.30	0.60	46.2%	0.47	3,119	2,599	3,700	4,440	1,776			
_													
В8		0.00	0.00								0.00		
В9		4.40	2.25	E4.40/	0.54	44 570	0.640	42.000	45.600	6.240	2.25	0.00	
	9A	4.40	2.25	51.1%	0.51	11,572	9,643	13,000	15,600	6,240			
D10											4.25	0.45	
B10		3.60	1.30	36.1%	0.38	6,959	5,799	12,000	14,400	5,760	4.35	0.15	
	10A 10B	12.00	2.90	24.2%	0.38	16,546	·	25,000	·	12,000			
	100	15.60	4.20	24.2%	0.27	23,505	19,587	37,000	44,400	17,760			
		15.00	4.20	1		25,505	19,567	37,000	44,400	17,700			
B11											1.90	0.40	
DII	11A	2.10	0.55	26.2%	0.29	3,093	2,577	4,500	5,400	2,160	1.50	0.40	
	11B	3.50	0.80	22.9%	0.26	4,613	3,844	7,000		3,360			
	11C	0.30	0.15	50.0%	0.50	773	644	1,300	,	624			
		5.90	1.50	551511	0.00	8,479	7,066	12,800	15,360	6,144			
						-, -	,	,		- /			
B12			l .		ļ						6.75	3.75	
	12A	1.35	0.35	25.9%	0.28	1,972	1,643	6,500	7,800	3,120			
	12B	0.70	0.20	28.6%	0.31	1,108	924	2,000	·	960			
	12C	2.30	0.70	30.4%	0.32	3,840	3,200	4,300		2,064			
	12D	2.15	0.55	25.6%	0.28	3,106	2,588	4,100		1,968			
	12E	4.30	1.20	27.9%	0.30	6,675	5,563	7,200	8,640	3,456			
		10.80	3.00			16,701	13,917	24,100	28,920	11,568			
B13		,	"	,	"				,		2.50	0.03	


Basin	#	Area trib	Imp. area			WQv	Bio	Bio	Vol	RRv	Tot. Imp.	Area not	Untreated to
	Bio#	to bio	to bio	% Imp	Rv		Area Req	Area Prv.	Provided	Provided	A in Basin	treat w bio	wet pond
		(acres)	(acres)			(cu. ft.)	(sq. ft.)	(sq. ft.)	(cu. ft.)	(cu. ft.)	(acres)	(acres)	shade=yes
	13A	1.50	0.27	18.0%	0.21	1,639	1,366	2,000	2,400	960			
	13B	0.45	0.20	44.4%	0.45	1,044	870	1,000	1,200	480			
	13C	2.20	1.00	45.5%	0.46	5,206	4,338	5,100	6,120	2,448			
	13D	0.90	0.30	33.3%	0.35	1,624	1,353	3,500	4,200	1,680			
	13E	2.90	0.70	24.1%	0.27	3,995	3,329	7,700	9,240	3,696			
		7.95	2.47			13,508	11,256	19,300	23,160	9,264			
B14		1	1	1							3.30	2.40	
	14A	2.50	0.60	24.0%	0.27	3,428	2,857	7,300	8,760	3,504			
	14B	1.20	0.30	25.0%	0.28	1,701	1,418	3,500	4,200	1,680			
		3.70	0.90			5,129	4,274	10,800	12,960	5,184	[
											_		
B15			0.0-	0= 40/				0 = 00			1.40	-0.05	
	15A	3.10	0.85	27.4%	0.30	4,742	3,952	3,500	4,200	1,680			
	15B	3.00	0.60	20.0%	0.23	3,557	2,964	4,700	5,640	2,256			
		6.10	1.45			8,299	6,916	8,200	9,840	3,936			
D46											0.55	0.45	
B16	164	1.50	0.40	26.70/	0.20	2 242	1.000	2.400	2.000	4 4 5 2	0.55	0.15	
	16A	1.50	0.40	26.7%	0.29	2,242	1,869	2,400	2,880	1,152			
C1											2.45	0.75	
C1	1 ^	5.00	1.50	30.0%	0.32	8,247	6 972	12 000	14,400	5,760	2.45	0.75	
	1A 1B	0.55	0.20	36.4%	0.32	1,070	6,873 891	12,000 2,000	2,400	960			
	ID	5.55	1.70	30.4%	0.36	9,317	7,764	14,000	16,800	6,720			
		3.55	1.70			3,317	7,704	14,000	10,800	0,720			
C2											2.30		
CZ											2.50		
C3											0.40	0.00	
	3A	1.00	0.20	20.0%	0.23	1,186	988	2,400	2,880	1,152	0.40	0.00	
	3B	0.90	0.20	22.2%	0.25	1,160	966	3,700	4,440	1,776			
	35	1.90	0.40		0.23	2,345	1,954	6,100	7,320	2,928			
		1.50	0.40			2,343	1,554	0,±00	7,320	2,320			
C4											2.50	2.35	
	4A	0.50	0.15	30.0%	0.32	825	687	2,500	3,000	1,200			
	4A	0.50	0.15	30.0%	0.32	825	687	2,500	3,000	1,200			

Basin #	Area trib	Imp. area			WQv	Bio	Bio	Vol	RRv	Tot. Imp.	Area not	Untreated to
Bio#	to bio	to bio	% Imp	Rv		Area Req	Area Prv.	Provided	Provided	A in Basin	treat w bio	wet pond
	(acres)	(acres)			(cu. ft.)	(sq. ft.)	(sq. ft.)	(cu. ft.)	(cu. ft.)	(acres)	(acres)	shade=yes
			ì									
C5										1.60	0.10	
5A	0.80	0.25	31.3%	0.33	1,366	1,138	1,400	1,680	672		0.20	
5B	1.20	0.40	33.3%	0.35	2,165	1,804	2,000	2,400	960			
5C	1.50	0.40	26.7%	0.29	2,242	1,869	5,000	6,000	2,400			
5D	0.80	0.30	37.5%	0.39	1,598	1,332	4,400	5,280	2,112			
5E	0.55	0.15	27.3%	0.30	838		1,200	1,440	576			
	4.85	1.50			8,209	6,841	14,000	16,800	6,720			
						-						
C6										4.80	4.30	
6A	0.60	0.15	25.0%	0.28	851	709	2,100	2,520	1,008			
6B	1.50	0.35	23.3%	0.26	2,010	1,675	7,000	8,400	3,360			
	2.10	0.50	·		2,861	2,384	9,100	10,920	4,368			
C7				, i						6.00	4.15	
7A	3.40	1.10	32.4%	0.34	5,979	4,983	8,800	10,560	4,224			
7B	1.00	0.25	25.0%	0.28	1,418	1,181	1,700	2,040	816			
7C	1.70	0.50	29.4%	0.31	2,758	2,298	4,100	4,920	1,968			
	6.10	1.85			10,155	8,462	14,600	17,520	7,008			
C8										0.00		
C9										0.30		
C10										5.55	4.70	
10A	2.00	0.55	27.5%	0.30	3,067	2,556	4,200	5,040	2,016			
10B	0.70	0.20	28.6%	0.31	1,108	924	1,700	2,040	816			
10C	1.00	0.10	10.0%	0.14	722	601	4,000	4,800	1,920			
	3.70	0.85		ľ	4,897	4,081	9,900	11,880	4,752			
C11										0.70	0.30	
11A	1.70	0.40	23.5%	0.26	2,294	1,911	4,200	5,040	2,016			
C12										0.00		
										3.30		

Basin #		Area trib	Imp. area			WQv	Bio	Bio	Vol	RRv	Tot. Imp.	Area not	Untreated to
Bio	#	to bio	to bio	% Imp	Rv		Area Req	Area Prv.	Provided	Provided	A in Basin	treat w bio	wet pond
		(acres)	(acres)			(cu. ft.)	(sq. ft.)	(sq. ft.)	(cu. ft.)	(cu. ft.)	(acres)	(acres)	shade=yes
C13	ļ										0.50	0.20	
13 <i>A</i>	4	1.30	0.30	23.1%	0.26	1,727	1,439	4,200	5,040	2,016	р		
C14											0.00		
E1											0.20		
E2	ļ										2.55	0.90	
2A		3.70	1.00	27.0%	0.29	5,593	4,661	6,400	7,680	3,072			
2B		2.30	0.65	28.3%	0.30	3,608	3,007	3,900	4,680	1,872			
		6.00	1.65			9,201	7,667	10,300	12,360	4,944	i.		
						Totals	148,992	281,300	337,560	135,024	73.50		

Appendix D

TR-20 HydroCAD model

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
14.380	80	>75% Grass cover, Good, HSG D (A, B)
2.310	30	Brush, Good, HSG A (A)
3.810	48	Brush, Good, HSG B (A)
4.810	65	Brush, Good, HSG C (A)
8.040	73	Brush, Good, HSG D (A)
0.040	75	Dirt roads, HSG A (A)
0.100	84	Dirt roads, HSG B (A)
0.030	88	Dirt roads, HSG C (A)
3.070	90	Dirt roads, HSG D (A, B)
1.570	98	Impervious Surfaces (A, C)
5.430	98	Impervious surfaces (B)
0.620	80	Lawn, Good, HSG D (C)
0.400	30	Meadow, non-grazed, HSG A (E)
6.440	71	Meadow, non-grazed, HSG C (B)
27.960	78	Meadow, non-grazed, HSG D (B, C)
31.920	35	Old Golf Course, HSG A (B, C)
8.510	79	Old Golf Course, HSG D (B, C)
3.820	98	Water surface (B)
30.800	89	Wetlands (A, B, C, E)
9.420	30	Woods, Good, HSG A (A, B, C)
1.240	55	Woods, Good, HSG B (A)
0.600	70	Woods, Good, HSG C (A, B)
608.920	77	Woods, Good, HSG D (A, B, C, D, E)
774.240	75	TOTAL AREA

Clovewood Pre2022

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 3

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
44.090	HSG A	A, B, C, E
5.150	HSG B	Α
11.880	HSG C	A, B
671.500	HSG D	A, B, C, D, E
41.620	Other	A, B, C, E
774.240		TOTAL AREA

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	0.000	14.380	0.000	14.380	>75% Grass cover, Good	A, B
2.310	3.810	4.810	8.040	0.000	18.970	Brush, Good	Α
0.040	0.100	0.030	3.070	0.000	3.240	Dirt roads	A, B
0.000	0.000	0.000	0.000	1.570	1.570	Impervious Surfaces	A, C
0.000	0.000	0.000	0.000	5.430	5.430	Impervious surfaces	В
0.000	0.000	0.000	0.620	0.000	0.620	Lawn, Good	С
0.400	0.000	6.440	27.960	0.000	34.800	Meadow, non-grazed	B, C, E
31.920	0.000	0.000	8.510	0.000	40.430	Old Golf Course	B, C
0.000	0.000	0.000	0.000	3.820	3.820	Water surface	В
0.000	0.000	0.000	0.000	30.800	30.800	Wetlands	A, B, C, E
9.420	1.240	0.600	608.920	0.000	620.180	Woods, Good	A, B, C, D, E
44.090	5.150	11.880	671.500	41.620	774.240	TOTAL AREA	

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 5

Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment A: Basin 1 Runoff Area=37.220 ac 2.79% Impervious Runoff Depth=0.56"

Flow Length=2,020' Tc=28.9 min CN=71 Runoff=11.67 cfs 1.729 af

Subcatchment B: Basin 2 Runoff Area=258.600 ac 3.58% Impervious Runoff Depth=0.73"

Flow Length=7,510' Tc=27.1 min CN=75 Runoff=118.75 cfs 15.683 af

Subcatchment C: Basin 3 Runoff Area=300.700 ac 0.18% Impervious Runoff Depth=0.73"

Flow Length=6,605' Tc=23.4 min CN=75 Runoff=146.69 cfs 18.236 af

Subcatchment D: Basin 4 Runoff Area=3.220 ac 0.00% Impervious Runoff Depth=0.82"

Flow Length=1,815' Tc=19.2 min CN=77 Runoff=1.98 cfs 0.221 af

Subcatchment E: Basin 5 Runoff Area=174.500 ac 0.00% Impervious Runoff Depth=0.82"

Flow Length=7,660' Tc=32.0 min CN=77 Runoff=86.57 cfs 11.969 af

Reach AP2: Analysis Point 2 Existing Culvert Inflow=130.09 cfs 17.412 af

Outflow=130.09 cfs 17.412 af

Reach AP3: Analysis Point 3 Existing Culvert Inflow=146.69 cfs 18.236 af

Outflow=146.69 cfs 18.236 af

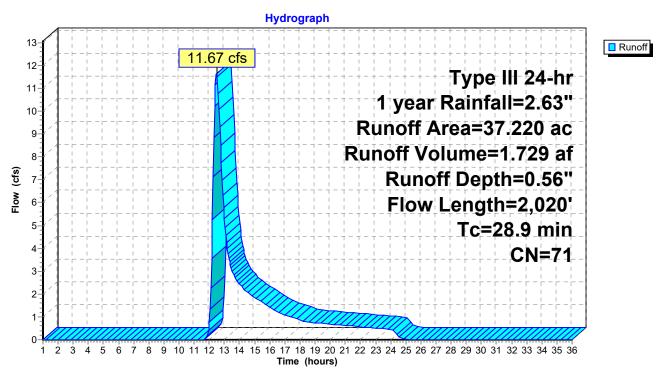
Reach AP4: Analysis Point 4 Existing Culvert Inflow=1.98 cfs 0.221 af

Outflow=1.98 cfs 0.221 af

Reach AP5: Perry Creek Start Inflow=86.57 cfs 11.969 af

Outflow=86.57 cfs 11.969 af

Total Runoff Area = 774.240 ac Runoff Volume = 47.838 af Average Runoff Depth = 0.74" 98.60% Pervious = 763.420 ac 1.40% Impervious = 10.820 ac

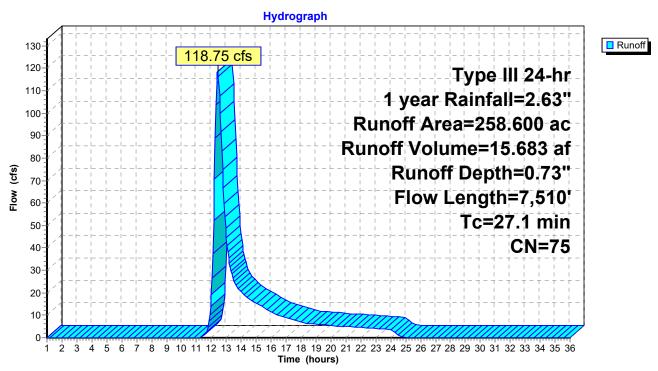

Summary for Subcatchment A: Basin 1

Runoff = 11.67 cfs @ 12.48 hrs, Volume= 1.729 af, Depth= 0.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area ((ac) (ON I	Desc	ription		
*	7.3	350	89 '	Wetl	ands		
*	1.0	040	98	mpe	rvious Su	rfaces	
	1.0	000	80	>75%	√ Grass co	over, Good,	, HSG D
	0.3	310	30 '	Woo	ds, Good,	HSG A	
	1.3	240	55	Woo	ds, Good,	HSG B	
	0.4	480	70 '	Woo	ds, Good,	HSG C	
	5.9	970	77 '	Woo	ds, Good,	HSG D	
	2.3	310	30 I	Brus	h, Good, F	HSG A	
	3.8	810	48	Brus	h, Good, F	HSG B	
	4.8	810	65 l	Brus	h, Good, F	HSG C	
	8.	040	73	Brus	h, Good, F	HSG D	
*	0.0				oads, HS0		
*					oads, HS0		
*					oads, HS0		
*	0.0	690	90	<u>Dirt r</u>	oads, HS0	G D	
	37.	220	71 '	Weig	hted Aver	age	
	36.	180	!	97.2°	1% Pervio	us Area	
	1.0	040	:	2.79	% Impervi	ous Area	
	Tc	Length		ppe	Velocity	Capacity	Description
_	(min)	(feet)		t/ft)	(ft/sec)	(cfs)	
	20.5	100	0.02	200	0.08		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	5.1	690	0.02	200	2.28		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	2.7	690	0.07	700	4.26		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.6	540	0.04	100	15.27	213.78	Parabolic Channel,
_							W=7.00' D=3.00' Area=14.0 sf Perim=9.6' n= 0.025
	28.9	2,020	Tota	al			

Subcatchment A: Basin 1

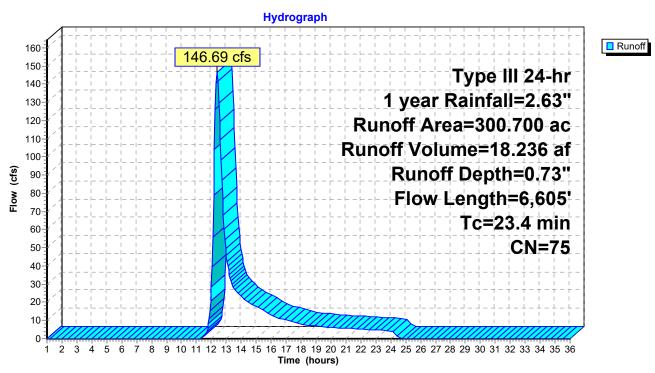

Summary for Subcatchment B: Basin 2

Runoff = 118.75 cfs @ 12.42 hrs, Volume= 15.683 af, Depth= 0.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac)	CN	Desc	ription		
*	13.	090	89	Wetl	ands		
*	4.	300	79	Old (Golf Cours	e, HSG D	
*	21.	840	35	Old (Golf Cours	e, HSG A	
	2.	860	30		ds, Good,		
	157.	080	77		ds, Good,		
	0.	120	70		ds, Good,		
*	3.	820	98		er surface		
*	5.	430	98	Impe	rvious sur	faces	
*	2.	380	90	Dirt r	oads, HS0	G D	
	13.	380	80	>75%	6 Grass co	over, Good,	HSG D
	27.	860	78	Mea	dow, non-g	grazed, HS	G D
	6.	440	71	Mea	dow, non-	grazed, HS	G C
	258.	600	75	Weig	hted Aver	age	
	249.	350		96.4	2% Pervio	us Area	
	9.:	250		3.589	% Impervi	ous Area	
	Tc	Length	1	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.8	100	0 0	.1000	0.15		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	12.6	3,220	0 (.0700	4.26		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	2.1	2,250	0 (.0300	17.87	714.87	Parabolic Channel,
							W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025
	1.6	1,940	0 (.0400	20.64	825.46	Parabolic Channel,
							W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025
	27.1	7,510	T	otal			

Subcatchment B: Basin 2

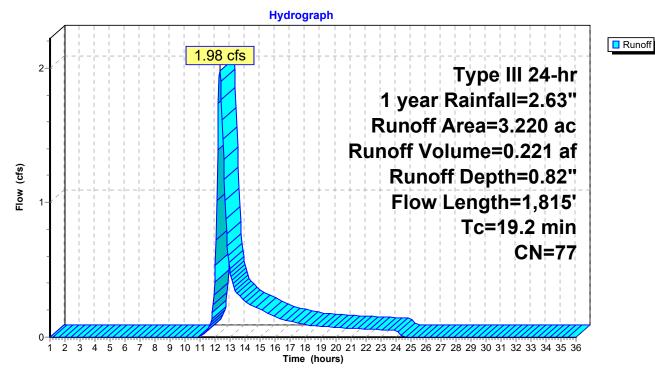

Summary for Subcatchment C: Basin 3

Runoff = 146.69 cfs @ 12.37 hrs, Volume= 18.236 af, Depth= 0.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) (ON Des	cription		
*	7.	060	89 Wet	lands		
*	0.	530	98 Imp	ervious Su	rfaces	
	6.	250		ods, Good,		
	271.	850	77 Woo	ods, Good,	HSG D	
*	0.	620		n, Good, F		
*	4.	210		Golf Cours		
*	10.	080		Golf Cours		
	0.	100			grazed, HS	G D
	300.	700		ghted Aver		
	300.			32% Pervio		
		530		8% Impervi		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)		(ft/sec)	(cfs)	·
	10.8	100	0.1000	0.15		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.5	360	0.5900	12.37		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	10.4	3,630	0.1300	5.80		Shallow Concentrated Flow,
		-,				Unpaved Kv= 16.1 fps
	0.9	1,275	0.0900	23.77	380.30	Parabolic Channel,
		,				W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.025
	0.8	1,240	0.0400	24.69	790.00	Parabolic Channel,
		,				W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.020
_	23.4	6,605	Total			

Subcatchment C: Basin 3

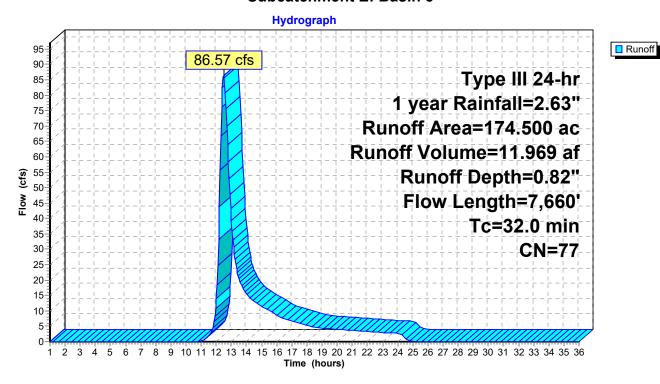

Summary for Subcatchment D: Basin 4

Runoff = 1.98 cfs @ 12.29 hrs, Volume= 0.221 af, Depth= 0.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

Area	(ac) C	N Des	cription		
3	.220 7	77 Woo	ds, Good,	HSG D	
3	.220	100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
13.2	100	0.0600	0.13		Sheet Flow,
2.9	1,040	0.1400	6.02		Woods: Light underbrush n= 0.400 P2= 3.50" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
3.1	675	0.0500	3.60		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
19.2	1,815	Total		_	

Subcatchment D: Basin 4


Summary for Subcatchment E: Basin 5

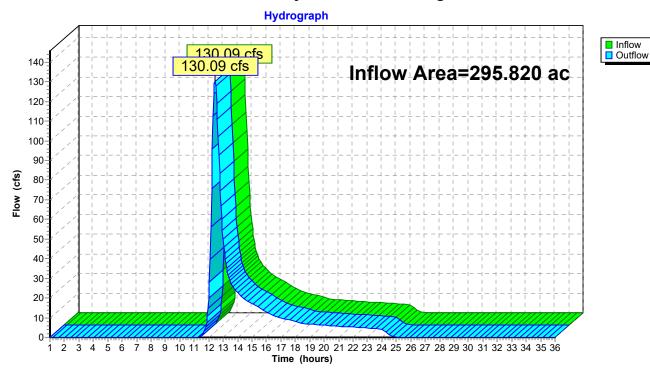
Runoff = 86.57 cfs @ 12.49 hrs, Volume= 11.969 af, Depth= 0.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) C	N Des	cription		
	170.	800	77 Woo	ds, Good,	HSG D	
	0.	400	30 Mea	dow, non-	grazed, HS	G A
*	3.	300	39 Wet	lands	•	
	174.	500	77 Wei	ghted Aver	age	
	174.	500		00% Pervi		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	20.5	100	0.0200	0.08		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	1.2	630	0.2800	8.52		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	6.6	2,300	0.1300	5.80		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	3.7	4,630	0.0700	20.96	335.39	Parabolic Channel,
_						W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.025
	32.0	7,660	Total		·	

Subcatchment E: Basin 5

Summary for Reach AP2: Analysis Point 2 Existing Culvert


Inflow Area = 295.820 ac, 3.48% Impervious, Inflow Depth = 0.71" for 1 year event

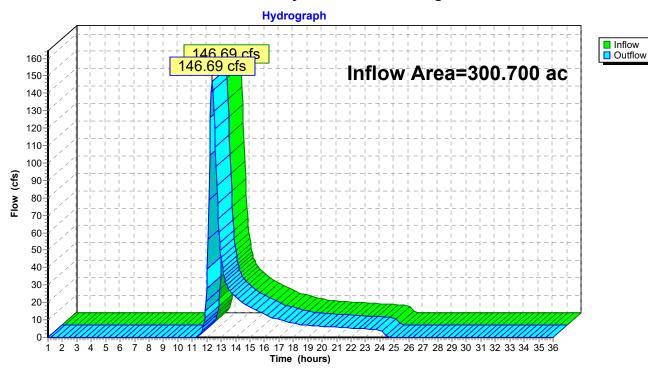
Inflow = 130.09 cfs @ 12.43 hrs, Volume= 17.412 af

Outflow = 130.09 cfs @ 12.43 hrs, Volume= 17.412 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP2: Analysis Point 2 Existing Culvert

Summary for Reach AP3: Analysis Point 3 Existing Culvert


Inflow Area = 300.700 ac, 0.18% Impervious, Inflow Depth = 0.73" for 1 year event

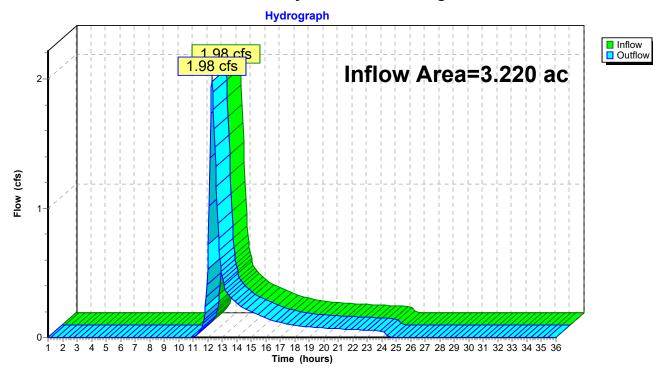
Inflow = 146.69 cfs @ 12.37 hrs, Volume= 18.236 af

Outflow = 146.69 cfs @ 12.37 hrs, Volume= 18.236 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP3: Analysis Point 3 Existing Culvert

Summary for Reach AP4: Analysis Point 4 Existing Culvert


Inflow Area = 3.220 ac, 0.00% Impervious, Inflow Depth = 0.82" for 1 year event

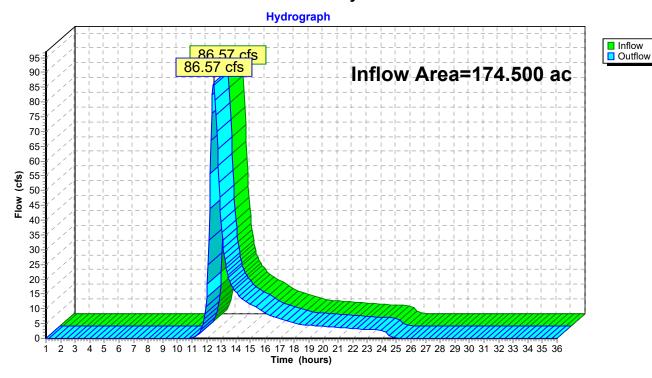
Inflow = 1.98 cfs @ 12.29 hrs, Volume= 0.221 af

Outflow = 1.98 cfs @ 12.29 hrs, Volume= 0.221 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP4: Analysis Point 4 Existing Culvert

Summary for Reach AP5: Perry Creek Start


Inflow Area = 174.500 ac, 0.00% Impervious, Inflow Depth = 0.82" for 1 year event

Inflow = 86.57 cfs @ 12.49 hrs, Volume= 11.969 af

Outflow = 86.57 cfs @ 12.49 hrs, Volume= 11.969 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP5: Perry Creek Start

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 18

Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment A: Basin 1 Runoff Area=37.220 ac 2.79% Impervious Runoff Depth=1.99"

Flow Length=2,020' Tc=28.9 min CN=71 Runoff=48.82 cfs 6.169 af

Subcatchment B: Basin 2 Runoff Area=258.600 ac 3.58% Impervious Runoff Depth=2.31"

Flow Length=7,510' Tc=27.1 min CN=75 Runoff=411.56 cfs 49.827 af

Subcatchment C: Basin 3 Runoff Area=300.700 ac 0.18% Impervious Runoff Depth=2.31"

Flow Length=6,605' Tc=23.4 min CN=75 Runoff=509.49 cfs 57.938 af

Subcatchment D: Basin 4 Runoff Area=3.220 ac 0.00% Impervious Runoff Depth=2.48"

Flow Length=1,815' Tc=19.2 min CN=77 Runoff=6.40 cfs 0.666 af

Subcatchment E: Basin 5 Runoff Area=174.500 ac 0.00% Impervious Runoff Depth=2.48"

Flow Length=7,660' Tc=32.0 min CN=77 Runoff=277.39 cfs 36.084 af

Reach AP2: Analysis Point 2 Existing Culvert Inflow=460.01 cfs 55.995 af

Outflow=460.01 cfs 55.995 af

Reach AP3: Analysis Point 3 Existing Culvert Inflow=509.49 cfs 57.938 af

Outflow=509.49 cfs 57.938 af

Reach AP4: Analysis Point 4 Existing Culvert Inflow=6.40 cfs 0.666 af

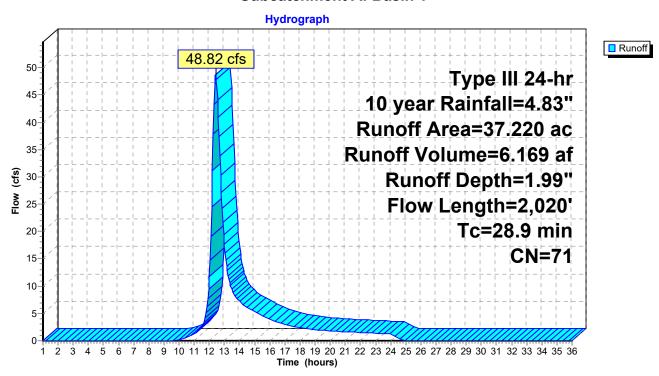
Outflow=6.40 cfs 0.666 af

Reach AP5: Perry Creek Start Inflow=277.39 cfs 36.084 af

Outflow=277.39 cfs 36.084 af

Total Runoff Area = 774.240 ac Runoff Volume = 150.684 af Average Runoff Depth = 2.34" 98.60% Pervious = 763.420 ac 1.40% Impervious = 10.820 ac HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 19

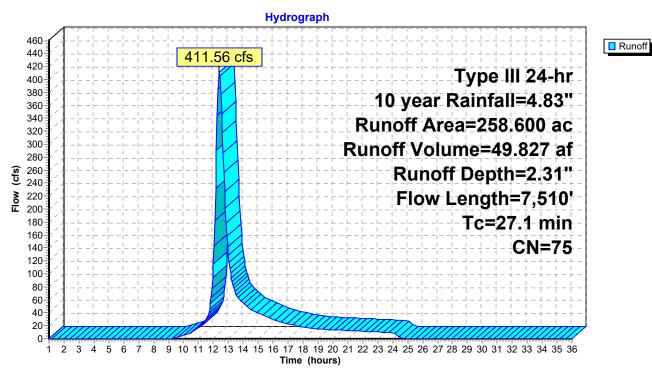

Summary for Subcatchment A: Basin 1

Runoff 48.82 cfs @ 12.42 hrs, Volume= 6.169 af, Depth= 1.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area (ac) C	N Des	cription		
*	7.3	350 8	39 We	tlands		
*	1.0	040 9	98 Imp	ervious Su	rfaces	
	1.0	3 000	30 >75	% Grass c	over, Good,	HSG D
	0.3	310 3	30 Wo	ods, Good,	HSG A	
	1.2	240 5	55 Wo	ods, Good,	HSG B	
	0.4	480 7	70 Wo	ods, Good,	HSG C	
			77 Wo	ods, Good,	HSG D	
	2.3	310 3	30 Bru	sh, Good, I	HSG A	
	3.8			sh, Good, I	HSG B	
				sh, Good, I		
				sh, Good, I		
*				roads, HS		
*				roads, HS		
*				roads, HS		
*				roads, HS		
	37.2			ighted Aver		
	36.			21% Pervio		
	1.0	040	2.79	9% Impervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
	20.5	100	0.0200		(3.5)	Sheet Flow,
	20.0		0.0200	0.00		Woods: Light underbrush n= 0.400 P2= 3.50"
	5.1	690	0.0200	2.28		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	2.7	690	0.0700	4.26		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.6	540	0.0400	15.27	213.78	Parabolic Channel,
						W=7.00' D=3.00' Area=14.0 sf Perim=9.6' n= 0.025
	28.9	2,020	Total			

Subcatchment A: Basin 1

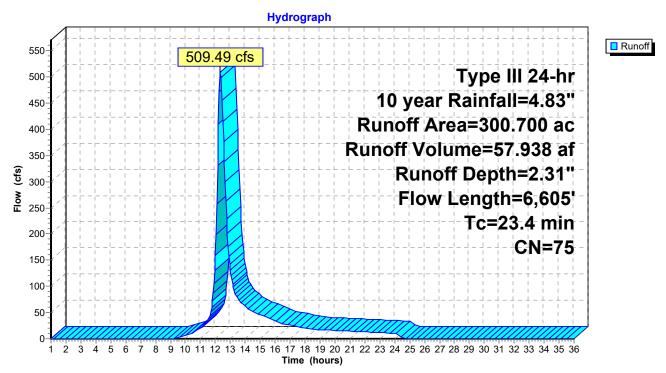

Summary for Subcatchment B: Basin 2

Runoff = 411.56 cfs @ 12.39 hrs, Volume= 49.827 af, Depth= 2.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area (ac) (CN	Desc	ription		
*	13.0	090	89	Wetla	ands		
*	4.3	300	79	Old (Golf Cours	e, HSG D	
*							
	2.8	360	30		ds, Good,		
	157.0	080	77		ds, Good,		
			70		ds, Good,		
*			98		er surface		
*			98	Impe	rvious sur	faces	
*			90		oads, HS0		
	13.3		80			over, Good,	HSG D
	27.8		78			grazed, HS	
	6.4		71			grazed, HS	
	258.6	600	75	Weig	hted Aver	age	
	249.3				2% Pervio		
		250		3.589	% Impervi	ous Area	
	_				'		
	Тс	Length	S	Slope	Velocity	Capacity	Description
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
_	10.8	100		1000	0.15	()	Sheet Flow,
	10.0	100	0.	1000	0.10		Woods: Light underbrush n= 0.400 P2= 3.50"
	12.6	3,220	0.0	0700	4.26		Shallow Concentrated Flow,
	12.0	0,220	0.	0700	7.20		Unpaved Kv= 16.1 fps
	2.1	2,250	0.0	0300	17.87	714.87	Parabolic Channel,
		2,200	0.	0000	17.07	7 1 1.07	W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025
	1.6	1,940	0.0	0400	20.64	825.46	Parabolic Channel,
	1.0	1,0 10	٥.٠		20.04	020.70	W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025
_	27.1	7,510	To	otal			1. 10.00 2 1.00 / 100 10.0 01 1 01111 11.0 11 0.020

Subcatchment B: Basin 2

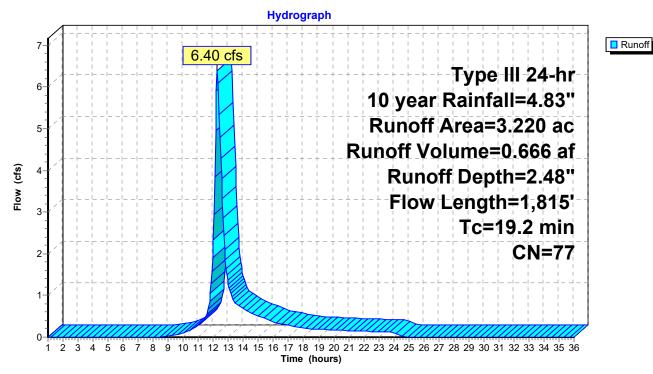

Summary for Subcatchment C: Basin 3

Runoff = 509.49 cfs @ 12.33 hrs, Volume= 57.938 af, Depth= 2.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac) C	N Des	cription					
*	7.	060 8	39 Wetl	ands					
*	0.	530	98 Impe	ervious Su	rfaces				
	6.	250	30 Woo	ds, Good,	HSG A				
				ds, Good,	HSG D				
*	0.	620		Lawn, Good, HSG D					
*	4.	210	79 Old	Golf Cours	e, HSG D				
*	10.	080	35 Old	Golf Cours	e, HSG A				
	0.	100	78 Mea	dow, non-	grazed, HS	G D			
	300.	700	75 Wei	ghted Aver	age				
	300.	170		2% Pervio					
	0.	530	0.18	% Impervi	ous Area				
				•					
	Tc	Length	Slope	Velocity	Capacity	Description			
				10.00.00	Cupacity	Bookipaon			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	2000 piloti			
_	(min) 10.8					Sheet Flow,			
		(feet)	(ft/ft)	(ft/sec)		Sheet Flow,			
		(feet)	(ft/ft)	(ft/sec)		·			
_	10.8	(feet) 100	(ft/ft) 0.1000	(ft/sec) 0.15		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.50"			
	10.8	(feet) 100	(ft/ft) 0.1000 0.5900	(ft/sec) 0.15		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.50" Shallow Concentrated Flow,			
_	10.8	(feet) 100 360	(ft/ft) 0.1000 0.5900	(ft/sec) 0.15 12.37		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.50" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps			
_	10.8	(feet) 100 360	(ft/ft) 0.1000 0.5900	(ft/sec) 0.15 12.37		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.50" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps Shallow Concentrated Flow,			
_	10.8 0.5 10.4	(feet) 100 360 3,630	(ft/ft) 0.1000 0.5900 0.1300	(ft/sec) 0.15 12.37 5.80	(cfs)	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.50" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps Shallow Concentrated Flow, Unpaved Kv= 16.1 fps			
_	10.8 0.5 10.4	(feet) 100 360 3,630	(ft/ft) 0.1000 0.5900 0.1300	(ft/sec) 0.15 12.37 5.80	(cfs)	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.50" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps Shallow Concentrated Flow, Unpaved Kv= 16.1 fps Parabolic Channel,			
_	10.8 0.5 10.4 0.9	(feet) 100 360 3,630 1,275	(ft/ft) 0.1000 0.5900 0.1300 0.0900	(ft/sec) 0.15 12.37 5.80 23.77	(cfs) 380.30	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.50" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps Shallow Concentrated Flow, Unpaved Kv= 16.1 fps Parabolic Channel, W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.025			

Subcatchment C: Basin 3

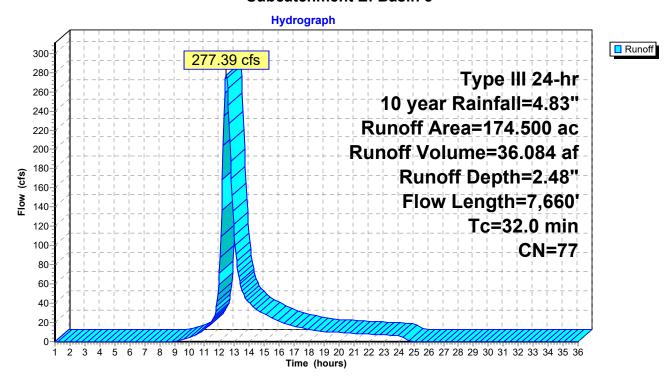

Summary for Subcatchment D: Basin 4

Runoff = 6.40 cfs @ 12.27 hrs, Volume= 0.666 af, Depth= 2.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

Area	(ac) C	N Desc	cription		
3.	220 7	77 Woo			
3.	220	100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
13.2	100	0.0600	0.13		Sheet Flow,
2.9	1,040	0.1400	6.02		Woods: Light underbrush n= 0.400 P2= 3.50" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
3.1	675	0.0500	3.60		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
19.2	1 815	Total			

Subcatchment D: Basin 4


Summary for Subcatchment E: Basin 5

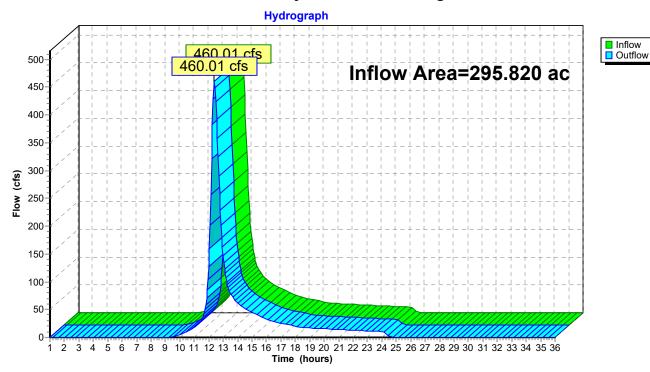
Runoff = 277.39 cfs @ 12.45 hrs, Volume= 36.084 af, Depth= 2.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

_	Area	(ac) C	N Des	cription		
	170.	800 7	7 Woo	ds, Good,	HSG D	
	0.	400 3			grazed, HS	GA
*			39 Wetl			
_	174.			ghted Aver	200	
	174.			00% Pervi		
	174.	300	100.	00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
		_	•	,		Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	20.5	100	0.0200	0.08		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	1.2	630	0.2800	8.52		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	6.6	2,300	0.1300	5.80		Shallow Concentrated Flow,
		,				Unpaved Kv= 16.1 fps
	3.7	4,630	0.0700	20.96	335.39	Parabolic Channel,
		,				W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.025
	32.0	7,660	Total		•	

Subcatchment E: Basin 5

Summary for Reach AP2: Analysis Point 2 Existing Culvert


Inflow Area = 295.820 ac, 3.48% Impervious, Inflow Depth = 2.27" for 10 year event

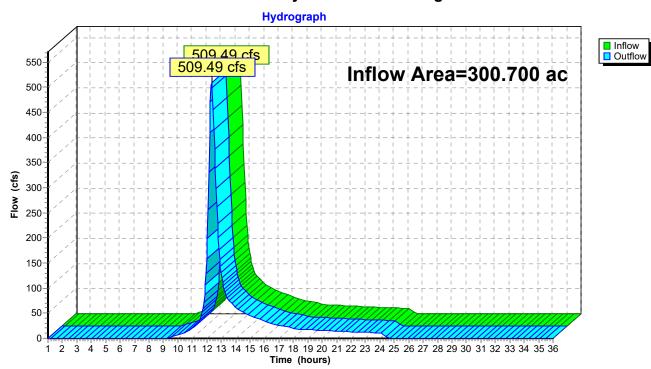
Inflow = 460.01 cfs @ 12.39 hrs, Volume= 55.995 af

Outflow = 460.01 cfs @ 12.39 hrs, Volume= 55.995 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP2: Analysis Point 2 Existing Culvert

Summary for Reach AP3: Analysis Point 3 Existing Culvert


Inflow Area = 300.700 ac, 0.18% Impervious, Inflow Depth = 2.31" for 10 year event

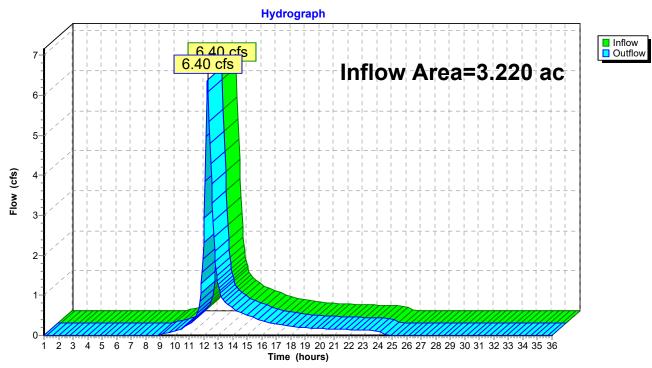
Inflow = 509.49 cfs @ 12.33 hrs, Volume= 57.938 af

Outflow = 509.49 cfs @ 12.33 hrs, Volume= 57.938 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP3: Analysis Point 3 Existing Culvert

Summary for Reach AP4: Analysis Point 4 Existing Culvert


Inflow Area = 3.220 ac, 0.00% Impervious, Inflow Depth = 2.48" for 10 year event

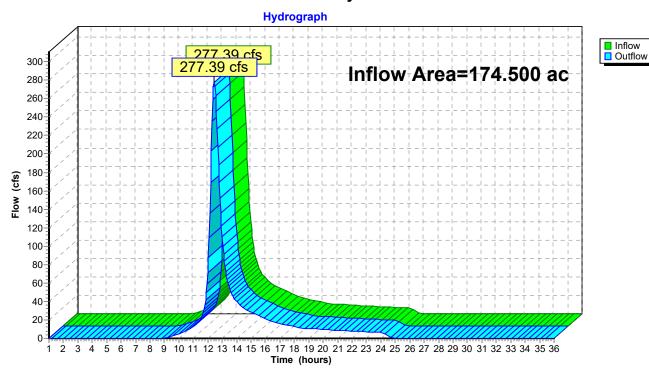
Inflow = 6.40 cfs @ 12.27 hrs, Volume= 0.666 af

Outflow = 6.40 cfs @ 12.27 hrs, Volume= 0.666 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP4: Analysis Point 4 Existing Culvert

Summary for Reach AP5: Perry Creek Start


Inflow Area = 174.500 ac, 0.00% Impervious, Inflow Depth = 2.48" for 10 year event

Inflow = 277.39 cfs @ 12.45 hrs, Volume= 36.084 af

Outflow = 277.39 cfs @ 12.45 hrs, Volume= 36.084 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP5: Perry Creek Start

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 31

Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment A: Basin 1 Runoff Area=37.220 ac 2.79% Impervious Runoff Depth=2.97"

Flow Length=2,020' Tc=28.9 min CN=71 Runoff=74.03 cfs 9.216 af

Subcatchment B: Basin 2 Runoff Area=258.600 ac 3.58% Impervious Runoff Depth=3.36"

Flow Length=7,510' Tc=27.1 min CN=75 Runoff=601.40 cfs 72.384 af

Subcatchment C: Basin 3 Runoff Area=300.700 ac 0.18% Impervious Runoff Depth=3.36"

Flow Length=6,605' Tc=23.4 min CN=75 Runoff=744.74 cfs 84.168 af

Subcatchment D: Basin 4 Runoff Area=3.220 ac 0.00% Impervious Runoff Depth=3.56"

Flow Length=1,815' Tc=19.2 min CN=77 Runoff=9.19 cfs 0.955 af

Subcatchment E: Basin 5 Runoff Area=174.500 ac 0.00% Impervious Runoff Depth=3.56"

Flow Length=7,660' Tc=32.0 min CN=77 Runoff=398.58 cfs 51.736 af

Reach AP2: Analysis Point 2 Existing Culvert Inflow=674.95 cfs 81.600 af

Outflow=674.95 cfs 81.600 af

Reach AP3: Analysis Point 3 Existing Culvert Inflow=744.74 cfs 84.168 af

Outflow=744.74 cfs 84.168 af

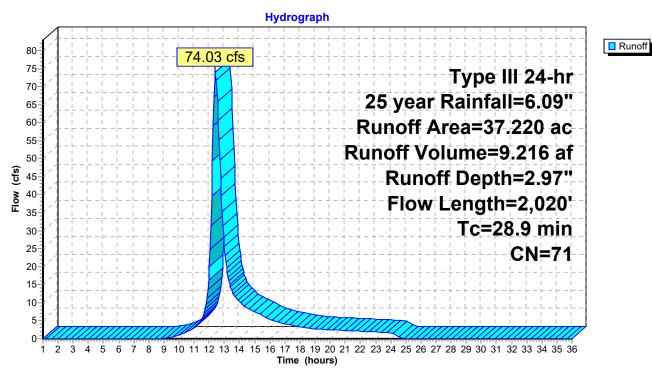
Reach AP4: Analysis Point 4 Existing Culvert Inflow=9.19 cfs 0.955 af

Outflow=9.19 cfs 0.955 af

Reach AP5: Perry Creek Start Inflow=398.58 cfs 51.736 af

Outflow=398.58 cfs 51.736 af

Total Runoff Area = 774.240 ac Runoff Volume = 218.459 af Average Runoff Depth = 3.39" 98.60% Pervious = 763.420 ac 1.40% Impervious = 10.820 ac

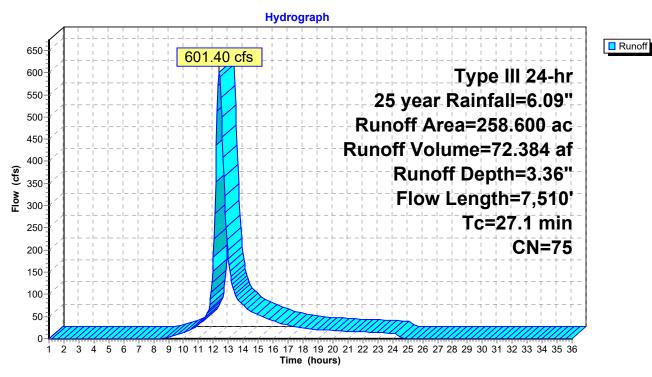

Summary for Subcatchment A: Basin 1

Runoff = 74.03 cfs @ 12.41 hrs, Volume= 9.216 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac) C	N De	scription		
*	7.	350	39 We	tlands		
*	1.	040	98 Im _l	pervious Su	rfaces	
	1.	000	30 >7	5% Grass c	over, Good	, HSG D
	0.	310	30 Wc	ods, Good,	HSG A	
	1.:	240	55 Wo	ods, Good,	HSG B	
	0.4	480	70 Wc	ods, Good,	HSG C	
				ods, Good,		
	2.			ish, Good, I		
				ısh, Good, I		
				ısh, Good, I		
				ısh, Good, I		
*				t roads, HS		
*				t roads, HS		
*				t roads, HS		
*				t roads, HS		
				ighted Aver		
		180		21% Pervio		
	1.	040	2.7	9% Impervi	ous Area	
	To	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft		(cfs)	Description
_	20.5	100	0.0200		(013)	Sheet Flow,
	20.5	100	0.0200	0.00		Woods: Light underbrush n= 0.400 P2= 3.50"
	5.1	690	0.0200	2.28		Shallow Concentrated Flow,
	0.1	030	0.0200	2.20		Unpaved Kv= 16.1 fps
	2.7	690	0.0700	4.26		Shallow Concentrated Flow,
	2.1	030	0.0700	7.20		Unpaved Kv= 16.1 fps
	0.6	540	0.0400	15.27	213.78	Parabolic Channel,
	2.0	0.0	0.0100			W=7.00' D=3.00' Area=14.0 sf Perim=9.6' n= 0.025
_	28.9	2,020	Total			
	_0.0	2,020	iotai			

Subcatchment A: Basin 1

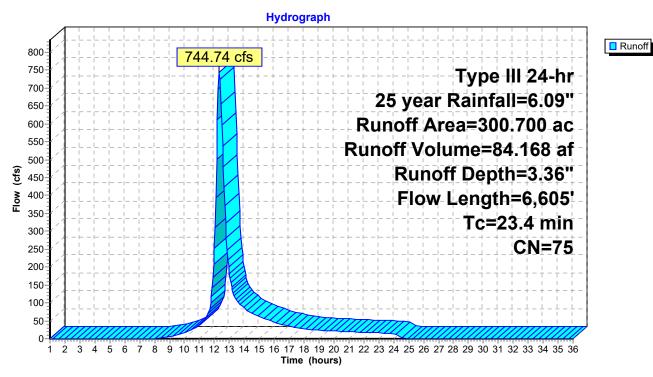

Summary for Subcatchment B: Basin 2

Runoff = 601.40 cfs @ 12.38 hrs, Volume= 72.384 af, Depth= 3.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area (ac) C	N E	escr)	iption		
*	13.0	090	39 V	Vetla	nds		
*	4.3	300	79 C	old G	olf Cours	e, HSG D	
*	21.8	340				e, HSG A	
	2.8	360	30 V	Vood	ls, Good,	HSG A	
	157.0	080	77 V	Vood	ls, Good,	HSG D	
	0.1	120	70 V	Vood	ls, Good,	HSG C	
*	3.8	320	98 V	Vater	surface		
*	5.4	130	98 li	mper	vious sur	faces	
*	2.3	380 9	90 E	irt ro	ads, HS0	G D	
	13.3	380	30 >	75%	Grass co	over, Good,	, HSG D
	27.8	360	78 N	/lead	ow, non-	grazed, HS	G D
	6.4	140	71 N	/lead	ow, non-	grazed, HS	GC
	258.6	300	75 V	Veigh	nted Aver	age	
	249.3				% Pervio		
		250	3	.58%	6 Impervi	ous Area	
					•		
	Tc	Length	Slo	ре	Velocity	Capacity	Description
	(min)	(feet)		/ft)	(ft/sec)	(cfs)	•
	10.8	100	0.10	00	0.15	, ,	Sheet Flow,
			0		0		Woods: Light underbrush n= 0.400 P2= 3.50"
	12.6	3,220	0.07	00	4.26		Shallow Concentrated Flow,
		-,					Unpaved Kv= 16.1 fps
	2.1	2,250	0.03	00	17.87	714.87	Parabolic Channel,
		_,					W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025
	1.6	1,940	0.04	00	20.64	825.46	Parabolic Channel,
	-	,		-			W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025
	27.1	7,510	Tota	l			

Subcatchment B: Basin 2

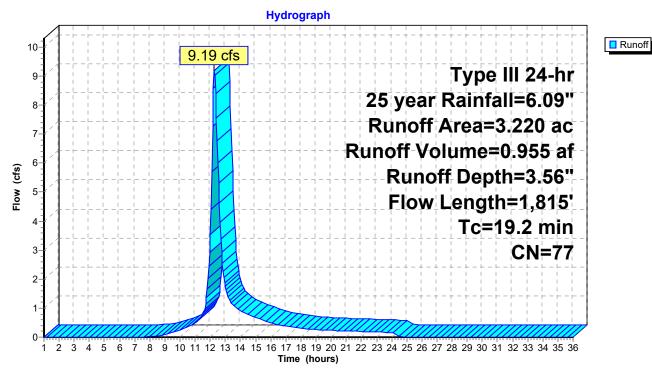

Summary for Subcatchment C: Basin 3

Runoff = 744.74 cfs @ 12.33 hrs, Volume= 84.168 af, Depth= 3.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac)	ON D	escription		
*	7.	060	89 W	etlands		
*	0.	530	98 In	pervious Su	rfaces	
	6.	250		oods, Good,		
	271.	850	77 W	oods, Good,	HSG D	
*	0.	620	80 La	wn, Good, F	ISG D	
*	4.	210		d Golf Cours		
*		080		d Golf Cours		
	0.	100		eadow, non-		GD
	300.	700	75 W	eighted Avei	rage	
	300.			.82% Pervio		
	0.530 0.18% Impervious Area					
				•		
	Tc	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	<u> </u>
	10.8	100	0.100	0 0.15		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.5	360	0.590	0 12.37		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	10.4	3,630	0.130	0 5.80		Shallow Concentrated Flow,
		,				Unpaved Kv= 16.1 fps
	0.9	1,275	0.090	0 23.77	380.30	Parabolic Channel,
						W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.025
	8.0	1,240	0.040	0 24.69	790.00	Parabolic Channel,
		*				W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.020
	23.4	6,605	Total			

Subcatchment C: Basin 3

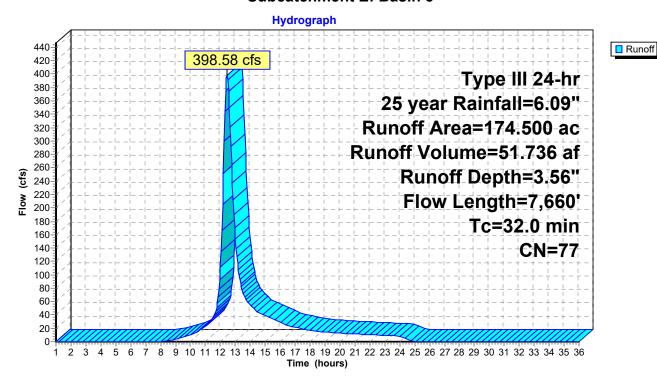

Summary for Subcatchment D: Basin 4

Runoff = 9.19 cfs @ 12.27 hrs, Volume= 0.955 af, Depth= 3.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

Area	(ac) C	N Desc	cription		
3.	220 7	77 Woo			
3.	220	100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
13.2	100	0.0600	0.13		Sheet Flow,
2.9	1,040	0.1400	6.02		Woods: Light underbrush n= 0.400 P2= 3.50" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
3.1	675	0.0500	3.60		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
19.2	1 815	Total			

Subcatchment D: Basin 4


Summary for Subcatchment E: Basin 5

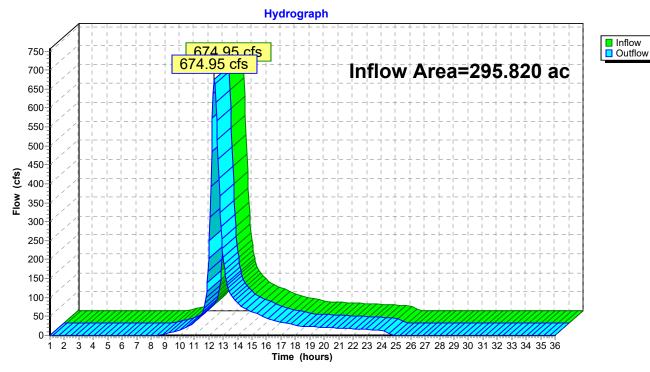
Runoff = 398.58 cfs @ 12.44 hrs, Volume= 51.736 af, Depth= 3.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac) C	N Des	cription		
	170.	800 7	7 Woo	ds, Good,	HSG D	
	0.	400 3			grazed, HS	G A
*				ands	g. a a., a	
_	174.			hted Aver	age	
	174.		,	00% Pervi		
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	20.5	100	0.0200	0.08		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	1.2	630	0.2800	8.52		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	6.6	2,300	0.1300	5.80		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	3.7	4,630	0.0700	20.96	335.39	Parabolic Channel,
						W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.025
	32.0	7,660	Total	·	·	

Subcatchment E: Basin 5

Summary for Reach AP2: Analysis Point 2 Existing Culvert


Inflow Area = 295.820 ac, 3.48% Impervious, Inflow Depth = 3.31" for 25 year event

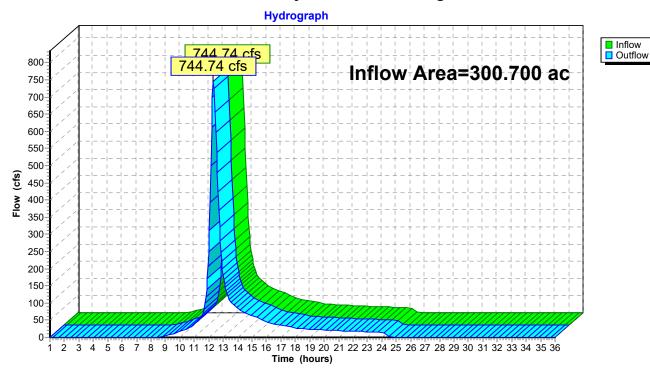
Inflow = 674.95 cfs @ 12.38 hrs, Volume= 81.600 af

Outflow = 674.95 cfs @ 12.38 hrs, Volume= 81.600 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP2: Analysis Point 2 Existing Culvert

Summary for Reach AP3: Analysis Point 3 Existing Culvert


Inflow Area = 300.700 ac, 0.18% Impervious, Inflow Depth = 3.36" for 25 year event

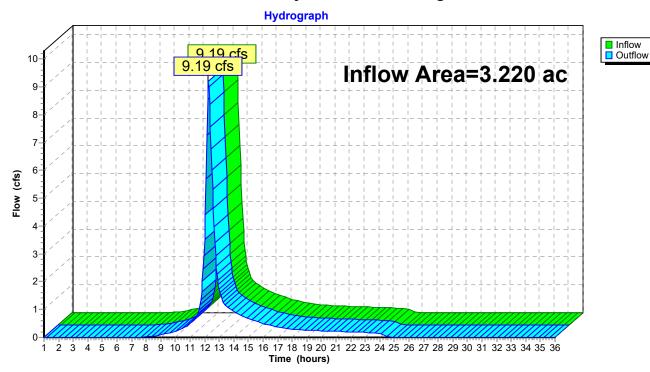
Inflow = 744.74 cfs @ 12.33 hrs, Volume= 84.168 af

Outflow = 744.74 cfs @ 12.33 hrs, Volume= 84.168 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP3: Analysis Point 3 Existing Culvert

Summary for Reach AP4: Analysis Point 4 Existing Culvert


Inflow Area = 3.220 ac, 0.00% Impervious, Inflow Depth = 3.56" for 25 year event

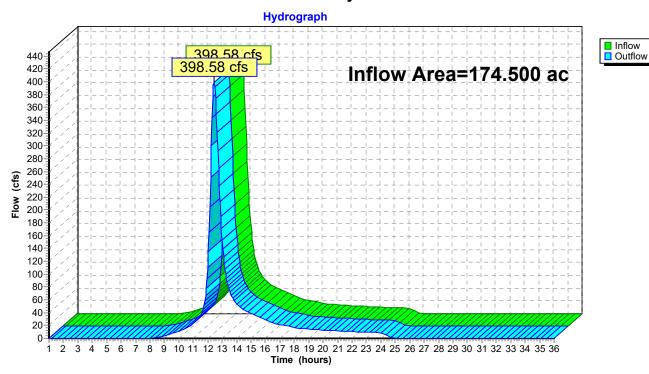
Inflow = 9.19 cfs @ 12.27 hrs, Volume= 0.955 af

Outflow = 9.19 cfs @ 12.27 hrs, Volume= 0.955 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP4: Analysis Point 4 Existing Culvert

Summary for Reach AP5: Perry Creek Start


Inflow Area = 174.500 ac, 0.00% Impervious, Inflow Depth = 3.56" for 25 year event

Inflow = 398.58 cfs @ 12.44 hrs, Volume= 51.736 af

Outflow = 398.58 cfs @ 12.44 hrs, Volume= 51.736 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP5: Perry Creek Start

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 44

Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment A: Basin 1 Runoff Area=37.220 ac 2.79% Impervious Runoff Depth=5.17"

Flow Length=2,020' Tc=28.9 min CN=71 Runoff=129.51 cfs 16.051 af

Subcatchment B: Basin 2 Runoff Area=258.600 ac 3.58% Impervious Runoff Depth=5.66"

Flow Length=7,510' Tc=27.1 min CN=75 Runoff=1,009.95 cfs 121.957 af

Subcatchment C: Basin 3 Runoff Area=300.700 ac 0.18% Impervious Runoff Depth=5.66"

Flow Length=6,605' Tc=23.4 min CN=75 Runoff=1,251.80 cfs 141.811 af

Subcatchment D: Basin 4 Runoff Area=3.220 ac 0.00% Impervious Runoff Depth=5.90"

Flow Length=1,815' Tc=19.2 min CN=77 Runoff=15.13 cfs 1.584 af

Subcatchment E: Basin 5 Runoff Area=174.500 ac 0.00% Impervious Runoff Depth=5.90"

Flow Length=7,660' Tc=32.0 min CN=77 Runoff=656.11 cfs 85.819 af

Reach AP2: Analysis Point 2 Existing Culvert Inflow=1,138.90 cfs 138.008 af

Outflow=1,138.90 cfs 138.008 af

Reach AP3: Analysis Point 3 Existing Culvert Inflow=1,251.80 cfs 141.811 af

Outflow=1,251.80 cfs 141.811 af

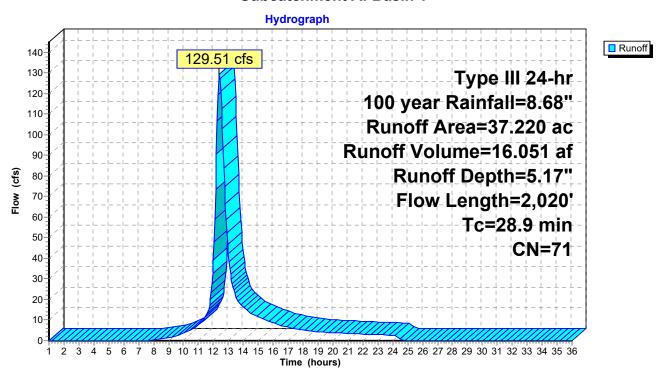
Reach AP4: Analysis Point 4 Existing Culvert Inflow=15.13 cfs 1.584 af

Outflow=15.13 cfs 1.584 af

Reach AP5: Perry Creek Start Inflow=656.11 cfs 85.819 af

Outflow=656.11 cfs 85.819 af

Total Runoff Area = 774.240 ac Runoff Volume = 367.221 af Average Runoff Depth = 5.69" 98.60% Pervious = 763.420 ac 1.40% Impervious = 10.820 ac

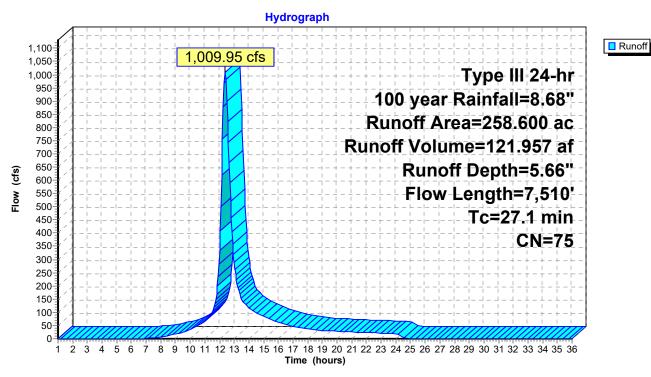

Summary for Subcatchment A: Basin 1

Runoff = 129.51 cfs @ 12.40 hrs, Volume= 16.051 af, Depth= 5.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area ((ac) (ON I	Desc	ription		
*	7.3	350	89 '	Wetl	ands		
*	1.0	040	98	mpe	rvious Su	rfaces	
	1.0	000	80	>75%	√ Grass co	over, Good,	, HSG D
	0.3	310	30 '	Woo	ds, Good,	HSG A	
	1.3	240	55	Woo	ds, Good,	HSG B	
	0.4	480	70 '	Woo	ds, Good,	HSG C	
	5.9	970	77 '	Woo	ds, Good,	HSG D	
	2.3	310	30 I	Brus	h, Good, F	HSG A	
	3.8	810	48	Brus	h, Good, F	HSG B	
	4.8	810	65 l	Brus	h, Good, F	HSG C	
	8.	040	73	Brus	h, Good, F	HSG D	
*	0.0				oads, HS0		
*					oads, HS0		
*					oads, HS0		
*	0.0	690	90	Dirt r	oads, HS0	G D	
	37.	220	71 '	Weig	hted Aver	age	
	36.	180	!	97.2°	1% Pervio	us Area	
	1.0	040	:	2.79	% Impervi	ous Area	
	Tc	Length		ppe	Velocity	Capacity	Description
_	(min)	(feet)		t/ft)	(ft/sec)	(cfs)	
	20.5	100	0.02	200	0.08		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	5.1	690	0.02	200	2.28		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	2.7	690	0.07	700	4.26		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.6	540	0.04	100	15.27	213.78	Parabolic Channel,
_							W=7.00' D=3.00' Area=14.0 sf Perim=9.6' n= 0.025
	28.9	2,020	Tota	al			

Subcatchment A: Basin 1


Summary for Subcatchment B: Basin 2

Runoff = 1,009.95 cfs @ 12.37 hrs, Volume= 121.957 af, Depth= 5.66"

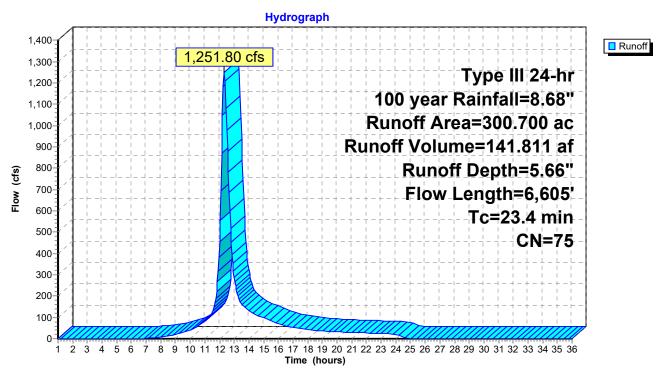
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area (ac) (CN	Desc	ription		
*	13.0	090	89	Wetla	ands		
*	4.3	300	79	Old (Golf Cours	e, HSG D	
*							
	2.8	360	30		ds, Good,		
	157.0	080	77		ds, Good,		
			70		ds, Good,		
*			98		er surface		
*			98	Impe	rvious sur	faces	
*			90		oads, HS0		
	13.3		80			over, Good,	HSG D
	27.8		78			grazed, HS	
	6.4		71			grazed, HS	
	258.6	600	75	Weig	hted Aver	age	
	249.3				2% Pervio		
		250		3.589	% Impervi	ous Area	
	_				'		
	Тс	Length	S	Slope	Velocity	Capacity	Description
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
_	10.8	100		1000	0.15	()	Sheet Flow,
	10.0	100	0.	1000	0.10		Woods: Light underbrush n= 0.400 P2= 3.50"
	12.6	3,220	0.0	0700	4.26		Shallow Concentrated Flow,
	12.0	0,220	0.	0700	7.20		Unpaved Kv= 16.1 fps
	2.1	2,250	0.0	0300	17.87	714.87	Parabolic Channel,
		2,200	0.	0000	17.07	7 1 1.07	W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025
	1.6	1,940	0.0	0400	20.64	825.46	Parabolic Channel,
	1.0	1,0 10	٥.٠		20.04	020.70	W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025
_	27.1	7,510	To	otal			1. 10.00 2 1.00 / 100 10.0 01 1 01111 11.0 11 0.020

Subcatchment B: Basin 2

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 49

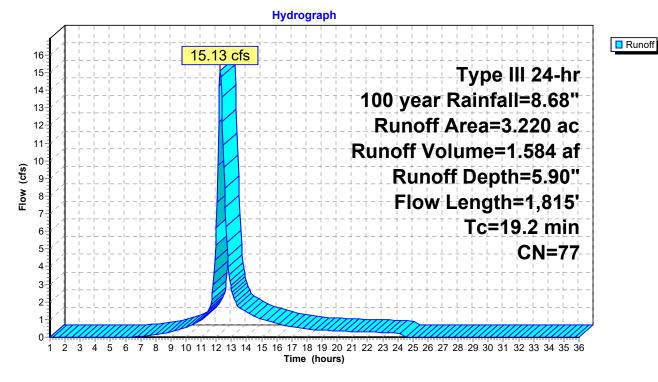

Summary for Subcatchment C: Basin 3

Runoff = 1,251.80 cfs @ 12.32 hrs, Volume= 141.811 af, Depth= 5.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area	(ac) (N Des	cription		
*	7.060 89 Wetlands			lands		
*	0.530		98 Impe	ervious Su	rfaces	
	6.			ds, Good,		
	271.			ds, Good,		
*	0.620 80			n, Good, É		
*				Golf Cours		
*				Golf Cours		
					grazed, HS	G D
	300.700 75 Weighted Average					
	300.170 99.82% Pervious Area					
	0.530		0.18	% Impervi	ous Area	
				'		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	<u> </u>
	10.8	100	0.1000	0.15		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.5	360	0.5900	12.37		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	10.4	3,630	0.1300	5.80		Shallow Concentrated Flow,
		,				Unpaved Kv= 16.1 fps
	0.9	1,275	0.0900	23.77	380.30	Parabolic Channel,
		•				W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.025
	0.8	1,240	0.0400	24.69	790.00	Parabolic Channel,
		•				W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.020
	23.4	6,605	Total			

Subcatchment C: Basin 3

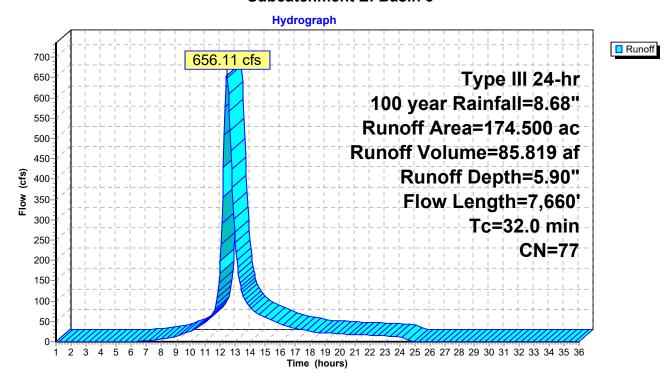

Summary for Subcatchment D: Basin 4

Runoff = 15.13 cfs @ 12.26 hrs, Volume= 1.584 af, Depth= 5.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

Area	(ac) C	N Desc	cription		
3.	220 7	7 Woo	ds, Good,	HSG D	
3.220 100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
13.2	100	0.0600	0.13		Sheet Flow,
2.9	1,040	0.1400	6.02		Woods: Light underbrush n= 0.400 P2= 3.50" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
3.1	675	0.0500	3.60		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
19.2	1 815	Total			<u> </u>

Subcatchment D: Basin 4


Summary for Subcatchment E: Basin 5

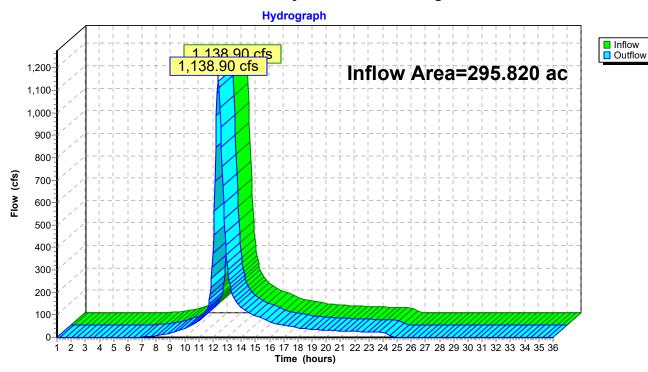
Runoff = 656.11 cfs @ 12.43 hrs, Volume= 85.819 af, Depth= 5.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area	(ac) C	N Des	cription		
	170.	800 7	7 Woo	ds, Good,	HSG D	
	0.	400 3			grazed, HS	G A
*				ands	g. a a., a	
_	174.			hted Aver	age	
	174.		,	00% Pervi		
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	20.5	100	0.0200	0.08		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	1.2	630	0.2800	8.52		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	6.6	2,300	0.1300	5.80		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	3.7	4,630	0.0700	20.96	335.39	Parabolic Channel,
						W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.025
	32.0	7,660	Total	·		

Subcatchment E: Basin 5

Summary for Reach AP2: Analysis Point 2 Existing Culvert


Inflow Area = 295.820 ac, 3.48% Impervious, Inflow Depth = 5.60" for 100 year event

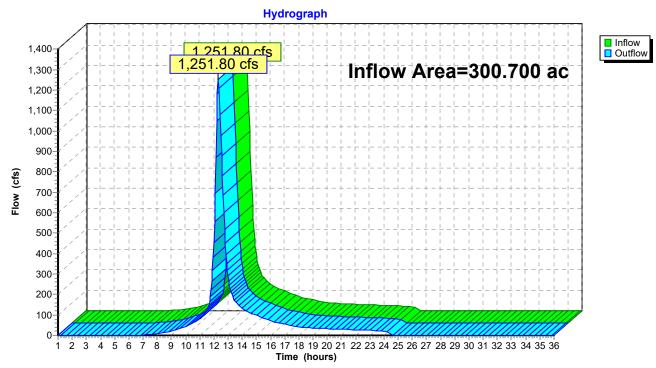
Inflow = 1,138.90 cfs @ 12.37 hrs, Volume= 138.008 af

Outflow = 1,138.90 cfs @ 12.37 hrs, Volume= 138.008 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP2: Analysis Point 2 Existing Culvert

Summary for Reach AP3: Analysis Point 3 Existing Culvert


Inflow Area = 300.700 ac, 0.18% Impervious, Inflow Depth = 5.66" for 100 year event

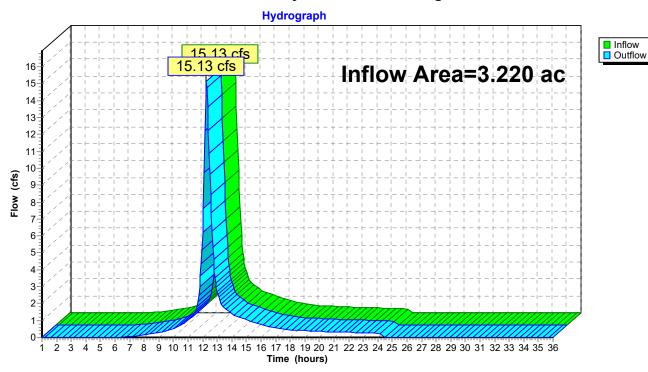
Inflow = 1,251.80 cfs @ 12.32 hrs, Volume= 141.811 af

Outflow = 1,251.80 cfs @ 12.32 hrs, Volume= 141.811 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP3: Analysis Point 3 Existing Culvert

Summary for Reach AP4: Analysis Point 4 Existing Culvert


Inflow Area = 3.220 ac, 0.00% Impervious, Inflow Depth = 5.90" for 100 year event

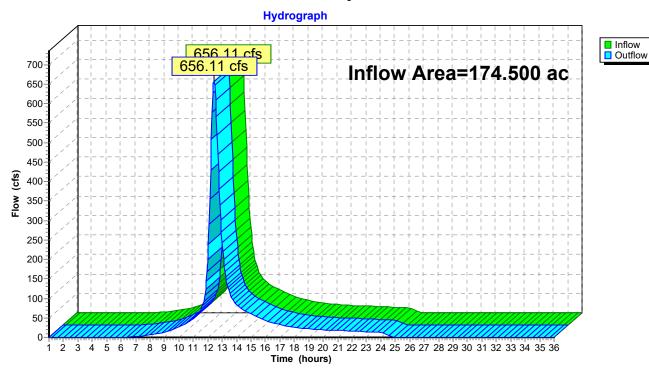
Inflow = 15.13 cfs @ 12.26 hrs, Volume= 1.584 af

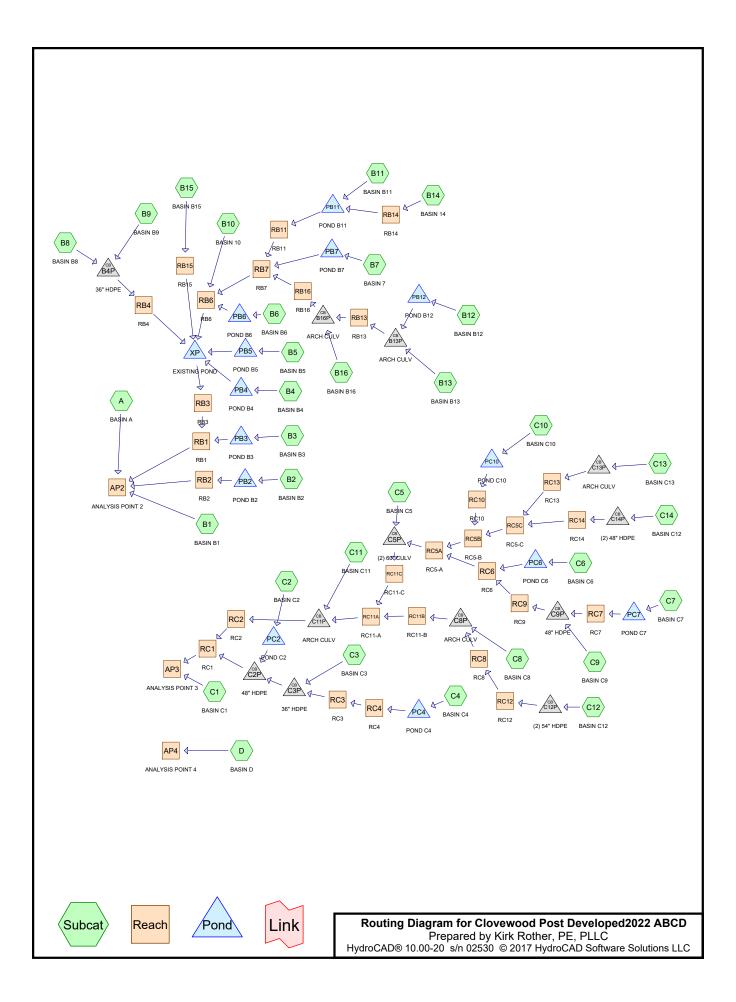
Outflow = 15.13 cfs @ 12.26 hrs, Volume= 1.584 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP4: Analysis Point 4 Existing Culvert

Summary for Reach AP5: Perry Creek Start


Inflow Area = 174.500 ac, 0.00% Impervious, Inflow Depth = 5.90" for 100 year event


Inflow = 656.11 cfs @ 12.43 hrs, Volume= 85.819 af

Outflow = 656.11 cfs @ 12.43 hrs, Volume= 85.819 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP5: Perry Creek Start

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
5.420	39	>75% Grass cover, Good, HSG A (B12, B13, B3, B7, C5, C6, C7, C9)
46.590	80	>75% Grass cover, Good, HSG D (A, B1, B10, B11, B12, B13, B14, B15, B16, B2, B3, B4, B5,
		B6, B7, B8, B9, C1, C10, C11, C13, C2, C4, C5, C6, C7, D)
0.500	98	BLDG (C7)
0.150	98	BUILDING (B15)
1.500	98	BUILDING, PARKING (B10, B12)
0.500	98	BUILDINGS (B4)
2.310	30	Brush, Good, HSG A (A)
3.810	48	Brush, Good, HSG B (A)
4.810	65	Brush, Good, HSG C (A)
8.040	73	Brush, Good, HSG D (A)
0.500	90	DIRT ROAD (B1)
0.200	90	DIRT ROAD, HSG D (B8)
0.040	75	Dirt roads, HSG A (A)
0.100	84	Dirt roads, HSG B (A)
0.030	88	Dirt roads, HSG C (A)
0.690	90	Dirt roads, HSG D (A)
0.140	98	Existing Road (B1)
1.510	98	Impervious Surfaces (A, C8)
12.330	60	LOTS, A (B12, B13, B3, B7, C4, C5, C6, C9)
0.200	30	LOTS, A (B2)
107.850	85	LOTS, D (B1, B10, B11, B12, B13, B14, B15, B16, B2, B3, B4, B5, B6, B7, B9, C1, C10, C11,
		C13, C2, C3, C4, C5, C6, C7, C9)
0.600	80	Lawn, Good, HSG D (C12)
0.250	85	Lots, D (B8)
7.880	30	Meadow, non-grazed, HSG A (B1, B12, B13, B2, B3, C6)
37.720	78	Meadow, non-grazed, HSG D (B1, B10, B15, B16, B2, B3, B4, B5, B6, B7, B8, C10, C11, C12,
		C2, C3, C4, C5, C6, C7, C8, D)
1.550	35	OLD COURSE, A (B1)
1.900	35	Old Golf Course, HSG A (C8)
1.030	79	Old Golf Course, HSG D (C8)
2.700	98	PARKING (B4, B5, B6)
6.620	98	POND (B11, B12, B3, B4, B5, B6, B7, C10, C2, C4, C6, C7)
0.300	98	Pond (B2)
0.350	98	ROAD (B8)
2.500	98	ROADS / WALKS (C7)
3.050	98	ROADS, WALK (B7)
19.190	98	ROADS, WALKS (B10, B12, B14, B15, B2, B3, B4, B5, B9, C10, C2, C6)
1.900	98	ROADS, WALKS, POND (C1)
0.850	98	ROADS, WLAKS (B6)
1.430	98	ROADS/ WALKS (C4)
2.400	98	SHOPPING CENTER (B1)
0.850	98	Sewer Treatment Facility (B1)
3.820	98	WATER SURFACE (B1)
18.250	89	WETLANDS (B1, B13, C13, C14, C3)
0.700	96	Well Access Roads (C5)

Page 3

Area Listing (all nodes) (continued)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.100	86	Well Acess Road (B12)
0.750	96	Well access Road (C13)
8.480	89	Wetlands (A, C5, C8)
11.940	30	Woods, Good, HSG A (A, B1, B2, B3, C5, C6, C8, C9)
1.240	55	Woods, Good, HSG B (A)
0.480	70	Woods, Good, HSG C (A)
259.290	77	Woods, Good, HSG D (A, B1, B10, B11, B12, B13, B14, B15, B16, B3, B4, B5, B6, B7, B8, C1,
		C10, C11, C12, C13, C14, C2, C3, C4, C5, C6, C7, C8, C9, D)
595.340	78	TOTAL AREA

Page 4

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
29.490	HSG A	A, B1, B12, B13, B2, B3, B7, C5, C6, C7, C8, C9
5.150	HSG B	A
5.320	HSG C	A
354.160	HSG D	A, B1, B10, B11, B12, B13, B14, B15, B16, B2, B3, B4, B5, B6, B7, B8, B9, C1, C10, C11,
		C12, C13, C14, C2, C3, C4, C5, C6, C7, C8, C9, D
201.220	Other	A, B1, B10, B11, B12, B13, B14, B15, B16, B2, B3, B4, B5, B6, B7, B8, B9, C1, C10, C11,
		C13, C14, C2, C3, C4, C5, C6, C7, C8, C9
595.340		TOTAL AREA

Ground Covers (all nodes)

F	ISG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(;	acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
	5.420	0.000	0.000	46.590	0.000	52.010	>75% Grass cover, Good	A, B1, B10, B11, B12, B13, B14, B15, B16, B2, B3, B4, B5, B6, B7, B8, B9, C1, C10, C11, C13, C2, C4, C5, C6, C7, C9, D
	0.000	0.000	0.000	0.000	0.500	0.500	BLDG	C7
	0.000	0.000	0.000	0.000	0.150	0.150	BUILDING	B15
	0.000	0.000	0.000	0.000	1.500	1.500	BUILDING, PARKING	B10, B12
	0.000	0.000	0.000	0.000	0.500	0.500	BUILDINGS	B4
	2.310	3.810	4.810	8.040	0.000	18.970	Brush, Good	Α
	0.000	0.000	0.000	0.200	0.500	0.700	DIRT ROAD	B1, B8
	0.040	0.100	0.030	0.690	0.000	0.860	Dirt roads	Α
	0.000	0.000	0.000	0.000	0.140	0.140	Existing Road	B1
	0.000	0.000	0.000	0.000	1.510	1.510	Impervious Surfaces	A, C8
	0.000	0.000	0.000	0.000	12.530	12.530	LOTS, A	B12, B13, B2, B3, B7, C4, C5, C6, C9
	0.000	0.000	0.000	0.000	107.850	107.850	LOTS, D	B1, B10, B11, B12, B13, B14, B15, B16, B2, B3, B4, B5, B6, B7, B9, C1, C10, C11, C13, C2, C3, C4, C5, C6, C7, C9
	0.000	0.000	0.000	0.600	0.000	0.600	Lawn, Good	C12
	0.000	0.000	0.000	0.000	0.250	0.250	Lots, D	B8
	7.880	0.000	0.000	37.720	0.000	45.600	Meadow, non-grazed	B1, B10, B12, B13, B15, B16, B2, B3, B4, B5, B6, B7, B8, C10, C11, C12, C2, C3, C4, C5, C6, C7, C8, D
	0.000	0.000	0.000	0.000	1.550	1.550	OLD COURSE, A	B1
	1.900	0.000	0.000	1.030	0.000	2.930	Old Golf Course	C8
	0.000	0.000	0.000	0.000	2.700	2.700	PARKING	B4, B5, B6
	0.000	0.000	0.000	0.000	6.620	6.620	POND	B11, B12, B3, B4, B5, B6, B7, C10, C2, C4, C6, C7
	0.000	0.000	0.000	0.000	0.300	0.300	Pond	B2
	0.000	0.000	0.000	0.000	0.350	0.350	ROAD	B8
	0.000	0.000	0.000	0.000	2.500	2.500	ROADS / WALKS	C7
	0.000	0.000	0.000	0.000	3.050	3.050	ROADS, WALK	B7
	0.000	0.000	0.000	0.000	19.190	19.190	ROADS, WALKS	B10, B12, B14, B15, B2, B3, B4, B5, B9, C10, C2, C6
	0.000	0.000	0.000	0.000	1.900	1.900	ROADS, WALKS, POND	C1

Page 6

Ground Covers (all nodes) (continued)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.000	0.000	0.850	0.850	ROADS, WLAKS	B6
0.000	0.000	0.000	0.000	1.430	1.430	ROADS/ WALKS	C4
0.000	0.000	0.000	0.000	2.400	2.400	SHOPPING CENTER	B1
0.000	0.000	0.000	0.000	0.850	0.850	Sewer Treatment Facility	B1
0.000	0.000	0.000	0.000	3.820	3.820	WATER SURFACE	B1
0.000	0.000	0.000	0.000	18.250	18.250	WETLANDS	B1, B13, C13, C14,
							C3
0.000	0.000	0.000	0.000	0.700	0.700	Well Access Roads	C5
0.000	0.000	0.000	0.000	0.100	0.100	Well Acess Road	B12
0.000	0.000	0.000	0.000	0.750	0.750	Well access Road	C13
0.000	0.000	0.000	0.000	8.480	8.480	Wetlands	A, C5, C8
11.940	1.240	0.480	259.290	0.000	272.950	Woods, Good	A, B1, B10, B11,
							B12, B13, B14, B15,
							B16, B2, B3, B4, B5,
							B6, B7, B8, C1, C10,
							C11, C12, C13, C14,
							C2, C3, C4, C5, C6,
							C7, C8, C9, D
29.490	5.150	5.320	354.160	201.220	595.340	TOTAL AREA	

Page 7

Pipe Listing (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	B10	0.00	0.00	890.0	0.0250	0.012	18.0	0.0	0.0
2	B12	0.00	0.00	890.0	0.0700	0.012	18.0	0.0	0.0
3	B14	0.00	0.00	475.0	0.0760	0.012	24.0	0.0	0.0
4	B15	0.00	0.00	40.0	0.0250	0.012	18.0	0.0	0.0
5	B15	0.00	0.00	190.0	0.0350	0.012	18.0	0.0	0.0
6	B2	0.00	0.00	140.0	0.0869	0.012	18.0	0.0	0.0
7	B3	0.00	0.00	36.0	0.0200	0.012	18.0	0.0	0.0
8	B3	0.00	0.00	310.0	0.0427	0.012	18.0	0.0	0.0
9	B3	0.00	0.00	520.0	0.0830	0.012	24.0	0.0	0.0
10	B4	0.00	0.00	295.0	0.0700	0.012	18.0	0.0	0.0
11	B5	0.00	0.00	60.0	0.0200	0.012	18.0	0.0	0.0
12	B5	0.00	0.00	287.0	0.0500	0.012	24.0	0.0	0.0
13	B6	0.00	0.00	375.0	0.0300	0.012	18.0	0.0	0.0
14	B7	0.00	0.00	545.0	0.0650	0.012	18.0	0.0	0.0
15	B7	0.00	0.00	585.0	0.0215	0.012	24.0	0.0	0.0
16	B8	0.00	0.00	135.0	0.0519	0.012	36.0	0.0	0.0
17	B9	0.00	0.00	650.0	0.0415	0.012	18.0	0.0	0.0
18	C1	0.00	0.00	92.0	0.0100	0.012	18.0	0.0	0.0
19	C10	0.00	0.00	790.0	0.6700	0.012	18.0	0.0	0.0
20	C10	0.00	0.00	710.0	0.0730	0.012	24.0	0.0	0.0
21	C14	0.00	0.00	50.0	0.0200	0.012	60.0	0.0	0.0
22	C2	0.00	0.00	505.0	0.0330	0.012	24.0	0.0	0.0
23	C4	0.00	0.00	340.0	0.0650	0.012	18.0	0.0	0.0
24	C6	0.00	0.00	235.0	0.0400	0.012	18.0	0.0	0.0
25	C6	0.00	0.00	830.0	0.0300	0.012	24.0	0.0	0.0
26	C7	0.00	0.00	900.0	0.0600	0.012	18.0	0.0	0.0
27	C7	0.00	0.00	630.0	0.0600	0.012	24.0	0.0	0.0
28	D	0.00	0.00	72.0	0.0200	0.012	36.0	0.0	0.0
29	B13P	586.00	581.00	85.0	0.0588	0.012	120.0	48.0	0.0
30	B16P	569.00	567.00	65.0	0.0308	0.012	120.0	48.0	0.0
31	B4P	553.00	552.32	68.0	0.0100	0.012	36.0	0.0	0.0
32	C11P	507.80	506.00	60.0	0.0300	0.020	216.0	72.0	0.0
33	C12P	727.50	722.25	75.0	0.0700	0.012	54.0	0.0	0.0
34	C13P	696.00	690.00	60.0	0.1000	0.025	120.0	60.0	0.0
35	C14P	702.00	700.00	60.0	0.0333	0.012	48.0	0.0	0.0
36	C2P	486.02	483.97	206.0	0.0100	0.012	48.0	0.0	0.0
37	C3P	499.00	487.02	250.0	0.0479	0.012	36.0	0.0	0.0
38	C5P	531.70	531.00	62.0	0.0113	0.012	60.0	0.0	0.0
39	C8P	612.00	608.00	50.0	0.0800	0.012	144.0	48.0	0.0
40	C9P	648.00	647.00	55.0 100.0	0.0182	0.012	48.0	0.0	0.0
41	PB11	576.00	572.00	100.0	0.0400	0.012	36.0	0.0	0.0
42	PB12 PB2	596.00	595.00 498.00	40.0	0.0250	0.012	36.0	0.0	0.0
43	PB2 PB3	504.00 518.00		40.0 70.0	0.1500	0.012	30.0	0.0	0.0
44 45		518.00 558.00	514.00 554.00	70.0	0.0571	0.012	30.0	0.0	0.0
45 46	PB4	558.00 563.00	554.00 558.00	50.0	0.0800	0.012	36.0	0.0	0.0
46	PB5	562.00	558.00	75.0	0.0533	0.012	30.0	0.0	0.0

Page 8

Pipe Listing (all nodes) (continued)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
47	PB6	656.00	551.00	130.0	0.8077	0.012	30.0	0.0	0.0
48	PB7	560.00	558.00	100.0	0.0200	0.012	36.0	0.0	0.0
49	PC10	672.00	670.00	80.0	0.0250	0.012	36.0	0.0	0.0
50	PC2	498.00	496.00	50.0	0.0400	0.012	24.0	0.0	0.0
51	PC4	550.00	547.50	40.0	0.0625	0.012	30.0	0.0	0.0
52	PC6	638.00	634.00	50.0	0.0800	0.012	30.0	0.0	0.0
53	PC7	660.00	656.00	60.0	0.0667	0.012	36.0	0.0	0.0

Clovewood Post Developed2022 ABCD

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 9

Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment A: BASIN A	Runoff Area=37.220 ac 2.79% Impervious Runoff Depth=0.56" Flow Length=2,020' Tc=29.1 min CN=71 Runoff=11.64 cfs 1.729 af
Subcatchment B1: BASIN B1	Runoff Area=62.900 ac 11.46% Impervious Runoff Depth=0.93" Flow Length=4,780' Tc=19.0 min CN=79 Runoff=44.71 cfs 4.852 af
Subcatchment B10: BASIN 10	Runoff Area=16.750 ac 15.52% Impervious Runoff Depth=1.22" Flow Length=1,710' Tc=21.5 min CN=84 Runoff=15.47 cfs 1.700 af
Subcatchment B11: BASIN B11	Runoff Area=11.550 ac 3.46% Impervious Runoff Depth=1.09" Flow Length=1,030' Tc=12.2 min CN=82 Runoff=11.72 cfs 1.053 af
Subcatchment B12: BASIN B12	Runoff Area=24.200 ac 20.87% Impervious Runoff Depth=0.73" Flow Length=1,280' Tc=15.1 min CN=75 Runoff=13.96 cfs 1.468 af
Subcatchment B13: BASIN B13	Runoff Area=23.350 ac 0.00% Impervious Runoff Depth=0.56" Flow Length=2,650' Tc=32.1 min CN=71 Runoff=7.00 cfs 1.085 af
Subcatchment B14: BASIN 14	Runoff Area=10.000 ac 13.00% Impervious Runoff Depth=1.28" Flow Length=1,345' Tc=18.7 min CN=85 Runoff=10.35 cfs 1.069 af
Subcatchment B15: BASIN B15	Runoff Area=6.050 ac 9.09% Impervious Runoff Depth=1.22" Flow Length=550' Tc=7.1 min CN=84 Runoff=8.16 cfs 0.614 af
Subcatchment B16: BASIN B16	Runoff Area=3.650 ac 0.00% Impervious Runoff Depth=1.04" Flow Length=630' Tc=12.5 min CN=81 Runoff=3.46 cfs 0.315 af
Subcatchment B2: BASIN B2	Runoff Area=6.100 ac 13.11% Impervious Runoff Depth=0.82" Flow Length=675' Tc=13.9 min CN=77 Runoff=4.26 cfs 0.418 af
Subcatchment B3: BASIN B3	Runoff Area=26.650 ac 15.57% Impervious Runoff Depth=0.93" Flow Length=1,596' Tc=19.6 min CN=79 Runoff=18.72 cfs 2.056 af
Subcatchment B4: BASIN B4	Runoff Area=10.200 ac 13.73% Impervious Runoff Depth=1.09" Flow Length=795' Tc=13.0 min CN=82 Runoff=10.15 cfs 0.930 af
Subcatchment B5: BASIN B5	Runoff Area=5.500 ac 38.00% Impervious Runoff Depth=1.49" Flow Length=537' Tc=10.6 min CN=88 Runoff=8.19 cfs 0.684 af
Subcatchment B6: BASIN B6	Runoff Area=8.000 ac 27.12% Impervious Runoff Depth=1.35" Flow Length=895' Tc=13.1 min CN=86 Runoff=9.97 cfs 0.900 af
Subcatchment B7: BASIN 7	Runoff Area=13.450 ac 27.88% Impervious Runoff Depth=1.04" Flow Length=1,580' Tc=16.8 min CN=81 Runoff=11.45 cfs 1.161 af
Subcatchment B8: BASIN B8	Runoff Area=11.900 ac 2.94% Impervious Runoff Depth=0.93" Flow Length=2,100' Tc=22.3 min CN=79 Runoff=7.93 cfs 0.918 af
Subcatchment B9: BASIN B9	Runoff Area=5.200 ac 25.96% Impervious Runoff Depth=1.42" Flow Length=1,275' Tc=18.4 min CN=87 Runoff=6.02 cfs 0.616 af
Subcatchment C1: BASIN C1	Runoff Area=9.550 ac 19.90% Impervious Runoff Depth=1.22" Flow Length=972' Tc=10.9 min CN=84 Runoff=11.41 cfs 0.969 af

Reach RB11: RB11

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

ydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC Page 10

Subcatchment C10: BASIN C10	Runoff Area=21.300 ac 16.90% Impervious Runoff Depth=1.28" Flow Length=2,285' Tc=15.0 min CN=85 Runoff=24.03 cfs 2.277 af
Subcatchment C11: BASIN C11	Runoff Area=9.550 ac 0.00% Impervious Runoff Depth=0.98" Flow Length=1,075' Tc=18.6 min CN=80 Runoff=7.34 cfs 0.780 af
Subcatchment C12: BASIN C12	Runoff Area=68.270 ac 0.00% Impervious Runoff Depth=0.82" Flow Length=3,260' Tc=19.0 min CN=77 Runoff=42.15 cfs 4.683 af
Subcatchment C13: BASIN C13	Runoff Area=68.220 ac 0.00% Impervious Runoff Depth=0.87" Flow Length=3,910' Tc=20.4 min CN=78 Runoff=44.06 cfs 4.965 af
Subcatchment C14: BASIN C12	Runoff Area=39.280 ac 0.00% Impervious Runoff Depth=0.82" Flow Length=3,650' Tc=12.4 min CN=77 Runoff=28.43 cfs 2.694 af
Subcatchment C2: BASIN C2	Runoff Area=5.950 ac 32.77% Impervious Runoff Depth=1.42" Flow Length=1,030' Tc=17.3 min CN=87 Runoff=7.05 cfs 0.704 af
Subcatchment C3: BASIN C3	Runoff Area=6.300 ac 0.00% Impervious Runoff Depth=0.98" Flow Length=905' Tc=19.4 min CN=80 Runoff=4.75 cfs 0.514 af
Subcatchment C4: BASIN C4	Runoff Area=7.400 ac 22.70% Impervious Runoff Depth=1.22" Flow Length=920' Tc=15.8 min CN=84 Runoff=7.74 cfs 0.751 af
Subcatchment C5: BASIN C5	Runoff Area=23.850 ac 0.00% Impervious Runoff Depth=0.48" Flow Length=1,840' Tc=18.8 min CN=69 Runoff=7.12 cfs 0.957 af
Subcatchment C6: BASIN C6	Runoff Area=16.250 ac 15.08% Impervious Runoff Depth=1.09" Flow Length=1,470' Tc=13.6 min CN=82 Runoff=15.95 cfs 1.482 af
Subcatchment C7: BASIN C7	Runoff Area=19.700 ac 20.30% Impervious Runoff Depth=1.28" Flow Length=1,860' Tc=12.6 min CN=85 Runoff=23.53 cfs 2.106 af
Subcatchment C8: BASIN C8	Runoff Area=11.050 ac 4.25% Impervious Runoff Depth=0.21" Flow Length=730' Tc=16.5 min CN=60 Runoff=0.87 cfs 0.194 af
Subcatchment C9: BASIN C9	Runoff Area=3.800 ac 0.00% Impervious Runoff Depth=0.24" Flow Length=1,030' Tc=11.0 min CN=61 Runoff=0.39 cfs 0.075 af
Subcatchment D: BASIN D	Runoff Area=2.200 ac 0.00% Impervious Runoff Depth=0.87" Flow Length=1,702' Tc=14.9 min CN=78 Runoff=1.61 cfs 0.160 af
Reach AP2: ANALYSIS POINT 2	Inflow=95.23 cfs 20.278 af Outflow=95.23 cfs 20.278 af
Reach AP3: ANALYSIS POINT 3	Inflow=141.09 cfs 22.669 af Outflow=141.09 cfs 22.669 af
Reach AP4: ANALYSIS POINT 4	Inflow=1.61 cfs 0.160 af Outflow=1.61 cfs 0.160 af
Reach RB1: RB1	Avg. Flow Depth=1.03' Max Vel=8.51 fps Inflow=44.40 cfs 13.379 af n=0.025 L=1,055.0' S=0.0360 '/' Capacity=783.31 cfs Outflow=44.31 cfs 13.372 af

Avg. Flow Depth=0.55' Max Vel=4.18 fps Inflow=8.70 cfs 2.086 af n=0.025 L=1,080.0' S=0.0194 '/' Capacity=575.53 cfs Outflow=8.56 cfs 2.085 af

Clovewood Post Developed2022 ABCD
Prepared by Kirk Rother, PE, PLLC

Prepared by Kirk Rother, PE	i, PLLC
HydroCAD® 10.00-20 s/n 02530	© 2017 HydroCAD Software Solutions LLC

Software Solutions LLC Page 11

Reach RB13: RB13	Avg. Flow Depth=0.55' Max Vel=5.58 fps Inflow=7.66 cfs 2.348 af n=0.025 L=335.0' S=0.0358 '/' Capacity=476.13 cfs Outflow=7.66 cfs 2.347 af
Reach RB14: RB14	Avg. Flow Depth=0.51' Max Vel=10.10 fps Inflow=10.35 cfs 1.069 af n=0.020 L=1,100.0' S=0.0864 '/' Capacity=182.82 cfs Outflow=10.25 cfs 1.069 af
Reach RB15: RB15	Avg. Flow Depth=0.84' Max Vel=3.17 fps Inflow=8.16 cfs 0.614 af n=0.030 L=600.0' S=0.0100 '/' Capacity=105.64 cfs Outflow=7.54 cfs 0.614 af
Reach RB16: RB16	Avg. Flow Depth=0.62' Max Vel=6.13 fps Inflow=9.15 cfs 2.662 af n=0.025 L=340.0' S=0.0382 '/' Capacity=247.88 cfs Outflow=9.15 cfs 2.662 af
Reach RB2: RB2	Avg. Flow Depth=0.09' Max Vel=2.46 fps Inflow=0.20 cfs 0.326 af n=0.025 L=460.0' S=0.0696 '/' Capacity=131.26 cfs Outflow=0.20 cfs 0.325 af
Reach RB3: RB3	Avg. Flow Depth=0.95' Max Vel=9.28 fps Inflow=42.86 cfs 11.412 af n=0.025 L=885.0' S=0.0475 '/' Capacity=899.13 cfs Outflow=42.86 cfs 11.407 af
Reach RB4: RB4	Avg. Flow Depth=0.79' Max Vel=4.16 fps Inflow=13.70 cfs 1.534 af n=0.030 L=340.0' S=0.0176 '/' Capacity=99.85 cfs Outflow=13.68 cfs 1.534 af
Reach RB6: RB6	Avg. Flow Depth=1.02' Max Vel=3.21 fps Inflow=27.72 cfs 7.763 af n=0.025 L=800.0' S=0.0050 '/' Capacity=516.81 cfs Outflow=27.48 cfs 7.754 af
Reach RB7: RB7	Avg. Flow Depth=0.82' Max Vel=4.60 fps Inflow=17.19 cfs 5.207 af n=0.025 L=285.0' S=0.0140 '/' Capacity=488.96 cfs Outflow=17.16 cfs 5.205 af
Reach RC1: RC1	Avg. Flow Depth=1.99' Max Vel=11.85 fps Inflow=133.42 cfs 21.701 af n=0.025 L=280.0' S=0.0321 '/' Capacity=566.54 cfs Outflow=133.44 cfs 21.700 af
Reach RC10: RC10	Avg. Flow Depth=0.24' Max Vel=2.28 fps Inflow=3.51 cfs 2.233 af n=0.030 L=600.0' S=0.0250 '/' Capacity=79.34 cfs Outflow=3.50 cfs 2.232 af
Reach RC11A: RC11-A	Avg. Flow Depth=1.72' Max Vel=13.49 fps Inflow=121.48 cfs 19.096 af n=0.025 L=380.0' S=0.0500 '/' Capacity=706.60 cfs Outflow=121.50 cfs 19.095 af
Reach RC11B: RC11-B	Avg. Flow Depth=0.84' Max Vel=13.65 fps Inflow=42.56 cfs 4.877 af n=0.025 L=660.0' S=0.1227 '/' Capacity=1,107.03 cfs Outflow=42.39 cfs 4.877 af
Reach RC11C: RC11-C	Avg. Flow Depth=1.56' Max Vel=10.19 fps Inflow=79.14 cfs 14.220 af n=0.025 L=125.0' S=0.0320 '/' Capacity=565.28 cfs Outflow=79.16 cfs 14.219 af
Reach RC12: RC12	Avg. Flow Depth=0.78' Max Vel=15.34 fps Inflow=42.15 cfs 4.683 af n=0.020 L=565.0' S=0.1097 '/' Capacity=1,308.49 cfs Outflow=42.16 cfs 4.683 af
Reach RC13: RC13	Avg. Flow Depth=1.01' Max Vel=11.31 fps Inflow=44.06 cfs 4.965 af n=0.025 L=530.0' S=0.0679 '/' Capacity=434.48 cfs Outflow=44.05 cfs 4.965 af
Reach RC14: RC14	Avg. Flow Depth=0.83' Max Vel=12.19 fps Inflow=28.43 cfs 2.694 af n=0.025 L=460.0' S=0.1043 '/' Capacity=409.49 cfs Outflow=28.49 cfs 2.694 af
Reach RC2: RC2	Avg. Flow Depth=1.69' Max Vel=14.53 fps Inflow=128.60 cfs 19.875 af n=0.025 L=510.0' S=0.0588 '/' Capacity=766.42 cfs Outflow=128.17 cfs 19.874 af
Reach RC3: RC3	Avg. Flow Depth=0.09' Max Vel=3.53 fps Inflow=0.50 cfs 0.701 af n=0.020 L=175.0' S=0.0914 '/' Capacity=590.61 cfs Outflow=0.50 cfs 0.701 af

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 12

Reach RC4: RC4

Avg. Flow Depth=0.07' Max Vel=2.46 fps Inflow=0.50 cfs 0.701 af

n=0.030 L=230.0' S=0.1348 '/' Capacity=137.70 cfs Outflow=0.50 cfs 0.701 af

Reach RC5A: RC5-A Avg. Flow Depth=1.35' Max Vel=13.76 fps Inflow=72.01 cfs 13.264 af

n=0.025 L=800.0' S=0.0725'/' Capacity=677.36 cfs Outflow=72.03 cfs 13.262 af

Reach RC5B: RC5-B Avg. Flow Depth=1.28' Max Vel=14.35 fps Inflow=69.90 cfs 9.891 af

n=0.025 L=655.0' S=0.0840 '/' Capacity=728.98 cfs Outflow=69.63 cfs 9.891 af

Reach RC5C: RC5-C Avg. Flow Depth=1.33' Max Vel=11.52 fps Inflow=68.23 cfs 7.660 af

n=0.025 L=180.0' S=0.0500 '/' Capacity=372.77 cfs Outflow=68.25 cfs 7.660 af

Reach RC6: RC6 Avg. Flow Depth=0.32' Max Vel=5.87 fps Inflow=4.17 cfs 3.374 af

n=0.025 L=600.0' S=0.0800 '/' Capacity=893.79 cfs Outflow=4.17 cfs 3.373 af

Reach RC7: RC7 Avg. Flow Depth=0.31' Max Vel=3.67 fps Inflow=2.09 cfs 1.909 af

n=0.025 L=400.0' S=0.0325 '/' Capacity=453.52 cfs Outflow=2.09 cfs 1.908 af

Reach RC8: RC8 Avg. Flow Depth=0.60' Max Vel=6.44 fps Inflow=42.16 cfs 4.683 af

n=0.030 L=820.0' S=0.0585 '/' Capacity=576.22 cfs Outflow=41.91 cfs 4.683 af

Reach RC9: RC9 Avg. Flow Depth=0.29' Max Vel=3.57 fps Inflow=2.21 cfs 1.983 af

n=0.025 L=270.0' S=0.0333 '/' Capacity=576.94 cfs Outflow=2.21 cfs 1.982 af

Pond B13P: ARCH CULV Peak Elev=586.38' Inflow=7.66 cfs 2.348 af

120.0" x 48.0", R=96.0" Arch Culvert n=0.012 L=85.0' S=0.0588 '/' Outflow=7.66 cfs 2.348 af

Pond B16P: ARCH CULV Peak Elev=569.43' Inflow=9.15 cfs 2.662 af

120.0" x 48.0", R=96.0" Arch Culvert n=0.012 L=65.0' S=0.0308 '/' Outflow=9.15 cfs 2.662 af

Pond B4P: 36" HDPE Peak Elev=554.49' Inflow=13.70 cfs 1.534 af

36.0" Round Culvert n=0.012 L=68.0' S=0.0100 '/' Outflow=13.70 cfs 1.534 af

Pond C11P: ARCH CULV Peak Elev=509.50' Inflow=128.60 cfs 19.875 af

216.0" x 72.0", R=156.0" Arch Culvert n=0.020 L=60.0' S=0.0300 '/' Outflow=128.60 cfs 19.875 af

Pond C12P: (2) 54" HDPE Peak Elev=729.07' Inflow=42.15 cfs 4.683 af

54.0" Round Culvert x 2.00 n=0.012 L=75.0' S=0.0700 '/' Outflow=42.15 cfs 4.683 af

Pond C13P: ARCH CULV Peak Elev=697.24' Inflow=44.06 cfs 4.965 af

120.0" x 60.0", R=60.0" Arch Culvert n=0.025 L=60.0' S=0.1000 '/' Outflow=44.06 cfs 4.965 af

48.0" Round Culvert x 2.00 n=0.012 L=60.0' S=0.0333 '/' Outflow=28.43 cfs 2.694 af

Pond C14P: (2) 48" HDPE Peak Elev=703.51' Inflow=28.43 cfs 2.694 af

Pond C2P: 48" HDPE Peak Elev=486.81' Inflow=5.33 cfs 1.827 af 48.0" Round Culvert n=0.012 L=206.0' S=0.0100 '/' Outflow=5.33 cfs 1.827 af

Pond C3P: 36" HDPE Peak Elev=499.84' Inflow=5.07 cfs 1.215 af

36.0" Round Culvert n=0.012 L=250.0' S=0.0479 '/' Outflow=5.07 cfs 1.215 af

Pond C5P: (2) 60" CULV Peak Elev=533.96' Inflow=79.14 cfs 14.220 af

60.0" Round Culvert x 2.00 n=0.012 L=62.0' S=0.0113'/' Outflow=79.14 cfs 14.220 af

Pond C8P: ARCH CULV Peak Elev=613.07' Inflow=42.56 cfs 4.877 af

144.0" x 48.0", R=96.0" Arch Culvert n=0.012 L=50.0' S=0.0800 $^{\prime\prime}$ Outflow=42.56 cfs 4.877 af

Primary=42.86 cfs 11.412 af

Page 13

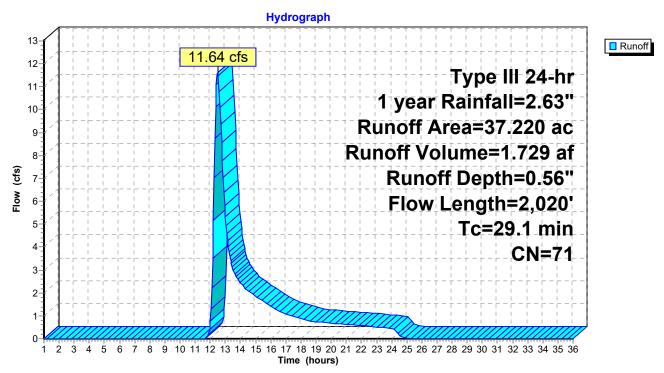
Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Pond C9P: 48" HDPE	Peak Elev=648.50' Inflow=2.21 cfs 1.983 af 48.0" Round Culvert n=0.012 L=55.0' S=0.0182 '/' Outflow=2.21 cfs 1.983 af
Pond PB11: POND B11	Peak Elev=579.78' Storage=34,270 cf Inflow=20.71 cfs 2.122 af Outflow=8.70 cfs 2.086 af
Pond PB12: POND B12	Peak Elev=596.73' Storage=33,955 cf Inflow=13.96 cfs 1.468 af Outflow=1.16 cfs 1.263 af
Pond PB2: POND B2	Peak Elev=504.83' Storage=11,601 cf Inflow=4.26 cfs 0.418 af Outflow=0.20 cfs 0.326 af
Pond PB3: POND B3	Peak Elev=521.49' Storage=42,538 cf Inflow=18.72 cfs 2.056 af Outflow=2.25 cfs 1.972 af
Pond PB4: POND B4	Peak Elev=559.21' Storage=18,771 cf Inflow=10.15 cfs 0.930 af Outflow=1.23 cfs 0.904 af
Pond PB5: POND B5	Peak Elev=564.12' Storage=17,534 cf Inflow=8.19 cfs 0.684 af Outflow=0.63 cfs 0.606 af
Pond PB6: POND B6	Peak Elev=657.45' Storage=22,071 cf Inflow=9.97 cfs 0.900 af Outflow=0.73 cfs 0.858 af
Pond PB7: POND B7	Peak Elev=561.23' Storage=40,390 cf Inflow=11.45 cfs 1.161 af Outflow=0.25 cfs 0.460 af
Pond PC10: POND C10	Peak Elev=673.19' Storage=47,123 cf Inflow=24.03 cfs 2.277 af Outflow=3.51 cfs 2.233 af
Pond PC2: POND C2	Peak Elev=499.60' Storage=19,499 cf Inflow=7.05 cfs 0.704 af Outflow=0.39 cfs 0.612 af
Pond PC4: POND C4	Peak Elev=551.59' Storage=19,308 cf Inflow=7.74 cfs 0.751 af Outflow=0.50 cfs 0.701 af
Pond PC6: POND C6	Peak Elev=638.97' Storage=30,550 cf Inflow=15.95 cfs 1.482 af Outflow=1.96 cfs 1.392 af
Pond PC7: POND C7	Peak Elev=661.05' Storage=49,322 cf Inflow=23.53 cfs 2.106 af Outflow=2.09 cfs 1.909 af
Pond XP: EXISTING POND	Inflow=42.86 cfs 11.412 af

Total Runoff Area = 595.340 ac Runoff Volume = 44.881 af Average Runoff Depth = 0.90" 91.56% Pervious = 545.080 ac 8.44% Impervious = 50.260 ac HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 14

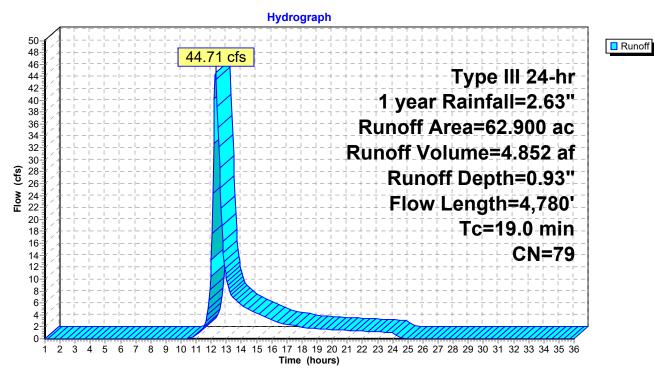

Summary for Subcatchment A: BASIN A

Runoff = 11.64 cfs @ 12.48 hrs, Volume= 1.729 af, Depth= 0.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) (CN	Desc	ription						
*	7.3	350	89	Wetla	ands						
*	1.	040	98	Impe	rvious Sui	faces					
	1.	000	80	>75%	6 Grass co	over, Good,	HSG D				
	0.	310	30	Woo	ds, Good,	HSG A					
	1.:	240	55	Woo	Woods, Good, HSG B						
	0.4	480	70	Woo	ds, Good,	HSG C					
	5.	970	77	Woo	ds, Good,	HSG D					
	2.	310	30	Brus	h, Good, F	ISG A					
	3.	810	48	Brus	h, Good, F	ISG B					
	4.	810	65	Brus	h, Good, F	ISG C					
	8.	040	73	Brus	h, Good, F	HSG D					
*	0.	040	75		oads, HS0						
*		100	84		oads, HS0						
*			88		Dirt roads, HSG C						
*			90	Dirt r	Dirt roads, HSG D						
	37.	220	71	Weig	hted Aver	age					
	36.	180			1% Pervio						
	1.	040		2.79°	% Impervi	ous Area					
	_										
	Tc	Length		Slope	Velocity	Capacity	Description				
_	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)					
	20.5	100	0.	0200	0.08		Sheet Flow,				
			_				Woods: Light underbrush n= 0.400 P2= 3.50"				
	5.1	690	0.	0200	2.28		Shallow Concentrated Flow,				
			_				Unpaved Kv= 16.1 fps				
	2.7	690	0.	0700	4.26		Shallow Concentrated Flow,				
	0.0	- 40	_	0.400	40.04	450.70	Unpaved Kv= 16.1 fps				
	8.0	540	U.	0400	10.91	152.70	Parabolic Channel,				
_							W=7.00' D=3.00' Area=14.0 sf Perim=9.6' n= 0.035				
	29.1	2,020	T	otal							

Subcatchment A: BASIN A


Summary for Subcatchment B1: BASIN B1

Runoff = 44.71 cfs @ 12.28 hrs, Volume= 4.852 af, Depth= 0.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac)	CN	Desc	ription					
*	3.	820	98	WAT	ER SURF	ACE				
*	11.	670	89	WET	LANDS					
*	1.	550	35	OLD	COURSE	:, A				
*		500	90		ROAD					
		220	77	Woo	ds, Good,	HSG D				
*	3.	000	85	LOT	S, D					
*		400	98		PPING CI					
		000	80			over, Good,				
		950	78			grazed, HS				
		000	30			grazed, HS	G A			
		800	30		ds, Good,	HSG A				
*		140	98		ing Road					
<u>~</u>		850	98		Sewer Treatment Facility					
		900	79		hted Aver					
		690			4% Pervio					
	7.	210		11.40	6% Imper	ious Area				
	T -	141-	. ,	21	\	0:	Description			
		Length		Slope		Capacity	Description			
_	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	Ob (File			
	13.2	100	0.	0600	0.13		Sheet Flow,			
	1.3	270		0450	2.42		Woods: Light underbrush n= 0.400 P2= 3.50"			
	1.3	270) 0.	0450	3.42		Shallow Concentrated Flow,			
	2.3	1,665	. ^	0140	12.21	488.35	Unpaved Kv= 16.1 fps Parabolic Channel,			
	2.3	1,000	0.	0140	12.21	400.33	W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025			
	2.2	2,745		0400	20.64	825.46	Parabolic Channel,			
	۷.۷	2,140	, U.	0400	20.04	025.40	W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025			
_	10.0	4 700	\ T.	atal .			W-13.00 D-4.00 Alea-40.031 Felilli-17.3 11-0.023			
	19.0	4,780) 10	otal						

Subcatchment B1: BASIN B1

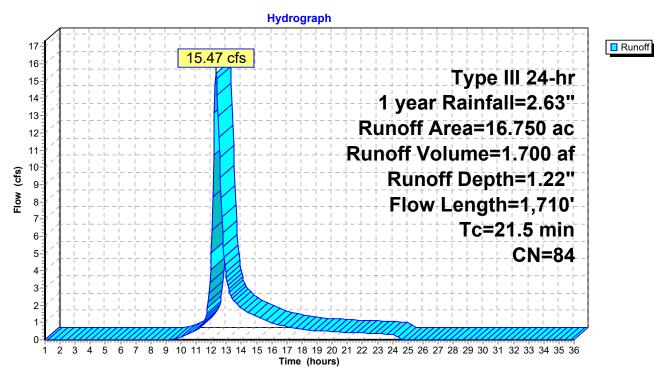
Clovewood Post Developed2022 ABCD

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 18

Summary for Subcatchment B10: BASIN 10

Runoff = 15.47 cfs @ 12.31 hrs, Volume= 1.700 af, Depth= 1.22"

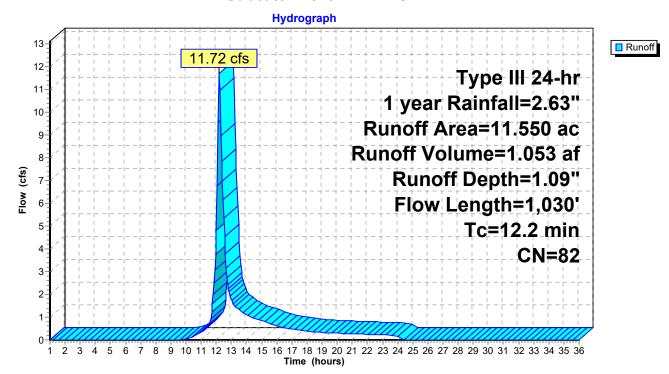

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) (CN	Desc	cription		
*	6.	250	85	LOT	S, D		
*	2.	100	98	ROA	DS, WAL	KS	
*	0.	500	98	BUIL	DING, PA	RKING	
	2.	350	77	Woo	ds, Good,	HSG D	
	3.	870	78	Mea	dow, non-g	grazed, HS	G D
	1.	680	80	>75%	% Grass co	over, Good,	, HSG D
	16.	750	84	Weig	hted Aver	age	
	14.	150		84.4	8% Pervio	us Area	
	2.	600		15.5	2% Imperv	ious Area	
	Tc	Length	SI	ope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	18.0	100	0.0	100	0.09		Sheet Flow,
							Grass: Dense n= 0.240 P2= 3.50"
	1.4	350	0.0	650	4.10		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.2	30	0.0	250	3.21		Shallow Concentrated Flow,
							Paved Kv= 20.3 fps
	1.5	890	0.0	250	10.18	17.99	Pipe Channel,
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.012
	0.4	340	0.0	400	14.86	99.05	Parabolic Channel,
							W=5.00' D=2.00' Area=6.7 sf Perim=6.7' n= 0.020
	21.5	1,710	Tot	al			

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 19

Subcatchment B10: BASIN 10

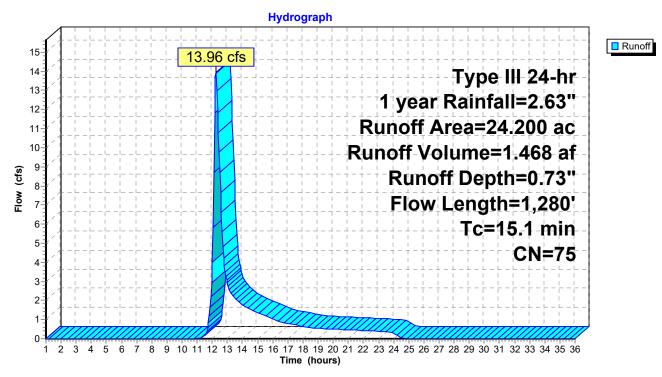

Summary for Subcatchment B11: BASIN B11

Runoff = 11.72 cfs @ 12.18 hrs, Volume= 1.053 af, Depth= 1.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

_	Area ((ac)	CN	Desc	cription		
*	0.4	400	98	PON	D		
*	5.3	350	85	LOT	S, D		
	2.	800	80	>75%	√ Grass co	over, Good	, HSG D
	3.0	000	77	Woo	ds, Good,	HSG D	
	11.	550	82	Weig	hted Aver	age	
	11.	150		96.5	4% Pervio	us Area	
	0.4	400		3.46	% Impervi	ous Area	
	Tc (min)	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	11.8	100	0.	0800	0.14		Sheet Flow,
	0.4	930	0.	0864	38.09	304.76	Woods: Light underbrush n= 0.400 P2= 3.50" Parabolic Channel, W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.012
	12.2	1,030	Тс	otal			

Subcatchment B11: BASIN B11

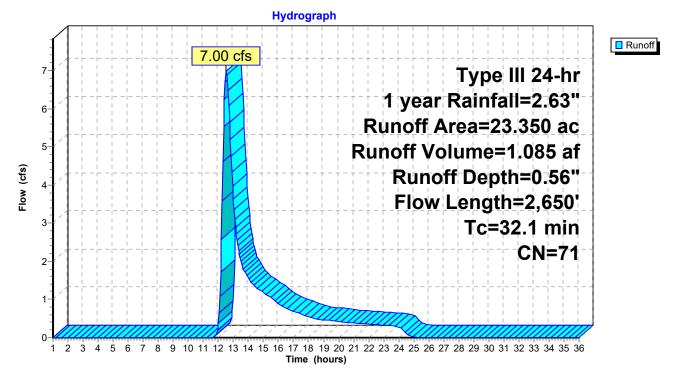

Summary for Subcatchment B12: BASIN B12

Runoff = 13.96 cfs @ 12.23 hrs, Volume= 1.468 af, Depth= 0.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) C	N De	scription					
*	1.	000	98 PC	ND					
*	3.	050	98 RC	ADS, WAL	KS				
*	3.	000	60 LO	TS, A					
	1.	070	39 >7	5% Grass c	over, Good	, HSG A			
*	3.	650	85 LO	TS, D					
*	1.	000	98 BU	BUILDING, PARKING					
	5.	850	30 >7	5% Grass c	, HSG D				
				ods, Good,					
				adow, non-		G A			
*	0.	100	86 We	II Acess Ro	ad				
	24.:	200	75 We	ighted Avei	age				
		150	79.	13% Pervio	us Area				
	5.	050	20.	87% Imper	vious Area				
	_		0.1						
	Tc	Length		•	Capacity	Description			
_	<u>(min)</u>	(feet)	(ft/ft		(cfs)				
	13.2	100	0.0600	0.13		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.50"			
	0.7	160	0.0625	4.03		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	0.3	65	0.0300	3.52		Shallow Concentrated Flow,			
	0.0	000	0.070	47.04	20.44	Paved Kv= 20.3 fps			
	0.9	890	0.0700	17.04	30.11	Pipe Channel,			
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' n= 0.012			
	0.0	65	0.4200	24.02	120 11				
	0.0	05	0.1200	24.02	128.11	Parabolic Channel, W=4.00' D=2.00' Area=5.3 sf Perim=5.9' n= 0.020			
_	15.1	4 000	Tatal			VV-4.00 D-2.00 AIEd-3.3 SI FEIIII-3.3 II- 0.020			
	15.1	1,280	Total						

Subcatchment B12: BASIN B12

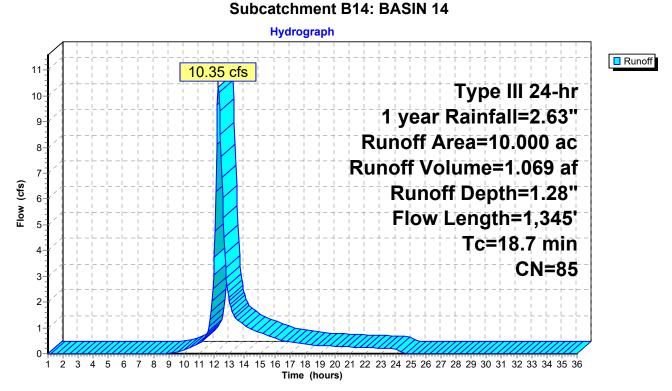

Summary for Subcatchment B13: BASIN B13

Runoff = 7.00 cfs @ 12.53 hrs, Volume= 1.085 af, Depth= 0.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac)	CN	Desc	ription				
*	2.	300	60	LOT	S, A				
*	4.	000	85	LOT	S, D				
*	1.	420	89	WET	LANDS				
	0.	900	39	>75%	6 Grass co	over, Good,	HSG A		
	1.	450	80	>75%	>75% Grass cover, Good, HSG D				
	10.	830	77	Woo	ds, Good,	HSG D			
	2.	450	30	Mea	dow, non-g	grazed, HS	G A		
	23.	350	71	Weig	hted Aver	age			
	23.	350			00% Pervi				
	Tc	Length	1	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	<u> </u>		
	20.5	100) 0	.0200	0.08		Sheet Flow,		
							Woods: Light underbrush n= 0.400 P2= 3.50"		
	11.2	2,020	0 (.0350	3.01		Shallow Concentrated Flow,		
							Unpaved Kv= 16.1 fps		
	0.4	530	0 (.0750	24.88	298.60	Parabolic Channel,		
							W=6.00' D=3.00' Area=12.0 sf Perim=8.9' n= 0.020		
	32.1	2,650) T	otal		·			

Subcatchment B13: BASIN B13



Summary for Subcatchment B14: BASIN 14

10.35 cfs @ 12.26 hrs, Volume= 1.069 af, Depth= 1.28" Runoff

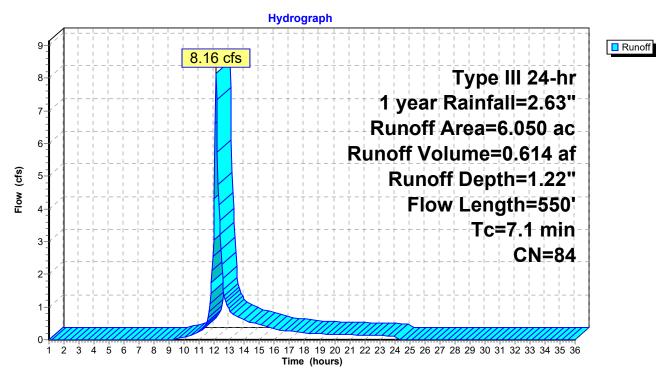
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) C	N Des	cription		
*	6.	250	35 LOT	S, D		
*	1.	300	98 ROA	ADS, WALI	KS	
	1.	350	30 >75	% Grass c	over, Good,	, HSG D
	1.	100	77 Woo	ds, Good,	HSG D	
	10.	000	35 Wei	ghted Aver	age	
		700		00% Pervio		
	1.	300	13.0	0% Imperv	∕ious Area	
				•		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	15.6	100	0.0400	0.11		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	2.4	700	0.0900	4.83		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.3	70	0.0400	4.06		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.4	475	0.0760	21.51	67.56	Pipe Channel,
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
_						n= 0.012
	18.7	1,345	Total			

Clovewood Post Developed2022 ABCD

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 25

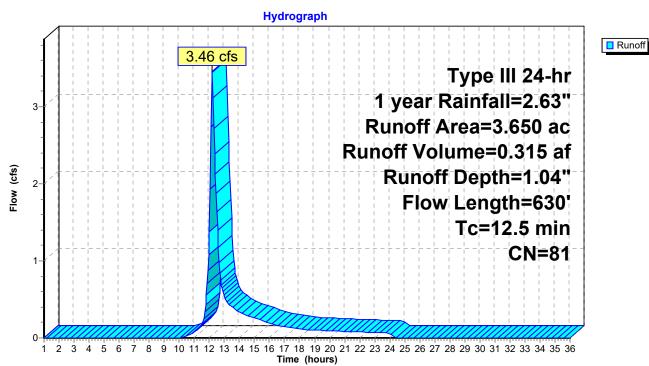

Summary for Subcatchment B15: BASIN B15

Runoff = 8.16 cfs @ 12.11 hrs, Volume= 0.614 af, Depth= 1.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

_	Area	(ac) (N Des	cription					
*	3.	3.050 85		ΓS, D					
*	0.	400		ROADS, WALKS					
*	0.	150		LDING					
	1.	000	80 >75	% Grass c	over, Good	, HSG D			
	1.	000	77 Wo	ods, Good,	HSG D				
	0.	450	78 Mea	adow, non-	grazed, HS	G D			
	6.	050	84 We	ighted Aver	age				
	5.	500		91% Pervio	•				
		550	9.09	9% Impervi	ous Area				
				•					
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·			
	6.0	100	0.0600	0.28		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.50"			
	0.5	140	0.0800	4.55		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	0.1	40	0.0250	10.18	17.99	Pipe Channel,			
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'			
						n= 0.012			
	0.2	80	0.3000	8.82		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	0.3	190	0.0350	12.05	21.29	Pipe Channel,			
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'			
_						n= 0.012			
	7.1	550	Total						

Subcatchment B15: BASIN B15


Summary for Subcatchment B16: BASIN B16

Runoff = 3.46 cfs @ 12.18 hrs, Volume= 0.315 af, Depth= 1.04"

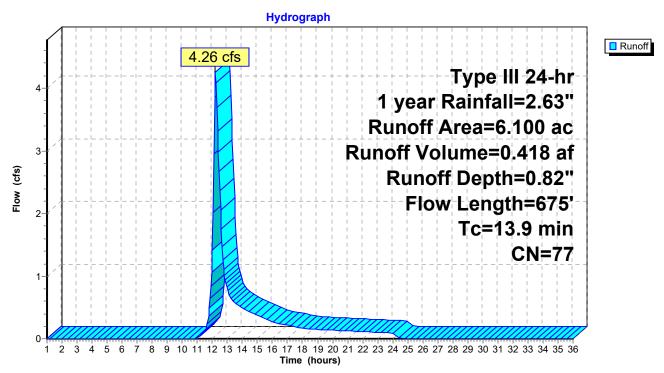
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) (ON E	escr	iption		
*	1.	950	85 L	OTS	, D		
	0.	200	80 >	75%	Grass co	over, Good,	HSG D
	1.	350	77 V	Vood	s, Good,	HSG D	
_	0.	150	78 N	1ead	ow, non-g	grazed, HS	G D
	3.	650	81 V	Veigh	nted Aver	age	
	3.	650	1	00.00	0% Pervi	ous Area	
	Тс	Length	Slo	pe '	Velocity	Capacity	Description
_	(min)	(feet)	(ft	ft)	(ft/sec)	(cfs)	
	10.8	100	0.10	00	0.15		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	1.7	530	0.11	00	5.34		Shallow Concentrated Flow,
_							Unpaved Kv= 16.1 fps
	12.5	630	Tota				

Subcatchment B16: BASIN B16

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 28


Summary for Subcatchment B2: BASIN B2

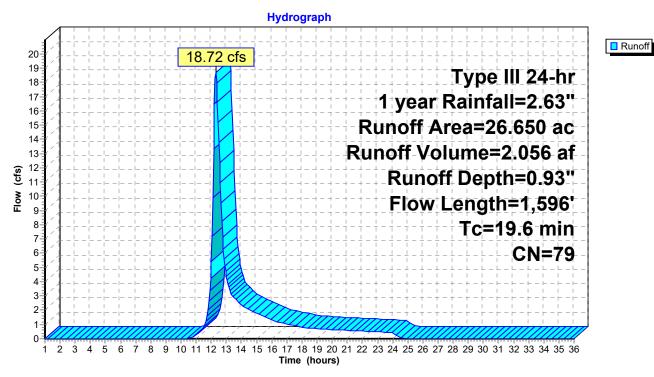
Runoff 4.26 cfs @ 12.21 hrs, Volume= 0.418 af, Depth= 0.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) (N Des	cription		
*	0.500 98 ROADS, WALKS					
	0.	550		ods, Good,		
	0.	750	80 >75	% Grass c	over, Good	, HSG D
*	2.900 85			LOTS, D		
*	0.300 98		98 Pon	Pond		
*	0.200 30		30 LO1	LOTS, A		
	0.200 30 Meadow, non-grazed, HSG A					
	0.700 78 Meadow, non-grazed, HSG D					
	6.100 77 Weighted Average					
	5.300 86.89% Pervious Area					
	0.800 13.11% Impervious Area				∕ious Area	
				•		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)		(ft/sec)	(cfs)	·
	12.4	100	0.0700	0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.5	200	0.1500	6.24		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	45	0.5000	14.35		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.8	190	0.0600	3.94		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	140	0.0869	18.98	33.55	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.012
	13.9	675	Total			

Subcatchment B2: BASIN B2

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC


Page 30

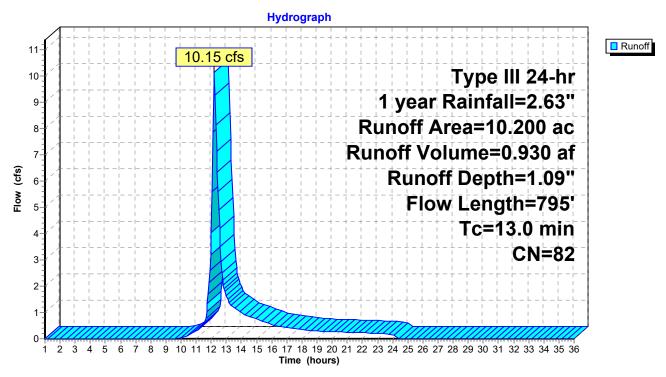
Summary for Subcatchment B3: BASIN B3

Runoff = 18.72 cfs @ 12.29 hrs, Volume= 2.056 af, Depth= 0.93"

	Area (ac)		CN	Desc	cription		
*	0.	600	98	PON	ID		
*	0.	350	30	Mea	dow, non-	grazed, HS	G A
*	3.	550	98	ROA	DS, WALI	KS	
	3.	000	80			over, Good,	HSG D
		400	77		ds, Good,		
*		650	85	LOT			
		000	78		,	grazed, HS	G D
		300	30		ds, Good,		-
*		350	60	LOT			
		450	39			over, Good,	HSG A
_		650	79		hted Aver		
		500	15		3% Pervio		
		150		-	-	/ious Area	
	٦.	100		10.0	7 70 IIIIpci V	nous Arca	
	Tc	Length	n 5	Slope	Velocity	Capacity	Description
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	Besonption
_	17.5	100		0300	0.10	(013)	Sheet Flow,
	17.5	100	0.0	0300	0.10		Woods: Light underbrush n= 0.400 P2= 3.50"
	0.6	100		0300	2.79		Shallow Concentrated Flow,
	0.0	100	0.0	0300	2.19		Unpaved Kv= 16.1 fps
	0.1	36	. 0	0200	9.11	16.09	Pipe Channel,
	0.1	30	0.0	0200	9.11	10.09	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.012
	0.3	100	0.	1000	5.09		Shallow Concentrated Flow,
	0.5	100	0.	1000	5.09		Unpaved Kv= 16.1 fps
	0.4	240		0427	12 21	00 51	
	0.4	310	0.0	0427	13.31	23.51	Pipe Channel, 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.012
	0.2	220		0550	15.40	164.31	
	0.2	230	0.0	USSU	15.40	104.31	Parabolic Channel,
	0.4	F0(0000	22.47	70.04	W=8.00' D=2.00' Area=10.7 sf Perim=9.2' n= 0.025
	0.4	520	0.0	0830	22.47	70.61	Pipe Channel, 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
	0.4	000		4000	07.00	050.00	n= 0.012
	0.1	200	J U.	1000	27.22	653.23	Parabolic Channel,
_							W=12.00' D=3.00' Area=24.0 sf Perim=13.8' n= 0.025
	19.6	1,596	i To	otal			

Subcatchment B3: BASIN B3

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC


Page 32

Summary for Subcatchment B4: BASIN B4

Runoff = 10.15 cfs @ 12.19 hrs, Volume= 0.930 af, Depth= 1.09"

_	Area (ac) C	N Des	cription					
*	0.3	350	98 PON	۷D					
*	0.3	350	98 ROA	ADS, WALI	KS				
*	2.	100		S, Ď					
*	0.5	500 9	98 BUII	LDINGS					
*	0.2	200 9	98 PAF	RKING					
	1.7	700	30 >75	% Grass c	Grass cover, Good, HSG D				
	4.0			ds, Good,					
	0.9	950	78 Mea	dow, non-	grazed, HS	GD			
	10.2	200	32 Wei	ghted Aver	age				
		300		7% Pervio					
	1.400			3% Imperv					
				•					
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	<u> </u>			
	11.8	100	0.0800	0.14		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.50"			
	0.4	180	0.2000	7.20		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	0.5	220	0.0150	7.62	60.95	Parabolic Channel,			
						W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025			
	0.3	295	0.0700	17.04	30.11	Pipe Channel,			
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'			
						n= 0.012			
	13.0	795	Total						

Subcatchment B4: BASIN B4

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 34

Summary for Subcatchment B5: BASIN B5

Runoff = 8.19 cfs @ 12.15 hrs, Volume= 0.684 af, Depth= 1.49"

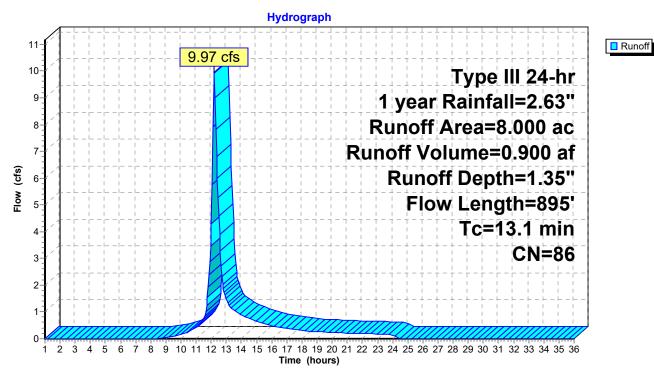
	Area	(ac) C	N Des	cription		
*	0.	340	98 ROA	DS, WALI	KS	
*	0.	150	98 PON			
*	1.	600	98 PAR	RKING		
*	1.	800	35 LOT	S, D		
	0.	500	30 >75°	% Grass c	over, Good	, HSG D
	0.	810	77 Woo	ds, Good,	HSG D	
_	0.	300	78 Mea	dow, non-	grazed, HS	G D
	5.	500	38 Wei	ghted Aver	age	
	3.	410	62.0	0% Pervio	us Area	
	2.090 38.00% Impervious Area				vious Area	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.0	100	0.1200	0.17		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.2	90	0.1800	6.83		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	60	0.0200	9.11	16.09	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
					= 4 00	n= 0.012
	0.3	287	0.0500	17.44	54.80	Pipe Channel,
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
_						n= 0.012
	10.6	537	Total			

Subcatchment B5: BASIN B5

Clovewood Post Developed2022 ABCD

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC


Page 36

Summary for Subcatchment B6: BASIN B6

Runoff = 9.97 cfs @ 12.19 hrs, Volume= 0.900 af, Depth= 1.35"

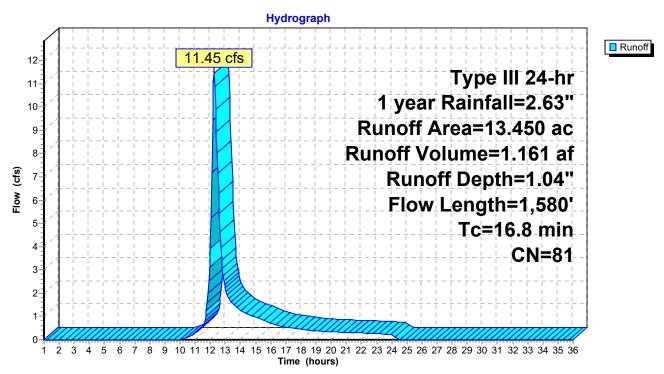
	Area	(ac) (ON D	escription		
*	0.	850	98 R	DADS, WLA	KS	
*	0.	420	98 P	OND		
*	2.	600	85 L	DTS, D		
*	0.	900	98 P.	ARKING		
	1.	250	80 >	′5% Grass c	over, Good	, HSG D
	1.	300		oods, Good,		
	0.	680		eadow, non-		G D
	8.	000		eighted Ave		
	_	830		2.88% Pervio		
		170	2	'.12% Imper	vious Area	
				•		
	Tc	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)			(cfs)	·
	10.8	100	0.100	0 0.15		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.9	300	0.120	0 5.58		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.8	120	0.015	0 2.49		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.6	375	0.030	0 11.15	19.71	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.012
	13.1	895	Total			

Subcatchment B6: BASIN B6

16.8

1,580 Total

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC


Page 38

Summary for Subcatchment B7: BASIN 7

Runoff = 11.45 cfs @ 12.25 hrs, Volume= 1.161 af, Depth= 1.04"

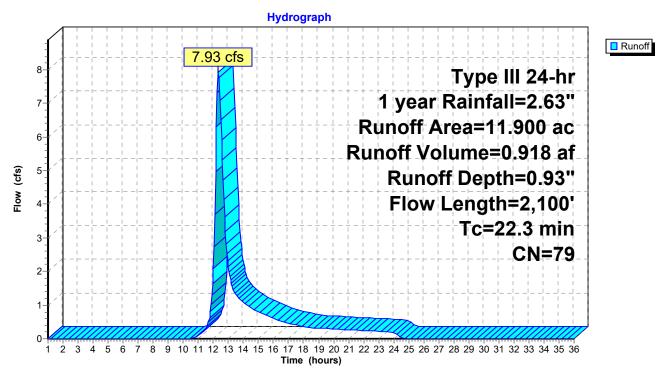
	Area	(ac) (CN Des	cription		
*	3.	050	98 RO	ADS, WALI	Κ	
*	4.	150		S, Ď		
*	0.	700	98 POI	۱Ď		
*	2.	250	60 LOT	S, A		
	0.	750			over, Good,	HSG A
	1.	600			over, Good	
				ds, Good,		
	0.	600			grazed, HS	GD
_	13.	450		ghted Aver		
	9.700 72.12% Pervious Area					
		750	27.8	88% Imperv	/ious Area	
				•		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)		(ft/sec)	(cfs)	·
	14.2	100	0.0500	0.12		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.6	230	0.1700	6.64		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.5	120	0.0400	4.06		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.6	545	0.0650	16.42	29.01	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.012
	0.9	585	0.0215	11.44	35.94	Pipe Channel,
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
						n= 0.012
						·

Subcatchment B7: BASIN 7

Clovewood Post Developed2022 ABCD

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC


Page 40

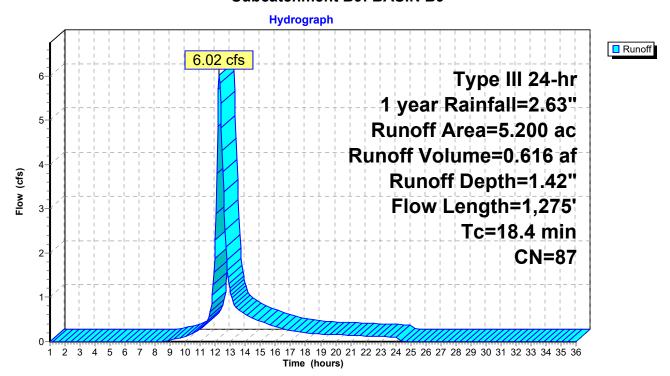
Summary for Subcatchment B8: BASIN B8

Runoff = 7.93 cfs @ 12.33 hrs, Volume= 0.918 af, Depth= 0.93"

	Area	(ac)	CN	Desc	cription		
*	0.	200	90	DIRT	ROAD, H	ISG D	
*	0.	350	98	ROA			
	3.	500	77	Woo	ds, Good,	HSG D	
	2.	500	80			over, Good,	
	5.	100	78	Mea	dow, non-დ	grazed, HS	G D
*	0.	250	85	Lots,	<u>D</u>		
	11.	900	79	Weig	hted Aver	age	
		550			6% Pervio		
	0.	350		2.949	% Impervi	ous Area	
	_		_				
	Tc	Length		Slope	Velocity		Description
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
	15.6	100	0.	0400	0.11		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	5.1	915	0.	0350	3.01		Shallow Concentrated Flow,
	4.5	0.50		0000	40.77	00.00	Unpaved Kv= 16.1 fps
	1.5	950	0.	0300	10.77	86.20	Parabolic Channel,
	0.1	125		0510	22.20	164.61	W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025
	0.1	135	0.	0519	23.29	164.61	Pipe Channel,
							36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' n= 0.012
_	22.2	2.400	т.	-4-1			11- 0.012
	22.3	2,100	10	otal			

Subcatchment B8: BASIN B8

Summary for Subcatchment B9: BASIN B9

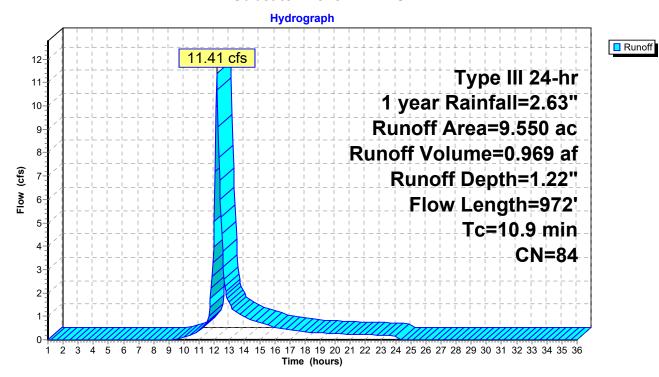

Runoff = 6.02 cfs @ 12.26 hrs, Volume= 0.616 af, Depth= 1.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) C	N Des	cription		
*	2.	750	35 LO1	ſS, D		
*	1.	350		AĎS, WALI	KS	
					over, Good,	HSG D
_				ghted Aver		
		850 ·		91160 Avei)4% Pervio		
	1.	350	25.8	96% Imper	ilous Area	
	_		01			
	Tc	Length	Slope	•	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.6	100	0.0400	0.11		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	1.7	435	0.0700	4.26		Shallow Concentrated Flow,
				_		Unpaved Kv= 16.1 fps
	0.3	90	0.0600	4.97		Shallow Concentrated Flow,
	0.0	00	0.0000	1.07		Paved Kv= 20.3 fps
	0.8	650	0.0415	13.12	23.18	Pipe Channel,
	0.0	030	0.0413	13.12	23.10	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_						n= 0.012

18.4 1,275 Total

Subcatchment B9: BASIN B9


Summary for Subcatchment C1: BASIN C1

Runoff = 11.41 cfs @ 12.16 hrs, Volume= 0.969 af, Depth= 1.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) (CN De	scription		
*	1.900 98 ROADS, WALKS, POND					
	3.	450	80 >7	5% Grass c	over, Good	, HSG D
	2.	200	77 W	oods, Good,	, HSG D	
*	2.	000	85 LC	TS, D		
	9.	550	84 W	eighted Ave	rage	
	7.	650	80	.10% Pervio	ous Area	
	1.	900	19	.90% Imper	vious Area	
	Tc	Length	Slop		Capacity	Description
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	6.0	100	0.060	0 0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	4.7	780	0.030	0 2.79		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.2	92	0.010	0 6.44	11.38	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.012
	10.9	972	Total			

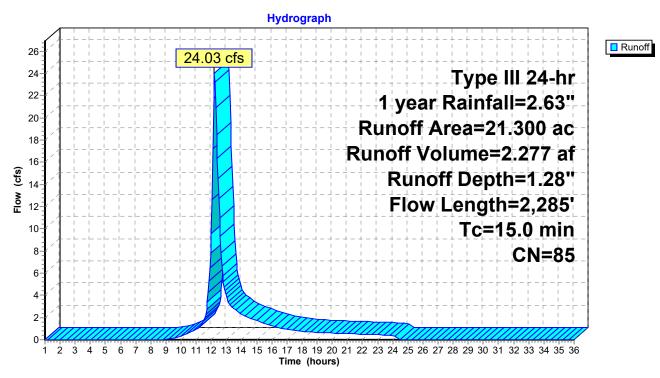
Subcatchment C1: BASIN C1

Clovewood Post Developed2022 ABCD

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 44

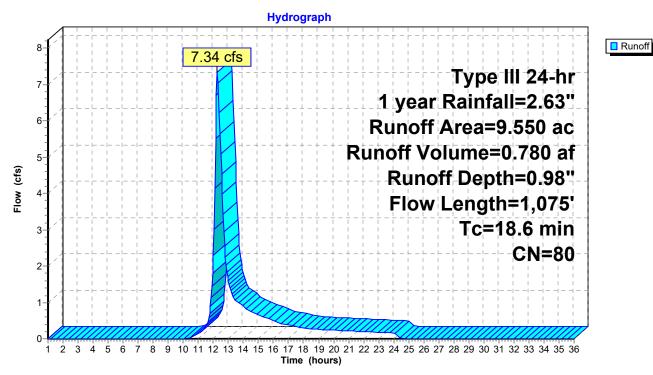

Summary for Subcatchment C10: BASIN C10

Runoff = 24.03 cfs @ 12.21 hrs, Volume= 2.277 af, Depth= 1.28"

	Area (ac) CN Description			cription						
*	9.	600	85	LOT	S, D					
*	2.	750	98	ROA	DS, WALK	K S				
	3.	300	80	>75%	% Grass co	over, Good,	HSG D			
*	0.	850	98		POND					
	3.	350	77	Woo	Woods, Good, HSG D					
	1.4	450	78	Mea	Meadow, non-grazed, HSG D					
		300	85		hted Aver					
		700			0% Pervio	•				
		600			•	ious Area				
	0.	000		. 0.0	0 /0 mmpon	104071104				
	Tc	Length	า :	Slope	Velocity	Capacity	Description			
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	'			
	12.4	100	0	.0700	0.13	, ,	Sheet Flow,			
							Woods: Light underbrush n= 0.400 P2= 3.50"			
	1.1	490	0	.2000	7.20		Shallow Concentrated Flow,			
							Unpaved Kv= 16.1 fps			
	0.7	195	5 0	.0500	4.54		Shallow Concentrated Flow,			
							Paved Kv= 20.3 fps			
	0.2	790	0	.6700	52.71	93.15	Pipe Channel,			
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'			
							n= 0.012			
	0.6	710	0	.0730	21.08	66.22	Pipe Channel,			
							24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'			
							n= 0.012			
	15.0	2,285	5 T	otal						

Page 45

Subcatchment C10: BASIN C10

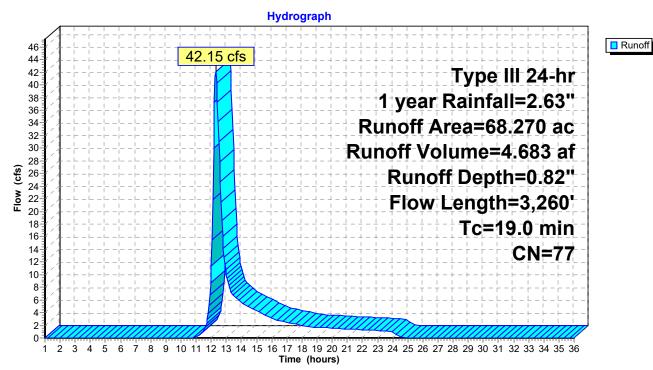

Summary for Subcatchment C11: BASIN C11

Runoff = 7.34 cfs @ 12.27 hrs, Volume= 0.780 af, Depth= 0.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) (N Des	cription					
*		• •	85 LO	 ГЅ, D					
				,	over, Good,	HSG D			
				ods, Good,		, 1100 B			
	-				grazed, HS	G D			
_					·	<u> </u>			
				Weighted Average 100.00% Pervious Area					
	9.	550	100	.00% Pervi	ous Area				
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description			
_	17.5	100		0.10	(013)	Sheet Flow,			
	17.5	100	0.0300	0.10		·			
	0.7	215	0.2500	0.05		Woods: Light underbrush n= 0.400 P2= 3.50"			
	0.7	315	0.2500	8.05		Shallow Concentrated Flow,			
	0.4	000	0.4007	04.50	4 400 04	Unpaved Kv= 16.1 fps			
	0.1	280	0.1227	34.59	1,106.91	Parabolic Channel,			
						W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.025			
	0.3	380	0.0500	22.08	706.60	Parabolic Channel,			
_						W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.025			
	18.6	1,075	Total						

Subcatchment C11: BASIN C11


Summary for Subcatchment C12: BASIN C12

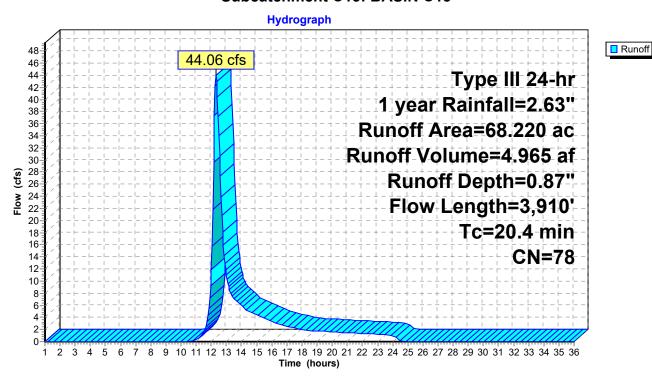
Runoff = 42.15 cfs @ 12.29 hrs, Volume= 4.683 af, Depth= 0.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) C	N Des	cription		
	67.	000	77 Wo	ods, Good,	HSG D	
*	0.	600	30 Law	n, Good, H	ISG D	
	0.	670	78 Mea	dow, non-	grazed, HS	G D
	68.	270	77 Wei	ghted Aver	age	
	68.	270	100	.00% Pervi	ous Area	
	_					
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.8	100	0.1000	0.15		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.5	360	0.5900	12.37		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	7.7	2,800	0.1400	6.02		Shallow Concentrated Flow,
_						Unpaved Kv= 16.1 fps
	19.0	3,260	Total			

Subcatchment C12: BASIN C12

Page 48

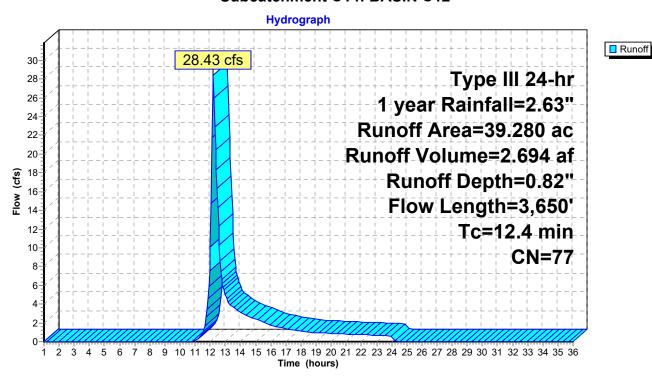

Summary for Subcatchment C13: BASIN C13

Runoff = 44.06 cfs @ 12.31 hrs, Volume= 4.965 af, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area ((ac) C	N De	escription					
*	4.0	000	39 W	ETLANDS					
	61.3	320	77 W	oods, Good,	HSG D				
*	1.	150	35 LC	DTS, D					
*	0.	750	96 W	Well access Road					
	1.0	000	30 >7	'5% Grass c	over, Good,	, HSG D			
	68.	220	78 W	eighted Aver	age				
	68.	220	10	0.00% Pervi	ous Area				
	_								
	Tc	Length	Slop	•	Capacity	Description			
_	(min)	(feet)	(ft/f		(cfs)				
	15.6	100	0.040	0 0.11		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.50"			
	1.6	900	0.350	0 9.52		Shallow Concentrated Flow,			
		0.40				Unpaved Kv= 16.1 fps			
	1.5	610	0.020	0 6.83	91.11	Parabolic Channel,			
	4 7	0.000	0.440	00.00	445.55	W=10.00' D=2.00' Area=13.3 sf Perim=11.0' n= 0.035			
	1.7	2,300	0.140	0 22.28	445.55	Parabolic Channel,			
_						W=10.00' D=3.00' Area=20.0 sf Perim=12.0' n= 0.035			
	20.4	3 910	Total						

Subcatchment C13: BASIN C13


Summary for Subcatchment C14: BASIN C12

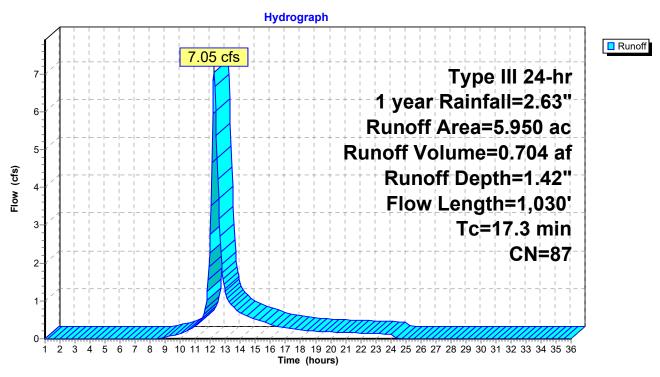
Runoff = 28.43 cfs @ 12.19 hrs, Volume= 2.694 af, Depth= 0.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) C	N Des	cription		
*	0.	0.780 89 WETLANDS				
	38.	500	77 Woo	ds, Good,	HSG D	
	39.280 7 39.280			ghted Aver 00% Pervi		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	8.2	100	0.2000	0.20		Sheet Flow,
	3.0	1,460	0.2500	8.05		Woods: Light underbrush n= 0.400 P2= 3.50" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	1.1	1,800	0.1500	27.32	874.19	Parabolic Channel,
		,				W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.035
	0.0	50	0.0200	20.32	399.01	Pipe Channel,
	0.1	240	0.0800	27.93	893.79	60.0" Round Area= 19.6 sf Perim= 15.7' r= 1.25' n= 0.012 Parabolic Channel, W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.025
	12.4	3,650	Total			

Subcatchment C14: BASIN C12

Summary for Subcatchment C2: BASIN C2

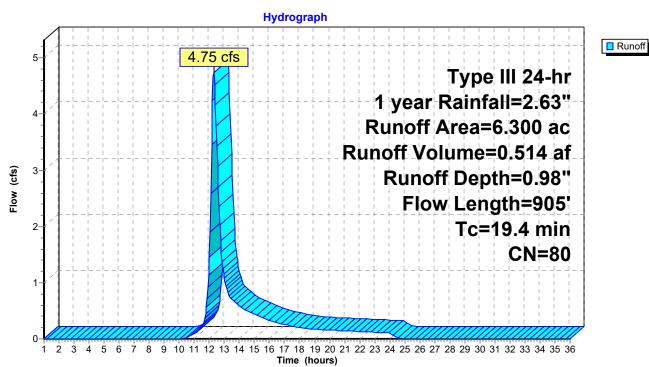

Runoff = 7.05 cfs @ 12.24 hrs, Volume= 0.704 af, Depth= 1.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) C	N Des	cription							
*	0.	250	109 86	ND							
*	1.	700	98 RO	ADS, WALI	KS						
*	1.	700		S, Ď							
	0.			•	over, Good,	HSG D					
	0.			Woods, Good, HSG D							
					grazed, HS	G D					
				ghted Aver		-					
		000		23% Pervio							
		950	_	77% Imper							
	• •		02	. ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
	Тс	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	15.6	100	0.0400	0.11		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 3.50"					
	0.4	160	0.1400	6.02		Shallow Concentrated Flow,					
						Unpaved Kv= 16.1 fps					
	0.1	60	0.4500	10.80		Shallow Concentrated Flow,					
						Unpaved Kv= 16.1 fps					
	0.4	135	0.1000	5.09		Shallow Concentrated Flow,					
						Unpaved Kv= 16.1 fps					
	0.2	70	0.0600	4.97		Shallow Concentrated Flow,					
						Paved Kv= 20.3 fps					
	0.6	505	0.0330	14.17	44.52	Pipe Channel,					
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'					
						n= 0.012					

17.3 1,030 Total

Subcatchment C2: BASIN C2


Summary for Subcatchment C3: BASIN C3

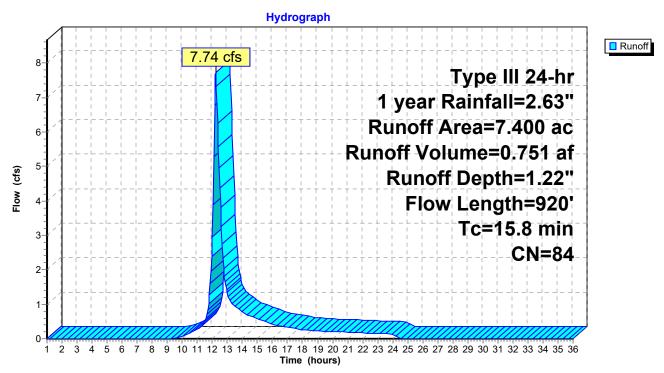
Runoff = 4.75 cfs @ 12.29 hrs, Volume= 0.514 af, Depth= 0.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) C	N Des	cription		
*	0.	380 8	39 WE	ΓLANDS		
*	1.	500 8	35 LOT	S, D		
	0.	350			grazed, HS	G D
_	4.	070	77 Woo	ds, Good,	HSG D	
				ghted Aver		
	6.	300	100.	00% Pervi	ous Area	
	_				<u> </u>	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	17.5	100	0.0300	0.10		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	1.8	630	0.1300	5.80		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	175	0.0900	23.44	468.78	Parabolic Channel,
_						W=12.00' D=2.50' Area=20.0 sf Perim=13.3' n= 0.025
	19.4	905	Total			

Subcatchment C3: BASIN C3

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

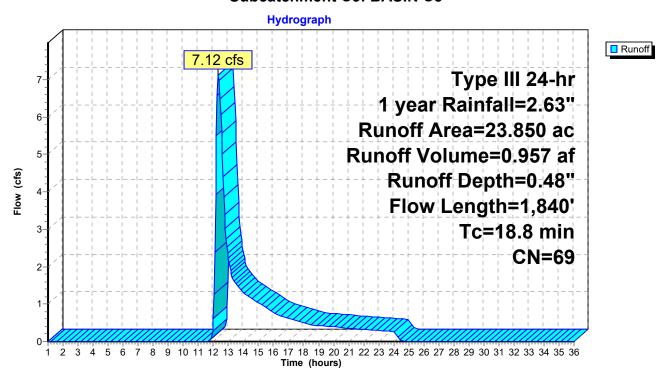

Page 53

Summary for Subcatchment C4: BASIN C4

Runoff = 7.74 cfs @ 12.22 hrs, Volume= 0.751 af, Depth= 1.22"

	Area (ac)	CN	Desc	cription							
*	1.4	430	98	ROA	DS/ WAL	(S						
*	3.	100	85	LOT	LOTS, D							
*	0.2	250	98	PON	ID							
	0.4	400	78	Mea	dow, non-g	grazed, HS	G D					
*	0.5	580	60	LOT	S, A							
	1.2	280	77	Woo	ds, Good,	HSG D						
	0.3	360	80	>75%	% Grass co	over, Good,	HSG D					
	7.4	400	84	Weig	hted Aver	age						
		720			, 0% Pervio							
	1.6	380		22.7	0% Imperv	ious Area						
					•							
	Tc	Length	1	Slope	Velocity	Capacity	Description					
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	<u> </u>					
	14.2	100	0 (.0500	0.12		Sheet Flow,					
							Woods: Light underbrush n= 0.400 P2= 3.50"					
	0.5	220	0 (.1800	6.83		Shallow Concentrated Flow,					
							Unpaved Kv= 16.1 fps					
	0.7	140	0 (.0300	3.52		Shallow Concentrated Flow,					
							Paved Kv= 20.3 fps					
	0.3	340	0 (.0650	16.42	29.01	Pipe Channel,					
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'					
							n= 0.012					
	0.1	120	0 (.2000	24.81	132.31	Parabolic Channel,					
							W=4.00' D=2.00' Area=5.3 sf Perim=5.9' n= 0.025					
	15.8	920) T	otal								

Subcatchment C4: BASIN C4


Summary for Subcatchment C5: BASIN C5

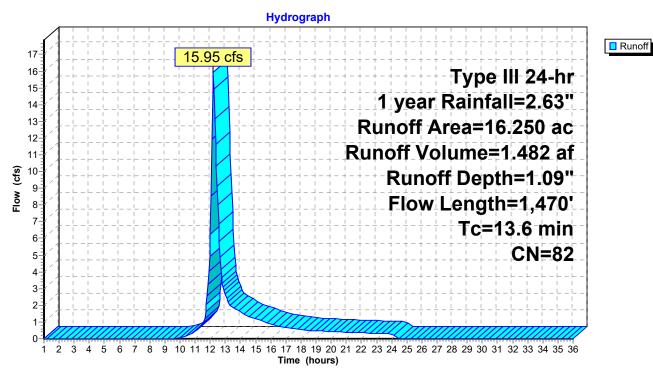
Runoff = 7.12 cfs @ 12.33 hrs, Volume= 0.957 af, Depth= 0.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

_	Area	(ac)	CN	Desc	cription		
	10.250 77 Woods, Good, HSG D						
*	3.	700	85	LOT	S, D		
	1.100 80 >75% Grass cover, Good, HSG D						
	1.	000	39	>75%	√ Grass co	over, Good,	HSG A
*	1.	250	60	LOT	S, A		
	3.	950	30	Woo	ds, Good,	HSG A	
*	0.	700	96	Well	Access R	oads	
*	0.	420	89	Wetl	ands		
_	1.	480	78	Mea	dow, non-g	grazed, HS	G D
23.850 69 Weighted Average							
	23.850			100.	00% Pervi	ous Area	
	Тс	Lengt	h	Slope	Velocity	Capacity	Description
_	(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)	
	15.6	10	0 0	.0400	0.11		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	2.3	58	0 0	.0700	4.26		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.9	1,16	0 0	.0750	22.54	721.17	Parabolic Channel,
							W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.030
	18.8	1,84	0 T	otal			

Subcatchment C5: BASIN C5

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC


Page 56

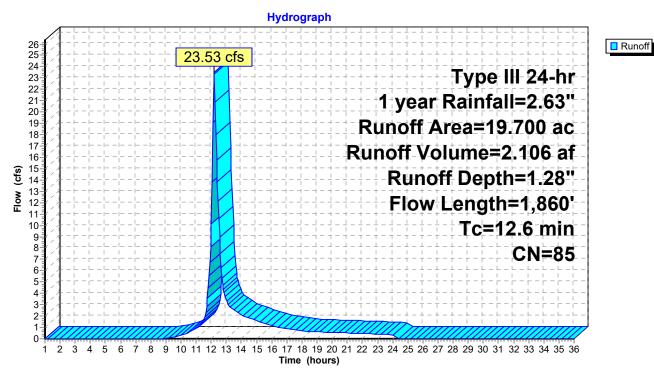
Summary for Subcatchment C6: BASIN C6

Runoff = 15.95 cfs @ 12.20 hrs, Volume= 1.482 af, Depth= 1.09"

	Area	(ac) C	N Des	cription					
*	0.	650	98 PON	1D					
*	0.	100	30 LOT	S, A					
*	1.	800	98 ROA	ADS, WALI	KS				
*	10.	000		S, D					
	0.	500			over, Good,	, HSG A			
	0.				over, Good,				
				ds, Good,		·			
				ds, Good,					
					grazed, HS	G A			
					grazed, HS				
	16.	250		ghted Aver					
		800		2% Pervio					
		450	15.0	15.08% Impervious Area					
				•					
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·			
	11.8	100	0.0800	0.14		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.50"			
	0.4	170	0.1600	6.44		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	0.3	235	0.0400	12.88	22.76	Pipe Channel,			
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'			
						n= 0.012			
	1.0	830	0.0300	13.51	42.45	Pipe Channel,			
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'			
						n= 0.012			
	0.1	135	0.1400	23.28	186.21	Parabolic Channel,			
		. 30	, 			W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025			
	13.6	1,470	Total						
		., 0	, 0						

Subcatchment C6: BASIN C6

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

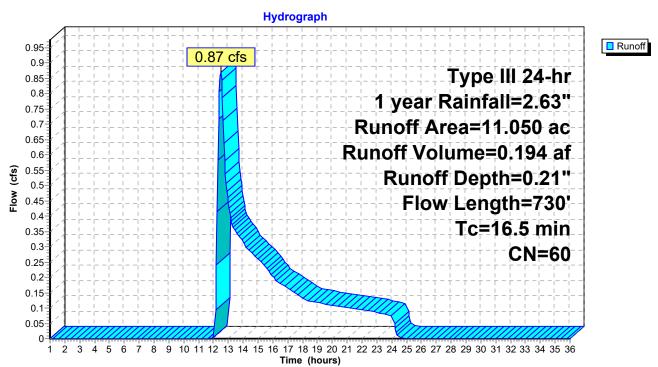

Page 58

Summary for Subcatchment C7: BASIN C7

Runoff = 23.53 cfs @ 12.18 hrs, Volume= 2.106 af, Depth= 1.28"

	Area	(ac) (CN	Desc	cription		
*	2.	500	98	ROA	DS / WAL	KS	
*	0.	500	98	BLD	G		
*		450	85	LOT	S, D		
*			98	PON	-		
		400	39			over, Good,	
		750	80			over, Good,	HSG D
		000	77		ds, Good,		
_		100	78	Mea	dow, non-զ	grazed, HS	G D
			85		ghted Aver		
		700		. •	0% Pervio		
	4.	000		20.3	0% Imperv	ious Area	
	- -	141-	_	N	\/-l!4.	0:	Decadation
	Tc (min)	Length		Slope	Velocity	Capacity	Description
_	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	Ob (El .
	10.5	100	0.0	0150	0.16		Sheet Flow, Grass: Short n= 0.150 P2= 3.50"
	0.5	150		1000	5.09		
	0.5	150	0.	1000	5.09		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	1.0	900	0.0	0600	15.77	27.87	Pipe Channel,
	1.0	900	0.0	3000	13.77	21.01	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.012
	0.5	630	0.0	0600	19.11	60.03	Pipe Channel,
	0.0	000	0.0		10.11	00.00	24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
							n= 0.012
	0.1	80	0.2	2000	24.81	132.31	Parabolic Channel,
							W=4.00' D=2.00' Area=5.3 sf Perim=5.9' n= 0.025
	12.6	1,860	To	tal			

Subcatchment C7: BASIN C7

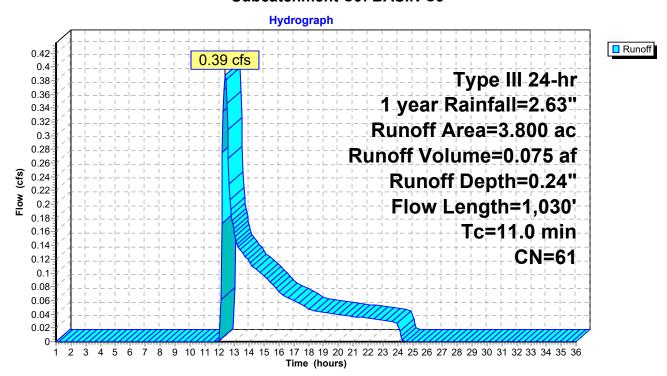

Summary for Subcatchment C8: BASIN C8

0.87 cfs @ 12.49 hrs, Volume= 0.194 af, Depth= 0.21" Runoff

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) (CN	Desc	cription			
*	0.	710	89	Wetl	ands			
*	0.	470	98	Impe	rvious Su	rfaces		
	3.	390	77	Woo	ds, Good,	HSG D		
*	1.	030	79	Old (Golf Cours	e, HSG D		
*	1.	900	35	Old (Golf Cours	e, HSG A		
	0.	770	78	Mea	dow, non-g	grazed, HS	G D	
*	2.	780	30	Woo	ds, Good,	HSG A		
	11.	050	60	Weig	hted Aver	age		
				95.75% Pervious Area				
	0.470			4.25	% Impervi	ous Area		
					•			
	Tc	Length	SI	lope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·	
	15.6	100	0.0	400	0.11		Sheet Flow,	
							Woods: Light underbrush n= 0.400 P2= 3.50"	
	0.6	130	0.0	500	3.60		Shallow Concentrated Flow,	
							Unpaved Kv= 16.1 fps	
	0.3	500	0.0	585	25.56	2,555.82	Parabolic Channel,	
							W=30.00' D=5.00' Area=100.0 sf Perim=32.1' n= 0.030	
	16.5	730	Tot	tal	·			

Subcatchment C8: BASIN C8

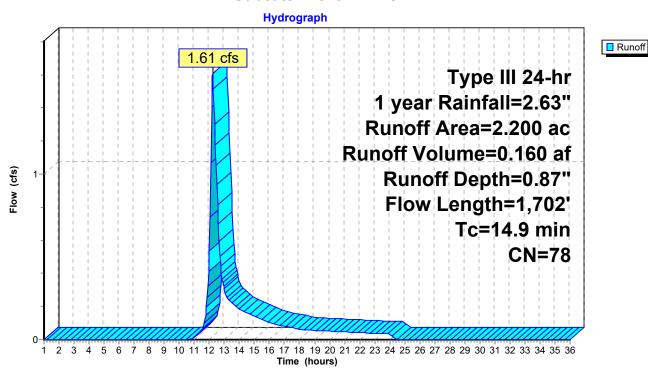

Summary for Subcatchment C9: BASIN C9

Runoff = 0.39 cfs @ 12.38 hrs, Volume= 0.075 af, Depth= 0.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) C	N Desc	cription		
	1.	000	30 Woo	ds, Good,	HSG A	
					over, Good	. HSG A
*	, ,					
*			B5 LOT	,		
				ds, Good,	HSG D	
_				hted Aver		
		800		00% Pervi		
	0.	000	100.	00 /0 T CTVI	ous Aica	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'
	9.4	100	0.1400	0.18	, ,	Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.7	200	0.1000	5.09		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.9	730	0.0325	14.17	377.93	Parabolic Channel,
						W=10.00' D=4.00' Area=26.7 sf Perim=13.3' n= 0.030
	11.0	1,030	Total			

Subcatchment C9: BASIN C9


Summary for Subcatchment D: BASIN D

Runoff = 1.61 cfs @ 12.22 hrs, Volume= 0.160 af, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

Area	(ac) C	N Desc	cription							
0.	0.850 78 Meadow, non-grazed, HSG D									
0.	0.900 77 Woods, Good, HSG D									
0.	0.450 80 >75% Grass cover, Good, HSG D									
2.	2.200 78 Weighted Average									
2.	200		, 00% Pervi							
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•					
13.2	100	0.0600	0.13		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 3.50"					
0.2	90	0.2500	8.05		Shallow Concentrated Flow,					
					Unpaved Kv= 16.1 fps					
8.0	900	0.1000	19.67	157.38	Parabolic Channel,					
					W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025					
0.1	72	0.0200	14.46	102.19	Pipe Channel,					
					36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'					
					n= 0.012					
0.6	540	0.0600	14.56	97.05	Parabolic Channel,					
					W=5.00' D=2.00' Area=6.7 sf Perim=6.7' n= 0.025					
14.9	1,702	Total								

Subcatchment D: BASIN D

Page 63

Summary for Reach AP2: ANALYSIS POINT 2


Inflow Area = 282.670 ac, 12.10% Impervious, Inflow Depth > 0.86" for 1 year event

Inflow = 95.23 cfs @ 12.36 hrs, Volume= 20.278 af

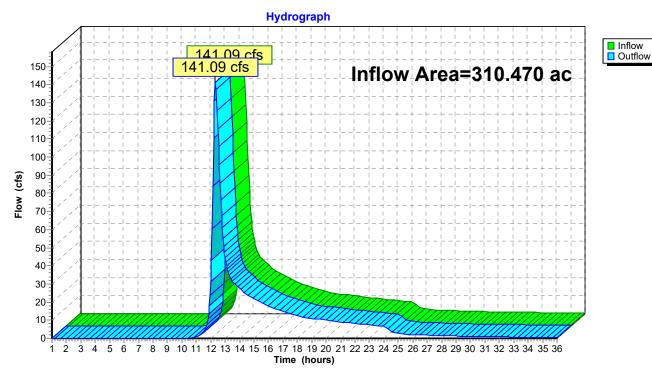
Outflow = 95.23 cfs @ 12.36 hrs, Volume= 20.278 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP2: ANALYSIS POINT 2

Page 64

Summary for Reach AP3: ANALYSIS POINT 3


Inflow Area = 310.470 ac, 5.17% Impervious, Inflow Depth > 0.88" for 1 year event

Inflow = 141.09 cfs @ 12.32 hrs, Volume= 22.669 af

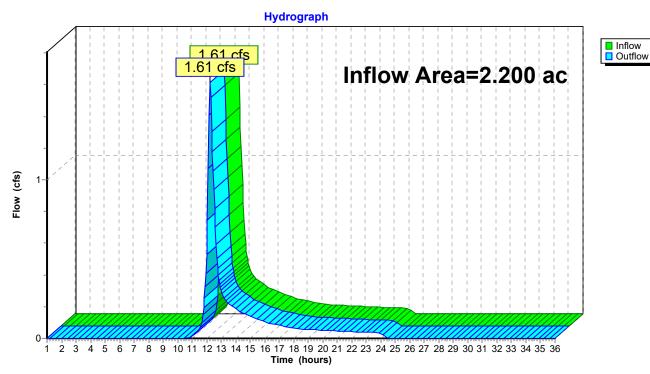
Outflow = 141.09 cfs @ 12.32 hrs, Volume= 22.669 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP3: ANALYSIS POINT 3

Page 65

Summary for Reach AP4: ANALYSIS POINT 4


2.200 ac, 0.00% Impervious, Inflow Depth = 0.87" for 1 year event Inflow Area =

1.61 cfs @ 12.22 hrs, Volume= 1.61 cfs @ 12.22 hrs, Volume= Inflow 0.160 af

Outflow 0.160 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP4: ANALYSIS POINT 4

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 66

Summary for Reach RB1: RB1

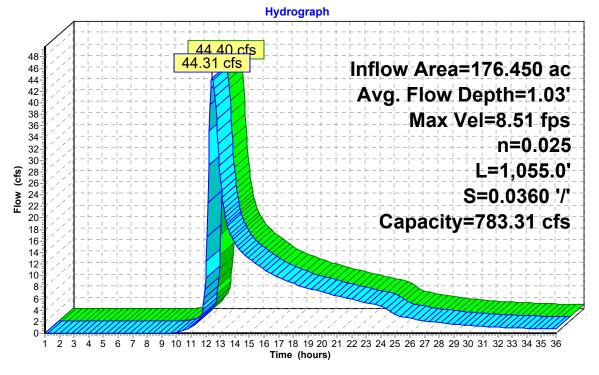
Inflow Area = 176.450 ac, 14.26% Impervious, Inflow Depth > 0.91" for 1 year event

Inflow = 44.40 cfs @ 12.42 hrs, Volume= 13.379 af

Outflow = 44.31 cfs @ 12.45 hrs, Volume= 13.372 af, Atten= 0%, Lag= 1.9 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 8.51 fps, Min. Travel Time= 2.1 min Avg. Velocity = 3.98 fps, Avg. Travel Time= 4.4 min


Peak Storage= 5,496 cf @ 12.45 hrs
Average Depth at Peak Storage= 1.03'

Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 783.31 cfs

15.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 1,055.0' Slope= 0.0360 '/' Inlet Invert= 504.00', Outlet Invert= 466.00'

Reach RB1: RB1

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 67

Summary for Reach RB11: RB11

Inflow Area = 21.550 ac, 7.89% Impervious, Inflow Depth > 1.16" for 1 year event

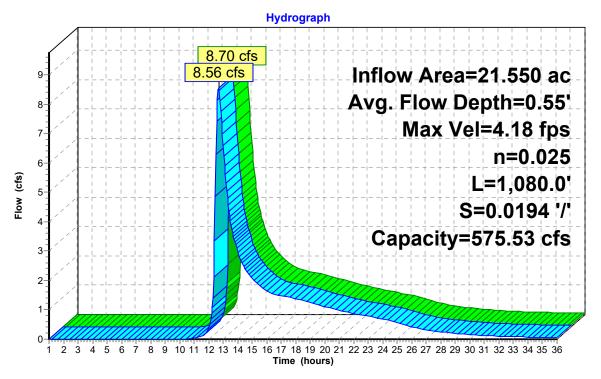
Inflow = 8.70 cfs @ 12.63 hrs, Volume= 2.086 af

Outflow = 8.56 cfs @ 12.69 hrs, Volume= 2.085 af, Atten= 2%, Lag= 3.7 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.18 fps, Min. Travel Time= 4.3 min Avg. Velocity = 1.82 fps, Avg. Travel Time= 9.9 min

Peak Storage= 2,209 cf @ 12.69 hrs Average Depth at Peak Storage= 0.55'


Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 575.53 cfs

15.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 1,080.0' Slope= 0.0194 '/'

Inlet Invert= 575.00', Outlet Invert= 554.00'

Reach RB11: RB11

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

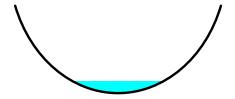
Page 68

Inflow
Outflow

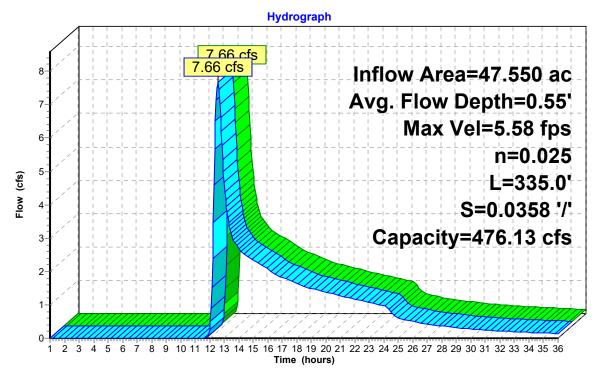
Summary for Reach RB13: RB13

Inflow Area = 47.550 ac, 10.62% Impervious, Inflow Depth > 0.59" for 1 year event

Inflow = 7.66 cfs @ 12.55 hrs, Volume= 2.348 af


Outflow = 7.66 cfs @ 12.56 hrs, Volume= 2.347 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 5.58 fps, Min. Travel Time= 1.0 min Avg. Velocity = 2.86 fps, Avg. Travel Time= 2.0 min

Peak Storage= 460 cf @ 12.56 hrs Average Depth at Peak Storage= 0.55' Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 476.13 cfs

10.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 335.0' Slope= 0.0358 '/' Inlet Invert= 581.00', Outlet Invert= 569.00'

Reach RB13: RB13

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

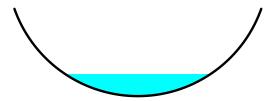
Page 69

Summary for Reach RB14: RB14

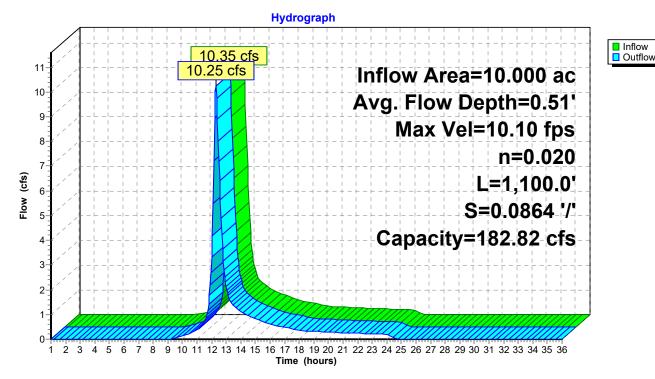
Inflow Area = 10.000 ac, 13.00% Impervious, Inflow Depth = 1.28" for 1 year event

Inflow = 10.35 cfs @ 12.26 hrs, Volume= 1.069 af

Outflow = 10.25 cfs @ 12.29 hrs, Volume= 1.069 af, Atten= 1%, Lag= 1.5 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 10.10 fps, Min. Travel Time= 1.8 min Avg. Velocity = 3.82 fps, Avg. Travel Time= 4.8 min


Peak Storage= 1,117 cf @ 12.29 hrs Average Depth at Peak Storage= 0.51'

Bank-Full Depth= 2.00' Flow Area= 8.0 sf, Capacity= 182.82 cfs

6.00' x 2.00' deep Parabolic Channel, n= 0.020 Length= 1,100.0' Slope= 0.0864 '/' Inlet Invert= 681.00', Outlet Invert= 586.00'

Reach RB14: RB14

Page 70

Inflow
Outflow

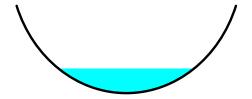
Summary for Reach RB15: RB15

Inflow Area = 6.050 ac, 9.09% Impervious, Inflow Depth = 1.22" for 1 year event

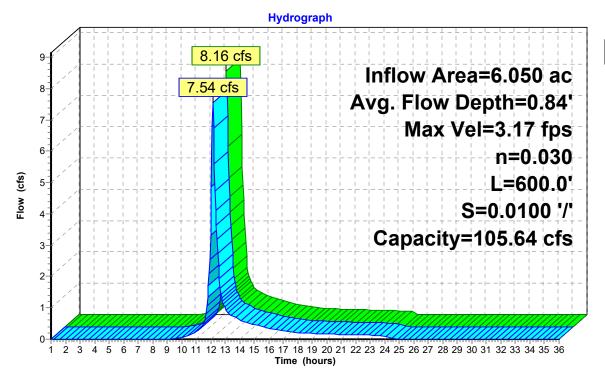
Inflow = 8.16 cfs @ 12.11 hrs, Volume= 0.614 af

Outflow = 7.54 cfs @ 12.15 hrs, Volume= 0.614 af, Atten= 8%, Lag= 2.5 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 3.17 fps, Min. Travel Time= 3.2 min Avg. Velocity = 1.07 fps, Avg. Travel Time= 9.3 min

Peak Storage= 1,427 cf @ 12.15 hrs Average Depth at Peak Storage= 0.84'


Bank-Full Depth= 3.00' Flow Area= 16.0 sf, Capacity= 105.64 cfs

 $8.00' \times 3.00'$ deep Parabolic Channel, n= 0.030 Earth, grassed & winding Length= 600.0' Slope= 0.0100'/

Inlet Invert= 552.00', Outlet Invert= 546.00'

Reach RB15: RB15

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 71

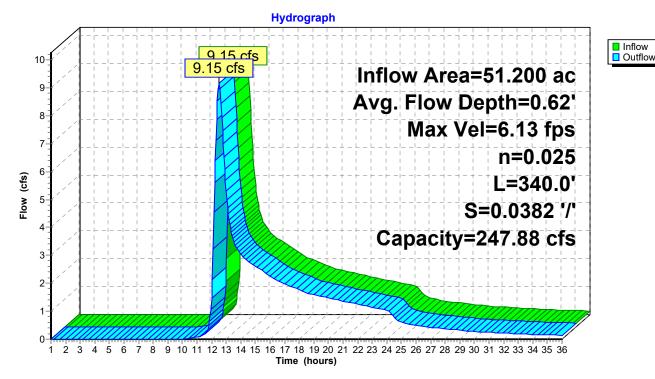
Summary for Reach RB16: RB16

Inflow Area = 51.200 ac, 9.86% Impervious, Inflow Depth > 0.62" for 1 year event

Inflow = 9.15 cfs @ 12.50 hrs, Volume= 2.662 af

Outflow = 9.15 cfs @ 12.51 hrs, Volume= 2.662 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 6.13 fps, Min. Travel Time= 0.9 min Avg. Velocity = 2.96 fps, Avg. Travel Time= 1.9 min

Peak Storage= 507 cf @ 12.51 hrs Average Depth at Peak Storage= 0.62' Bank-Full Depth= 3.00' Flow Area= 16.0 sf, Capacity= 247.88 cfs

8.00' x 3.00' deep Parabolic Channel, n= 0.025 Length= 340.0' Slope= 0.0382 '/' Inlet Invert= 567.00', Outlet Invert= 554.00'

Reach RB16: RB16

Page 72

Summary for Reach RB2: RB2

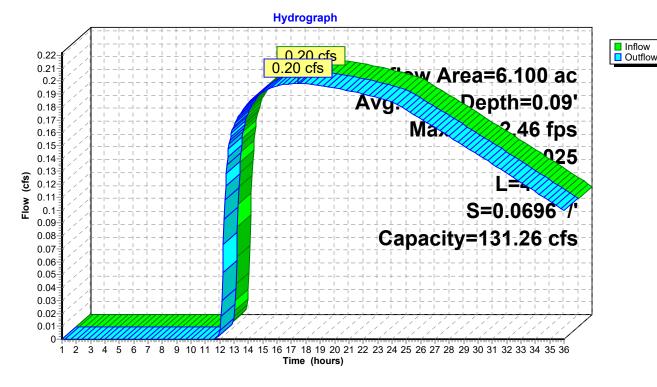
Inflow Area = 6.100 ac, 13.11% Impervious, Inflow Depth > 0.64" for 1 year event

Inflow = 0.20 cfs @ 17.41 hrs, Volume= 0.326 af

Outflow = 0.20 cfs @ 17.44 hrs, Volume= 0.325 af, Atten= 0%, Lag= 2.2 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.46 fps, Min. Travel Time= 3.1 min Avg. Velocity = 2.28 fps, Avg. Travel Time= 3.4 min


Peak Storage= 37 cf @ 17.44 hrs Average Depth at Peak Storage= 0.09'

Bank-Full Depth= 2.00' Flow Area= 8.0 sf, Capacity= 131.26 cfs

6.00' x 2.00' deep Parabolic Channel, n= 0.025 Length= 460.0' Slope= 0.0696 '/' Inlet Invert= 500.00', Outlet Invert= 468.00'

Reach RB2: RB2

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 73

Summary for Reach RB3: RB3

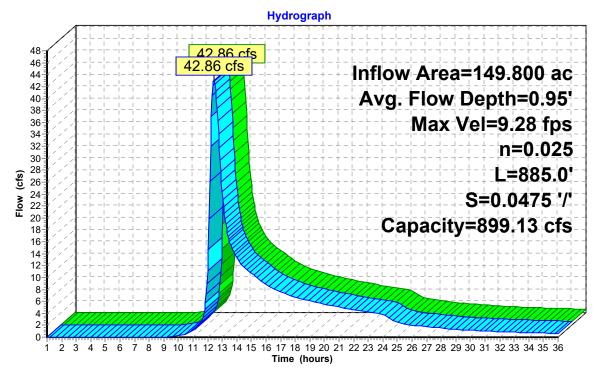
149.800 ac, 14.03% Impervious, Inflow Depth > 0.91" for 1 year event Inflow Area =

Inflow 42.86 cfs @ 12.39 hrs, Volume= 11.412 af

Outflow 42.86 cfs @ 12.41 hrs, Volume= 11.407 af, Atten= 0%, Lag= 1.3 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 9.28 fps, Min. Travel Time= 1.6 min Avg. Velocity = 4.15 fps, Avg. Travel Time= 3.6 min


Peak Storage= 4,089 cf @ 12.41 hrs Average Depth at Peak Storage= 0.95'

Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 899.13 cfs

15.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 885.0' Slope= 0.0475 '/' Inlet Invert= 546.00', Outlet Invert= 504.00'

Reach RB3: RB3

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 74

Summary for Reach RB4: RB4

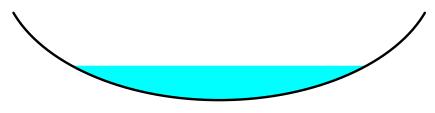
Inflow Area = 17.100 ac, 9.94% Impervious, Inflow Depth = 1.08" for 1 year event

Inflow = 13.70 cfs @ 12.30 hrs, Volume= 1.534 af

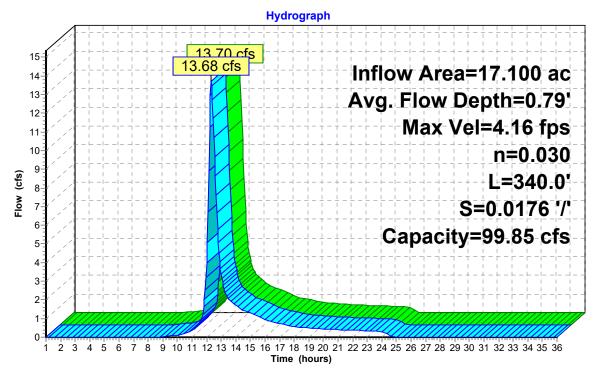
Outflow = 13.68 cfs @ 12.31 hrs, Volume= 1.534 af, Atten= 0%, Lag= 1.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.16 fps, Min. Travel Time= 1.4 min Avg. Velocity = 1.52 fps, Avg. Travel Time= 3.7 min


Peak Storage= 1,117 cf @ 12.31 hrs Average Depth at Peak Storage= 0.79'

Bank-Full Depth= 2.00' Flow Area= 13.3 sf, Capacity= 99.85 cfs


10.00' x 2.00' deep Parabolic Channel, n= 0.030

Length= 340.0' Slope= 0.0176 '/'

Inlet Invert= 552.00', Outlet Invert= 546.00'

Reach RB4: RB4

Page 75

Summary for Reach RB6: RB6

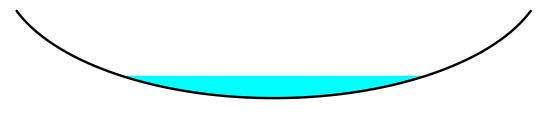
Inflow Area = 110.950 ac, 13.76% Impervious, Inflow Depth > 0.84" for 1 year event

Inflow = 27.72 cfs @ 12.53 hrs, Volume= 7.763 af

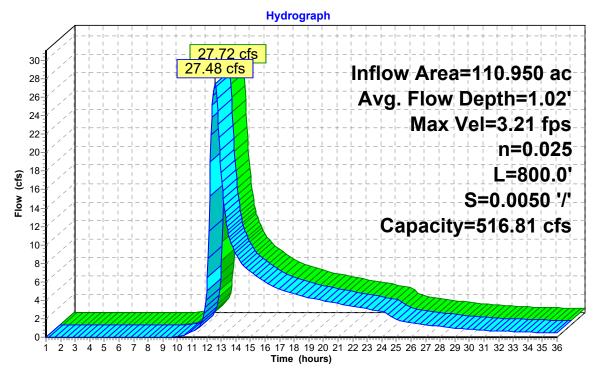
Outflow = 27.48 cfs @ 12.57 hrs, Volume= 7.754 af, Atten= 1%, Lag= 2.6 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.21 fps, Min. Travel Time= 4.2 min Avg. Velocity = 1.49 fps, Avg. Travel Time= 8.9 min


Peak Storage= 6,848 cf @ 12.57 hrs Average Depth at Peak Storage= 1.02'

Bank-Full Depth= 4.00' Flow Area= 66.7 sf, Capacity= 516.81 cfs


25.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 800.0' Slope= 0.0050 '/'

Inlet Invert= 550.00', Outlet Invert= 546.00'

Reach RB6: RB6

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 76

Summary for Reach RB7: RB7

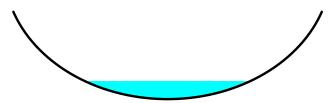
86.200 ac, 12.18% Impervious, Inflow Depth > 0.72" for 1 year event Inflow Area =

Inflow 17.19 cfs @ 12.62 hrs, Volume= 5.207 af

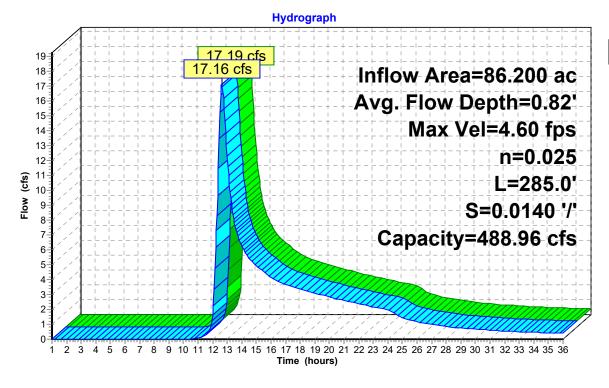
Outflow 17.16 cfs @ 12.63 hrs, Volume= 5.205 af, Atten= 0%, Lag= 0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.60 fps, Min. Travel Time= 1.0 min Avg. Velocity = 2.24 fps, Avg. Travel Time= 2.1 min


Peak Storage= 1,062 cf @ 12.63 hrs Average Depth at Peak Storage= 0.82'

Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 488.96 cfs


15.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 285.0' Slope= 0.0140 '/'

Inlet Invert= 554.00', Outlet Invert= 550.00'

Reach RB7: RB7

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 77

Inflow
Outflow

Summary for Reach RC1: RC1

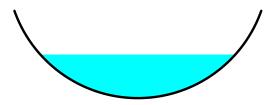
300.920 ac, 4.70% Impervious, Inflow Depth > 0.87" for 1 year event Inflow Area =

Inflow 133.42 cfs @ 12.33 hrs, Volume= 21.701 af

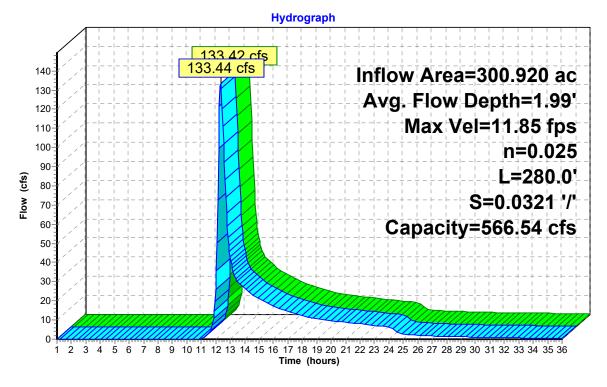
Outflow 133.44 cfs @ 12.33 hrs, Volume= 21.700 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 11.85 fps, Min. Travel Time= 0.4 min Avg. Velocity = 4.38 fps, Avg. Travel Time= 1.1 min


Peak Storage= 3,152 cf @ 12.33 hrs Average Depth at Peak Storage= 1.99'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 566.54 cfs


12.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 280.0' Slope= 0.0321 '/'

Inlet Invert= 483.00', Outlet Invert= 474.00'

Reach RC1: RC1

Page 78

Inflow
Outflow

Summary for Reach RC10: RC10

Inflow Area = 21.300 ac, 16.90% Impervious, Inflow Depth > 1.26" for 1 year event

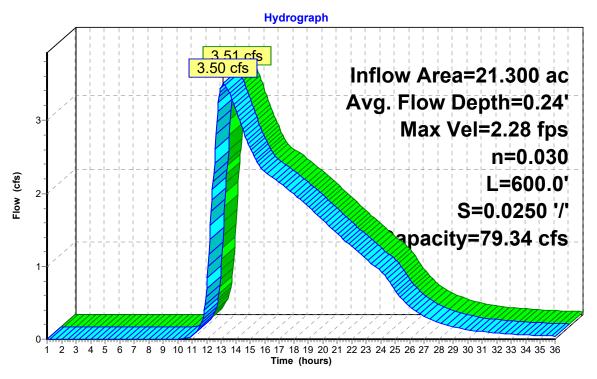
Inflow = 3.51 cfs @ 13.10 hrs, Volume= 2.233 af

Outflow = 3.50 cfs @ 13.16 hrs, Volume= 2.232 af, Atten= 0%, Lag= 3.3 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.28 fps, Min. Travel Time= 4.4 min Avg. Velocity = 1.32 fps, Avg. Travel Time= 7.6 min

Peak Storage= 920 cf @ 13.16 hrs Average Depth at Peak Storage= 0.24'


Bank-Full Depth= 1.00' Flow Area= 13.3 sf, Capacity= 79.34 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.030 Length= 600.0' Slope= 0.0250 '/'

Inlet Invert= 660.00', Outlet Invert= 645.00'

Reach RC10: RC10

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 79

Inflow
Outflow

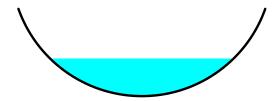
Summary for Reach RC11A: RC11-A

Inflow Area = 271.720 ac, 3.87% Impervious, Inflow Depth > 0.84" for 1 year event

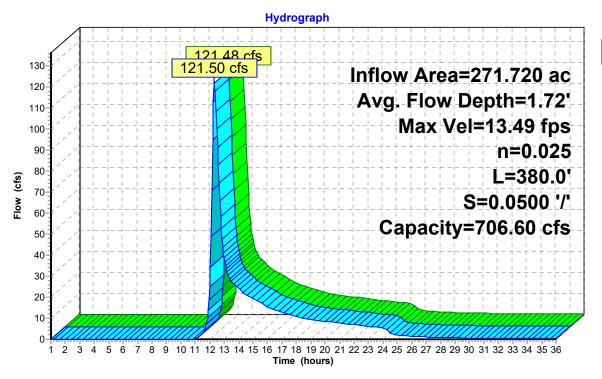
Inflow = 121.48 cfs @ 12.32 hrs, Volume= 19.096 af

Outflow = 121.50 cfs @ 12.32 hrs, Volume= 19.095 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 13.49 fps, Min. Travel Time= 0.5 min Avg. Velocity = 4.86 fps, Avg. Travel Time= 1.3 min

Peak Storage= 3,416 cf @ 12.32 hrs Average Depth at Peak Storage= 1.72'


Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 706.60 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 380.0' Slope= 0.0500'/'

Inlet Invert= 527.00', Outlet Invert= 508.00'

Reach RC11A: RC11-A

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 80

Inflow
Outflow

Summary for Reach RC11B: RC11-B

Inflow Area = 79.320 ac, 0.59% Impervious, Inflow Depth = 0.74" for 1 year event

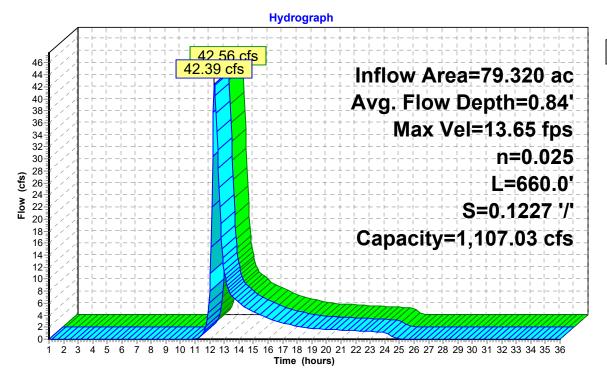
Inflow = 42.56 cfs @ 12.32 hrs, Volume= 4.877 af

Outflow = 42.39 cfs @ 12.34 hrs, Volume= 4.877 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 13.65 fps, Min. Travel Time= 0.8 min Avg. Velocity = 5.45 fps, Avg. Travel Time= 2.0 min

Peak Storage= 2,048 cf @ 12.34 hrs Average Depth at Peak Storage= 0.84'


Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 1,107.03 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 660.0' Slope= 0.1227 '/'

Inlet Invert= 608.00', Outlet Invert= 527.00'

Reach RC11B: RC11-B

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 81

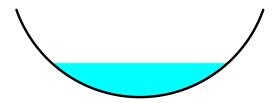
Summary for Reach RC11C: RC11-C

Inflow Area = 192.400 ac, 5.22% Impervious, Inflow Depth > 0.89" for 1 year event

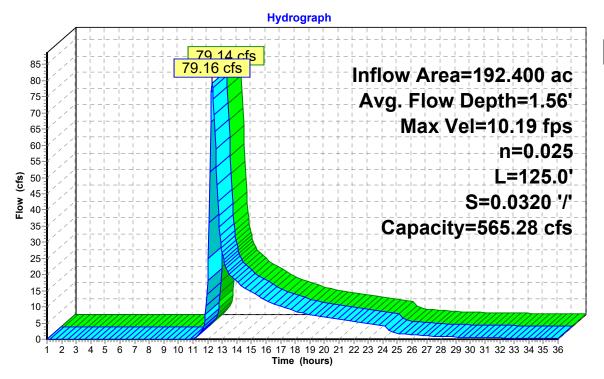
Inflow = 79.14 cfs @ 12.31 hrs, Volume= 14.220 af

Outflow = 79.16 cfs @ 12.31 hrs, Volume= 14.219 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 10.19 fps, Min. Travel Time= 0.2 min Avg. Velocity = 3.91 fps, Avg. Travel Time= 0.5 min

Peak Storage= 971 cf @ 12.31 hrs
Average Depth at Peak Storage= 1.56'


Peak Full Depth 4 00', Flow Area 33 0 cf. Conseit

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 565.28 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 125.0' Slope= 0.0320 '/' Inlet Invert= 531.00', Outlet Invert= 527.00'

Reach RC11C: RC11-C

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 82

Inflow
Outflow

Summary for Reach RC12: RC12

Inflow Area = 68.270 ac, 0.00% Impervious, Inflow Depth = 0.82" for 1 year event

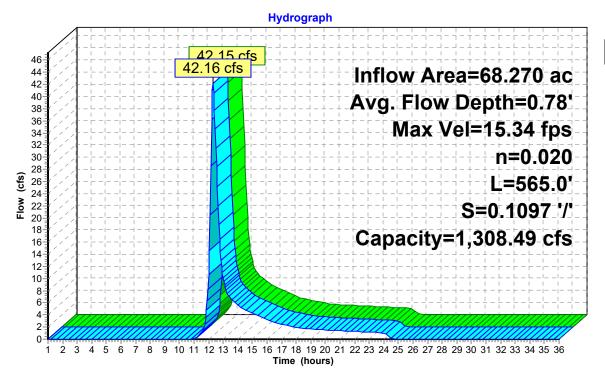
Inflow = 42.15 cfs @ 12.29 hrs, Volume= 4.683 af

Outflow = 42.16 cfs @ 12.30 hrs, Volume= 4.683 af, Atten= 0%, Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 15.34 fps, Min. Travel Time= 0.6 min Avg. Velocity = 6.46 fps, Avg. Travel Time= 1.5 min

Peak Storage= 1,552 cf @ 12.30 hrs Average Depth at Peak Storage= 0.78'


Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 1,308.49 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.020 Length= 565.0' Slope= 0.1097 '/'

Inlet Invert= 722.00', Outlet Invert= 660.00'

Reach RC12: RC12

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 83

Inflow
Outflow

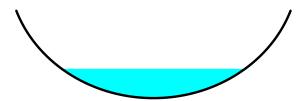
Summary for Reach RC13: RC13

Inflow Area = 68.220 ac, 0.00% Impervious, Inflow Depth = 0.87" for 1 year event

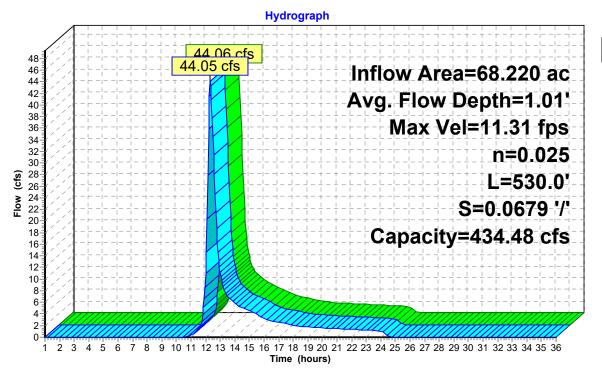
Inflow = 44.06 cfs @ 12.31 hrs, Volume= 4.965 af

Outflow = 44.05 cfs @ 12.32 hrs, Volume= 4.965 af, Atten= 0%, Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 11.31 fps, Min. Travel Time= 0.8 min Avg. Velocity = 4.65 fps, Avg. Travel Time= 1.9 min

Peak Storage= 2,063 cf @ 12.32 hrs Average Depth at Peak Storage= 1.01'


Bank-Full Depth= 3.00' Flow Area= 20.0 sf, Capacity= 434.48 cfs

10.00' x 3.00' deep Parabolic Channel, n= 0.025 Length= 530.0' Slope= 0.0679'/

Inlet Invert= 690.00', Outlet Invert= 654.00'

Reach RC13: RC13

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 84

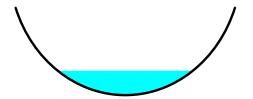
Inflow
Outflow

Summary for Reach RC14: RC14

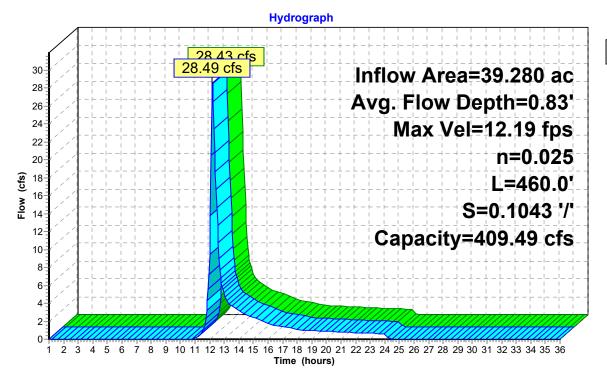
Inflow Area = 39.280 ac, 0.00% Impervious, Inflow Depth = 0.82" for 1 year event

Inflow = 28.43 cfs @ 12.19 hrs, Volume= 2.694 af

Outflow = 28.49 cfs @ 12.20 hrs, Volume= 2.694 af, Atten= 0%, Lag= 0.5 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 12.19 fps, Min. Travel Time= 0.6 min Avg. Velocity = 4.94 fps, Avg. Travel Time= 1.6 min


Peak Storage= 1,075 cf @ 12.20 hrs Average Depth at Peak Storage= 0.83'

Bank-Full Depth= 3.00' Flow Area= 16.0 sf, Capacity= 409.49 cfs

8.00' x 3.00' deep Parabolic Channel, n= 0.025 Length= 460.0' Slope= 0.1043 '/' Inlet Invert= 702.00', Outlet Invert= 654.00'

Reach RC14: RC14

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 85

Summary for Reach RC2: RC2

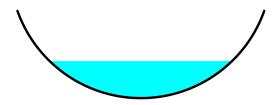
Inflow Area = 281.270 ac, 3.74% Impervious, Inflow Depth > 0.85" for 1 year event

Inflow = 128.60 cfs @ 12.32 hrs, Volume= 19.875 af

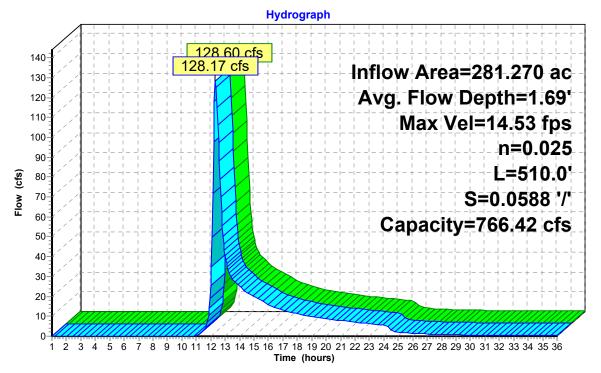
Outflow = 128.17 cfs @ 12.33 hrs, Volume= 19.874 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 14.53 fps, Min. Travel Time= 0.6 min Avg. Velocity = 5.21 fps, Avg. Travel Time= 1.6 min


Peak Storage= 4,495 cf @ 12.33 hrs Average Depth at Peak Storage= 1.69'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 766.42 cfs


12.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 510.0' Slope= 0.0588 '/'

Inlet Invert= 504.00', Outlet Invert= 474.00'

Reach RC2: RC2

Page 86

Summary for Reach RC3: RC3

Inflow Area = 7.400 ac, 22.70% Impervious, Inflow Depth > 1.14" for 1 year event

Inflow = 0.50 cfs @ 15.55 hrs, Volume= 0.701 af

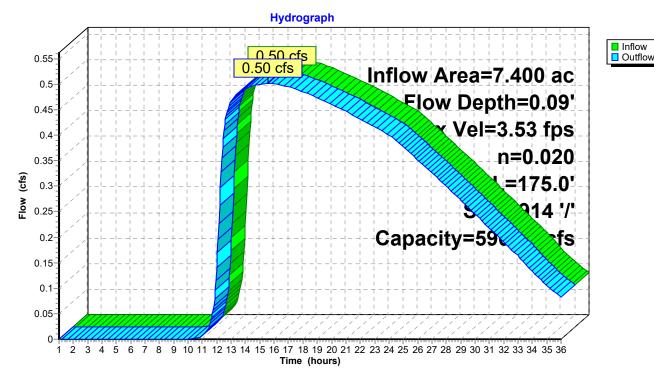
Outflow = 0.50 cfs @ 15.56 hrs, Volume= 0.701 af, Atten= 0%, Lag= 0.6 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.53 fps, Min. Travel Time= 0.8 min Avg. Velocity = 3.00 fps, Avg. Travel Time= 1.0 min

Peak Storage= 25 cf @ 15.56 hrs Average Depth at Peak Storage= 0.09'

Bank-Full Depth= 2.50' Flow Area= 20.0 sf, Capacity= 590.61 cfs


12.00' x 2.50' deep Parabolic Channel, n= 0.020

Length= 175.0' Slope= 0.0914 '/'

Inlet Invert= 514.00', Outlet Invert= 498.00'

Reach RC3: RC3

Page 87

Summary for Reach RC4: RC4

Inflow Area = 7.400 ac, 22.70% Impervious, Inflow Depth > 1.14" for 1 year event

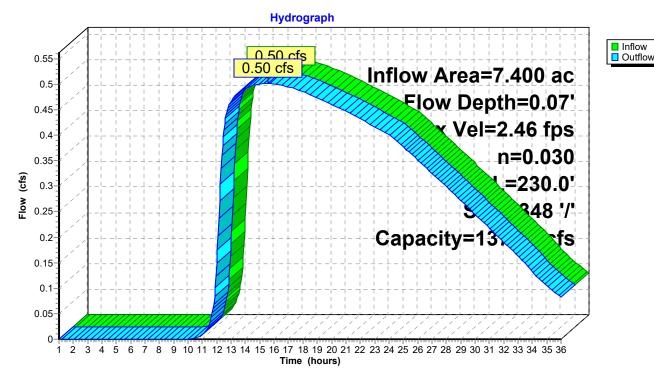
Inflow = 0.50 cfs @ 15.54 hrs, Volume= 0.701 af

Outflow = 0.50 cfs @ 15.55 hrs, Volume= 0.701 af, Atten= 0%, Lag= 1.1 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.46 fps, Min. Travel Time= 1.6 min Avg. Velocity = 2.06 fps, Avg. Travel Time= 1.9 min

Peak Storage= 47 cf @ 15.55 hrs Average Depth at Peak Storage= 0.07'


Bank-Full Depth= 1.00' Flow Area= 10.0 sf, Capacity= 137.70 cfs

15.00' x 1.00' deep Parabolic Channel, n= 0.030 Length= 230.0' Slope= 0.1348 '/'

Inlet Invert= 546.00', Outlet Invert= 515.00'

Reach RC4: RC4

Page 88

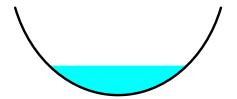
Inflow
Outflow

Summary for Reach RC5A: RC5-A

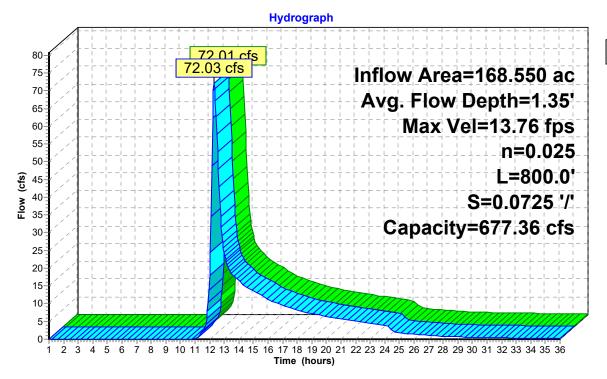
Inflow Area = 168.550 ac, 5.96% Impervious, Inflow Depth > 0.94" for 1 year event

Inflow = 72.01 cfs @ 12.29 hrs, Volume= 13.264 af

Outflow = 72.03 cfs @ 12.30 hrs, Volume= 13.262 af, Atten= 0%, Lag= 0.8 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 13.76 fps, Min. Travel Time= 1.0 min Avg. Velocity = 5.40 fps, Avg. Travel Time= 2.5 min


Peak Storage= 4,187 of @ 12.30 hrs Average Depth at Peak Storage= 1.35'

Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 677.36 cfs

10.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 800.0' Slope= 0.0725 '/' Inlet Invert= 590.00', Outlet Invert= 532.00'

Reach RC5A: RC5-A

Page 89

Summary for Reach RC5B: RC5-B

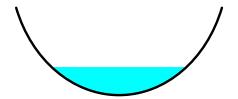
Inflow Area = 128.800 ac, 2.80% Impervious, Inflow Depth > 0.92" for 1 year event

Inflow = 69.90 cfs @ 12.27 hrs, Volume= 9.891 af

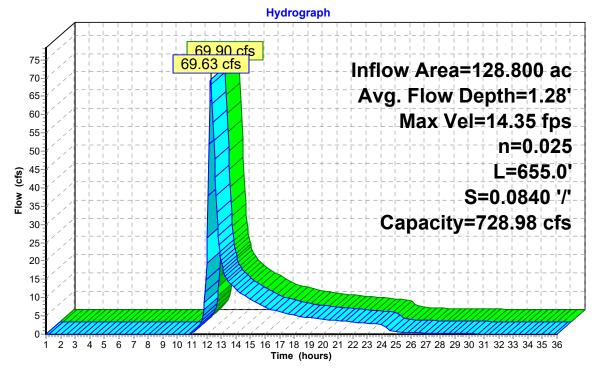
Outflow = 69.63 cfs @ 12.28 hrs, Volume= 9.891 af, Atten= 0%, Lag= 0.6 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 14.35 fps, Min. Travel Time= 0.8 min Avg. Velocity = 4.78 fps, Avg. Travel Time= 2.3 min


Peak Storage= 3,175 cf @ 12.28 hrs Average Depth at Peak Storage= 1.28'

Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 728.98 cfs


10.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 655.0' Slope= 0.0840 '/'

Inlet Invert= 645.00', Outlet Invert= 590.00'

Reach RC5B: RC5-B

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 90

Summary for Reach RC5C: RC5-C

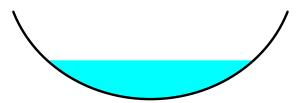
Inflow Area = 107.500 ac, 0.00% Impervious, Inflow Depth = 0.86" for 1 year event

Inflow = 68.23 cfs @ 12.27 hrs, Volume= 7.660 af

Outflow = 68.25 cfs @ 12.27 hrs, Volume= 7.660 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 11.52 fps, Min. Travel Time= 0.3 min Avg. Velocity = 4.72 fps, Avg. Travel Time= 0.6 min


Peak Storage= 1,065 cf @ 12.27 hrs Average Depth at Peak Storage= 1.33'

Bank-Full Depth= 3.00' Flow Area= 20.0 sf, Capacity= 372.77 cfs

10.00' x 3.00' deep Parabolic Channel, n= 0.025

Length= 180.0' Slope= 0.0500 '/'

Inlet Invert= 654.00', Outlet Invert= 645.00'

Reach RC5C: RC5-C

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 91

Inflow
Outflow

Summary for Reach RC6: RC6

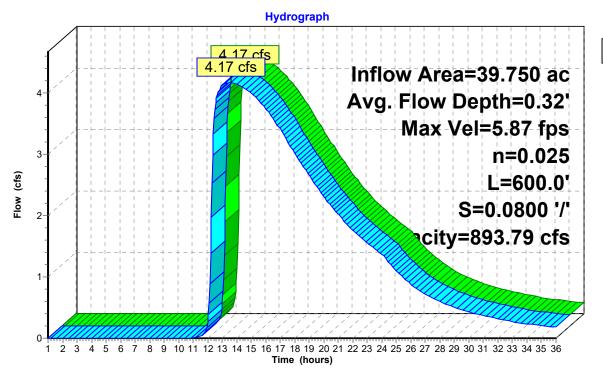
Inflow Area = 39.750 ac, 16.23% Impervious, Inflow Depth > 1.02" for 1 year event

Inflow = 4.17 cfs @ 13.59 hrs, Volume= 3.374 af

Outflow = 4.17 cfs @ 13.61 hrs, Volume= 3.373 af, Atten= 0%, Lag= 1.2 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.87 fps, Min. Travel Time= 1.7 min Avg. Velocity = 3.94 fps, Avg. Travel Time= 2.5 min


Peak Storage= 426 cf @ 13.61 hrs Average Depth at Peak Storage= 0.32' Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 893.79 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 600.0' Slope= 0.0800 '/' Inlet Invert= 638.00', Outlet Invert= 590.00'

Reach RC6: RC6

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 92

Inflow
Outflow

Summary for Reach RC7: RC7

Inflow Area = 19.700 ac, 20.30% Impervious, Inflow Depth > 1.16" for 1 year event

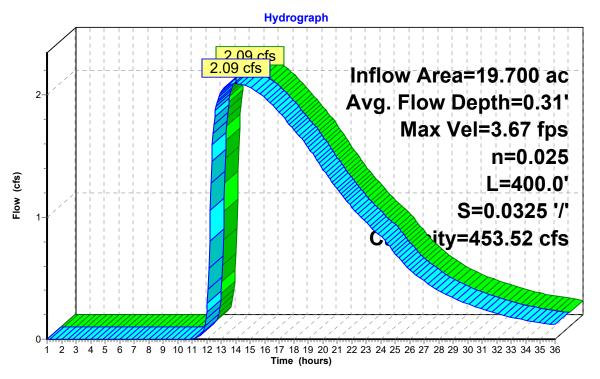
Inflow = 2.09 cfs @ 14.00 hrs, Volume= 1.909 af

Outflow = 2.09 cfs @ 14.03 hrs, Volume= 1.908 af, Atten= 0%, Lag= 1.3 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.67 fps, Min. Travel Time= 1.8 min Avg. Velocity = 2.58 fps, Avg. Travel Time= 2.6 min

Peak Storage= 229 cf @ 14.03 hrs Average Depth at Peak Storage= 0.31'


Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 453.52 cfs

10.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 400.0' Slope= 0.0325 '/'

Inlet Invert= 660.00', Outlet Invert= 647.00'

Reach RC7: RC7

Page 93

Summary for Reach RC8: RC8

Inflow Area = 68.270 ac, 0.00% Impervious, Inflow Depth = 0.82" for 1 year event

Inflow = 42.16 cfs @ 12.30 hrs, Volume= 4.683 af

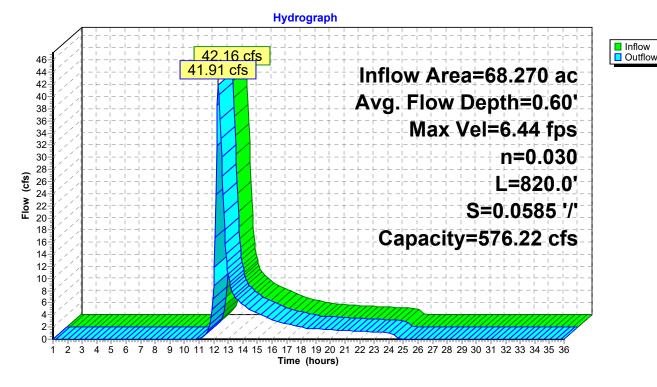
Outflow = 41.91 cfs @ 12.32 hrs, Volume= 4.683 af, Atten= 1%, Lag= 1.5 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.44 fps, Min. Travel Time= 2.1 min Avg. Velocity = 2.44 fps, Avg. Travel Time= 5.6 min

Peak Storage= 5,323 cf @ 12.32 hrs Average Depth at Peak Storage= 0.60'

Bank-Full Depth= 2.00' Flow Area= 40.0 sf, Capacity= 576.22 cfs


30.00' x 2.00' deep Parabolic Channel, n=0.030

Length= 820.0' Slope= 0.0585 '/'

Inlet Invert= 660.00', Outlet Invert= 612.00'

Reach RC8: RC8

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 94

Inflow
Outflow

Summary for Reach RC9: RC9

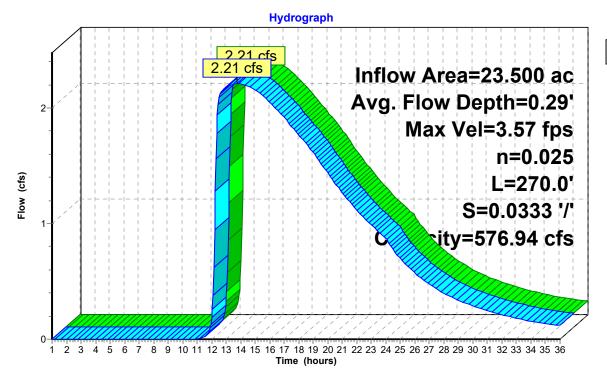
23.500 ac, 17.02% Impervious, Inflow Depth > 1.01" for 1 year event Inflow Area =

Inflow 2.21 cfs @ 13.75 hrs, Volume= 1.983 af

Outflow 2.21 cfs @ 13.76 hrs, Volume= 1.982 af, Atten= 0%, Lag= 0.9 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.57 fps, Min. Travel Time= 1.3 min Avg. Velocity = 2.49 fps, Avg. Travel Time= 1.8 min


Peak Storage= 167 cf @ 13.76 hrs Average Depth at Peak Storage= 0.29'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 576.94 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 270.0' Slope= 0.0333 '/' Inlet Invert= 647.00', Outlet Invert= 638.00'

Reach RC9: RC9

Page 95

Summary for Pond B13P: ARCH CULV

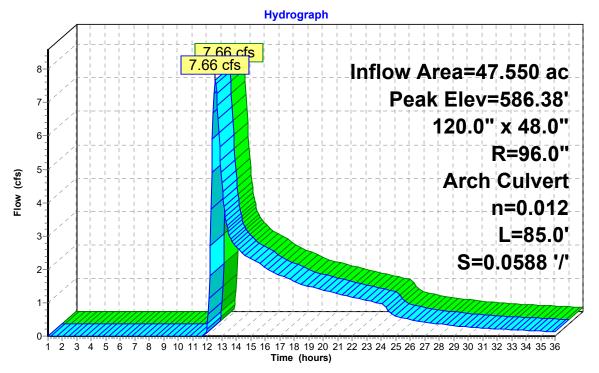
Inflow Area = 47.550 ac, 10.62% Impervious, Inflow Depth > 0.59" for 1 year event

Inflow = 7.66 cfs @ 12.55 hrs, Volume= 2.348 af

Outflow = 7.66 cfs @ 12.55 hrs, Volume= 2.348 af, Atten= 0%, Lag= 0.0 min

Primary = 7.66 cfs @ 12.55 hrs, Volume= 2.348 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 586.38' @ 12.55 hrs

Flood Elev= 610.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	586.00'	120.0" W x 48.0" H, R=96.0" Arch Culvert
	-		L= 85.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 586.00' / 581.00' S= 0.0588 '/' Cc= 0.900
			n= 0.012, Flow Area= 34.43 sf

Primary OutFlow Max=7.66 cfs @ 12.55 hrs HW=586.38' TW=581.55' (Dynamic Tailwater) 1=Culvert (Inlet Controls 7.66 cfs @ 1.99 fps)

Pond B13P: ARCH CULV

Page 96

Inflow
□ Primary

Summary for Pond B16P: ARCH CULV

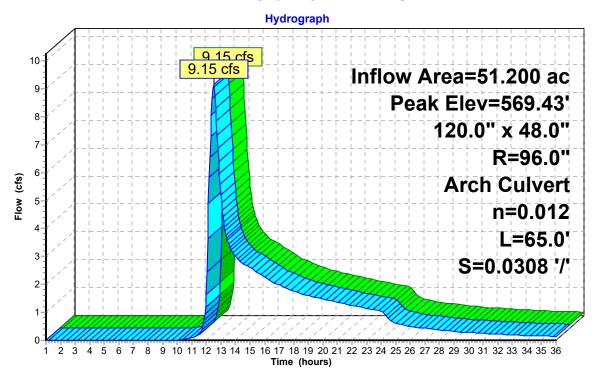
Inflow Area = 51.200 ac, 9.86% Impervious, Inflow Depth > 0.62" for 1 year event

Inflow = 9.15 cfs @ 12.50 hrs, Volume= 2.662 af

Outflow = 9.15 cfs @ 12.50 hrs, Volume= 2.662 af, Atten= 0%, Lag= 0.0 min

Primary = 9.15 cfs @ 12.50 hrs, Volume= 2.662 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 569.43' @ 12.50 hrs

Flood Elev= 578.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	569.00'	120.0" W x 48.0" H, R=96.0" Arch Culvert L= 65.0' Ke= 0.500 Inlet / Outlet Invert= 569.00' / 567.00' S= 0.0308 '/' Cc= 0.900 n= 0.012, Flow Area= 34.43 sf

Primary OutFlow Max=9.15 cfs @ 12.50 hrs HW=569.43' TW=567.62' (Dynamic Tailwater) 1=Culvert (Inlet Controls 9.15 cfs @ 2.11 fps)

Pond B16P: ARCH CULV

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

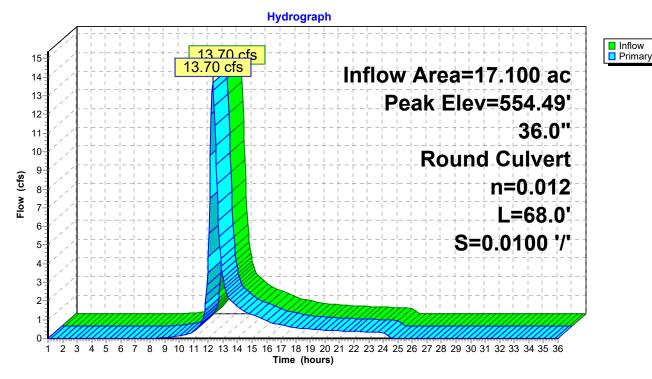
Page 97

Summary for Pond B4P: 36" HDPE

Inflow Area = 17.100 ac, 9.94% Impervious, Inflow Depth = 1.08" for 1 year event

Inflow = 13.70 cfs @ 12.30 hrs, Volume= 1.534 af

Outflow = 13.70 cfs @ 12.30 hrs, Volume= 1.534 af, Atten= 0%, Lag= 0.0 min


Primary = 13.70 cfs @ 12.30 hrs, Volume= 1.534 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 554.49' @ 12.30 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	553.00'	36.0" Round Culvert L= 68.0' Ke= 0.500	
	-		Inlet / Outlet Invert= 553.00' / 552.32' S= 0.0100 '/' Cc= 0.90	00
			n= 0.012 Flow Area= 7.07 sf	

Primary OutFlow Max=13.69 cfs @ 12.30 hrs HW=554.48' TW=552.78' (Dynamic Tailwater) 1=Culvert (Barrel Controls 13.69 cfs @ 5.74 fps)

Pond B4P: 36" HDPE

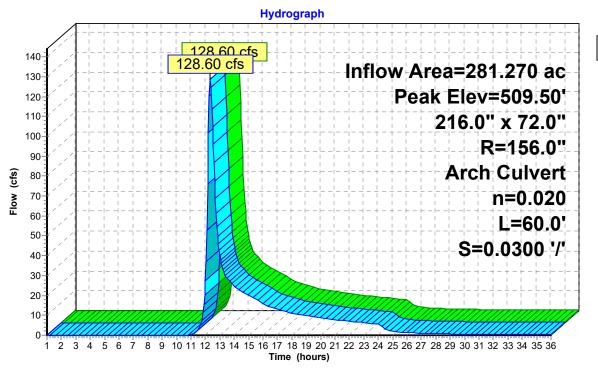
Page 98

Summary for Pond C11P: ARCH CULV

Inflow Area = 281.270 ac, 3.74% Impervious, Inflow Depth > 0.85" for 1 year event

Inflow = 128.60 cfs @ 12.32 hrs, Volume= 19.875 af

Outflow = 128.60 cfs @ 12.32 hrs, Volume= 19.875 af, Atten= 0%, Lag= 0.0 min


Primary = 128.60 cfs @ 12.32 hrs, Volume= 19.875 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 509.50' @ 12.32 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	507.80'	216.0" W x 72.0" H, R=156.0" Arch Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 507.80' / 506.00' S= 0.0300 '/' Cc= 0.900
			n= 0.020, Flow Area= 87.66 sf

Primary OutFlow Max=127.57 cfs @ 12.32 hrs HW=509.50' TW=505.69' (Dynamic Tailwater) 1=Culvert (Inlet Controls 127.57 cfs @ 4.18 fps)

Pond C11P: ARCH CULV

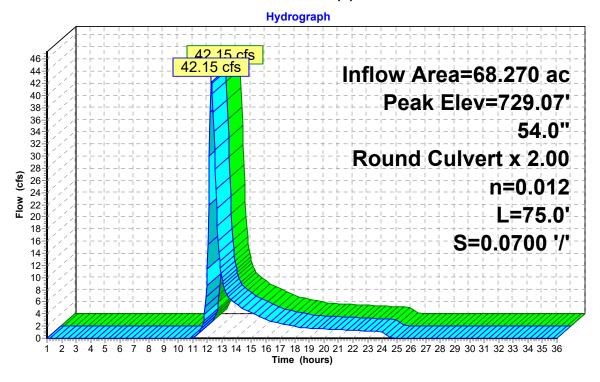
Page 99

Summary for Pond C12P: (2) 54" HDPE

Inflow Area = 68.270 ac, 0.00% Impervious, Inflow Depth = 0.82" for 1 year event

Inflow = 42.15 cfs @ 12.29 hrs, Volume= 4.683 af

Outflow = 42.15 cfs @ 12.29 hrs, Volume= 4.683 af, Atten= 0%, Lag= 0.0 min


Primary = 42.15 cfs @ 12.29 hrs, Volume= 4.683 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 729.07' @ 12.29 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	727.50'	54.0" Round Culvert X 2.00
			L= 75.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 727.50' / 722.25' S= 0.0700 '/' Cc= 0.900
			n= 0.012, Flow Area= 15.90 sf

Primary OutFlow Max=41.93 cfs @ 12.29 hrs HW=729.07' TW=722.78' (Dynamic Tailwater) 1=Culvert (Inlet Controls 41.93 cfs @ 4.26 fps)

Pond C12P: (2) 54" HDPE

Page 100

Summary for Pond C13P: ARCH CULV

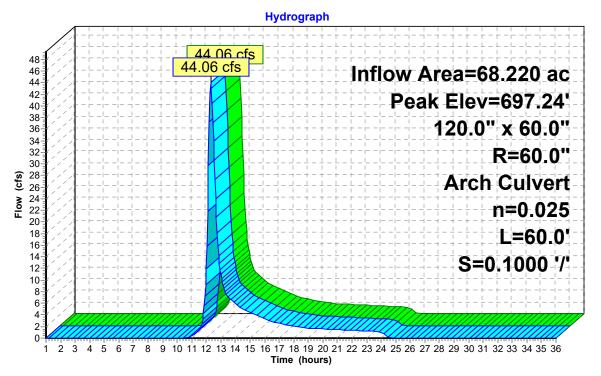
Inflow Area = 68.220 ac, 0.00% Impervious, Inflow Depth = 0.87" for 1 year event

Inflow = 44.06 cfs @ 12.31 hrs, Volume= 4.965 af

Outflow = 44.06 cfs @ 12.31 hrs, Volume= 4.965 af, Atten= 0%, Lag= 0.0 min

Primary = 44.06 cfs @ 12.31 hrs, Volume= 4.965 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 697.24' @ 12.31 hrs

Flood Elev= 712.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	696.00'	120.0" W x 60.0" H, R=60.0" Arch Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 696.00' / 690.00' S= 0.1000 '/' Cc= 0.900
			n= 0.025. Flow Area= 39.27 sf

Primary OutFlow Max=43.89 cfs @ 12.31 hrs HW=697.24' TW=691.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 43.89 cfs @ 3.58 fps)

Pond C13P: ARCH CULV

Page 101

Inflow

Primary

Summary for Pond C14P: (2) 48" HDPE

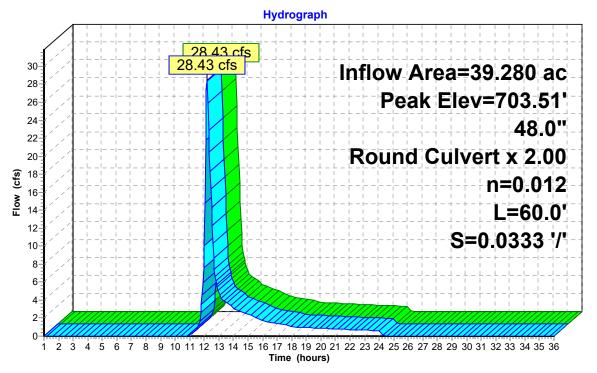
Inflow Area = 39.280 ac, 0.00% Impervious, Inflow Depth = 0.82" for 1 year event

Inflow = 28.43 cfs @ 12.19 hrs, Volume= 2.694 af

Outflow = 28.43 cfs @ 12.19 hrs, Volume= 2.694 af, Atten= 0%, Lag= 0.0 min

Primary = 28.43 cfs @ 12.19 hrs, Volume= 2.694 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 703.51' @ 12.20 hrs

Flood Elev= 712.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	702.00'	48.0" Round Culvert X 2.00
	-		L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 702.00' / 700.00' S= 0.0333 '/' Cc= 0.900
			n= 0.012, Flow Area= 12.57 sf

Primary OutFlow Max=27.37 cfs @ 12.19 hrs HW=703.50' TW=702.83' (Dynamic Tailwater) 1=Culvert (Outlet Controls 27.37 cfs @ 4.72 fps)

Pond C14P: (2) 48" HDPE

Page 102

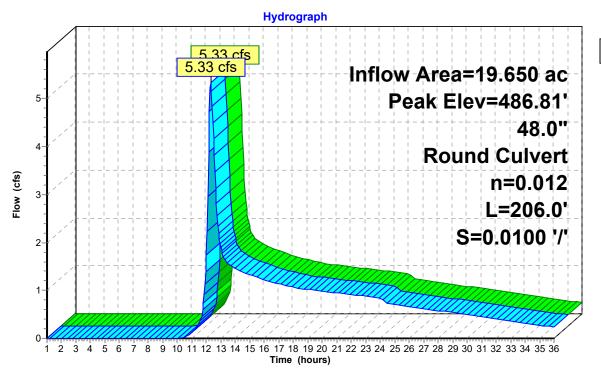
Inflow Primary

Summary for Pond C2P: 48" HDPE

Inflow Area = 19.650 ac, 18.47% Impervious, Inflow Depth > 1.12" for 1 year event

Inflow = 5.33 cfs @ 12.29 hrs, Volume= 1.827 af

Outflow = 5.33 cfs @ 12.29 hrs, Volume= 1.827 af, Atten= 0%, Lag= 0.0 min


Primary = 5.33 cfs @ 12.29 hrs, Volume= 1.827 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 486.81' @ 12.29 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	486.02'	48.0" Round Culvert L= 206.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 486.02' / 483.97' S= 0.0100 '/' Cc= 0.900 n= 0.012. Flow Area= 12.57 sf

Primary OutFlow Max=5.32 cfs @ 12.29 hrs HW=486.81' TW=484.98' (Dynamic Tailwater) 1=Culvert (Inlet Controls 5.32 cfs @ 3.03 fps)

Pond C2P: 48" HDPE

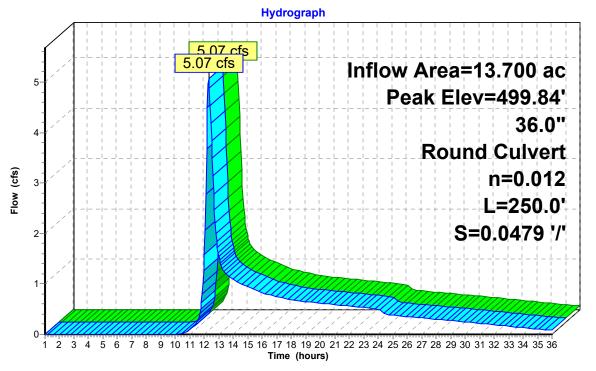
Page 103

Summary for Pond C3P: 36" HDPE

Inflow Area = 13.700 ac, 12.26% Impervious, Inflow Depth > 1.06" for 1 year event

Inflow = 5.07 cfs @ 12.29 hrs, Volume= 1.215 af

Outflow = 5.07 cfs @ 12.29 hrs, Volume= 1.215 af, Atten= 0%, Lag= 0.0 min


Primary = 5.07 cfs @ 12.29 hrs, Volume= 1.215 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 499.84' @ 12.29 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	499.00'	36.0" Round Culvert L= 250.0' Ke= 0.500
			Inlet / Outlet Invert= 499.00' / 487.02' S= 0.0479 '/' Cc= 0.900
			n= 0.012 Flow Area= 7.07 sf

Primary OutFlow Max=5.05 cfs @ 12.29 hrs HW=499.84' TW=486.81' (Dynamic Tailwater) 1=Culvert (Inlet Controls 5.05 cfs @ 3.12 fps)

Pond C3P: 36" HDPE

Page 104

Inflow

Primary

Summary for Pond C5P: (2) 60" CULV

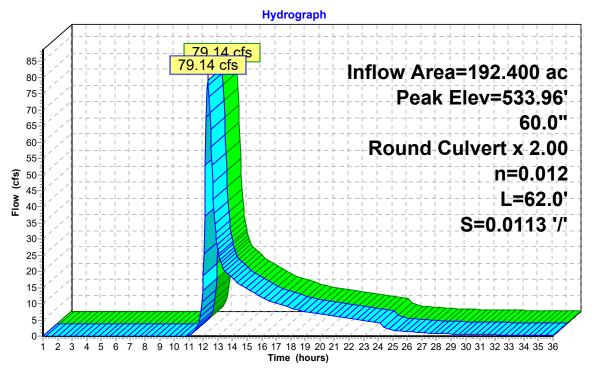
Inflow Area = 192.400 ac, 5.22% Impervious, Inflow Depth > 0.89" for 1 year event

Inflow = 79.14 cfs @ 12.31 hrs, Volume= 14.220 af

Outflow = 79.14 cfs @ 12.31 hrs, Volume= 14.220 af, Atten= 0%, Lag= 0.0 min

Primary = 79.14 cfs @ 12.31 hrs, Volume= 14.220 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 533.96' @ 12.31 hrs

Flood Elev= 551.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	531.70'	60.0" Round Culvert X 2.00
			L= 62.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 531.70' / 531.00' S= 0.0113 '/' Cc= 0.900
			n= 0.012, Flow Area= 19.63 sf

Primary OutFlow Max=78.92 cfs @ 12.31 hrs HW=533.95' TW=532.55' (Dynamic Tailwater) 1=Culvert (Barrel Controls 78.92 cfs @ 6.75 fps)

Pond C5P: (2) 60" CULV

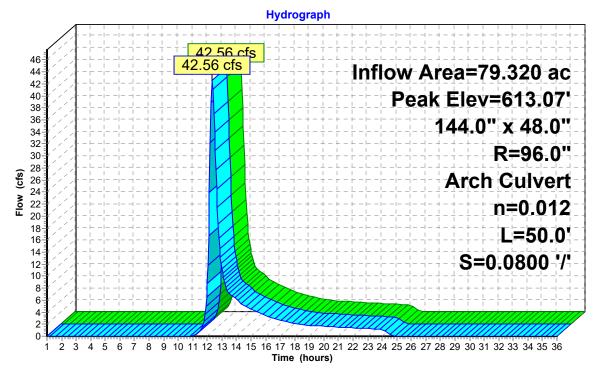
Page 105

Summary for Pond C8P: ARCH CULV

Inflow Area = 79.320 ac, 0.59% Impervious, Inflow Depth = 0.74" for 1 year event

Inflow = 42.56 cfs @ 12.32 hrs, Volume= 4.877 af

Outflow = 42.56 cfs @ 12.32 hrs, Volume= 4.877 af, Atten= 0%, Lag= 0.0 min


Primary = 42.56 cfs @ 12.32 hrs, Volume= 4.877 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 613.07' @ 12.32 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	612.00'	144.0" W x 48.0" H, R=96.0" Arch Culvert
	_		L= 50.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 612.00' / 608.00' S= 0.0800 '/' Cc= 0.900
			n= 0.012, Flow Area= 38.02 sf

Primary OutFlow Max=42.15 cfs @ 12.32 hrs HW=613.06' TW=608.84' (Dynamic Tailwater) 1=Culvert (Inlet Controls 42.15 cfs @ 3.31 fps)

Pond C8P: ARCH CULV

Page 106

Summary for Pond C9P: 48" HDPE

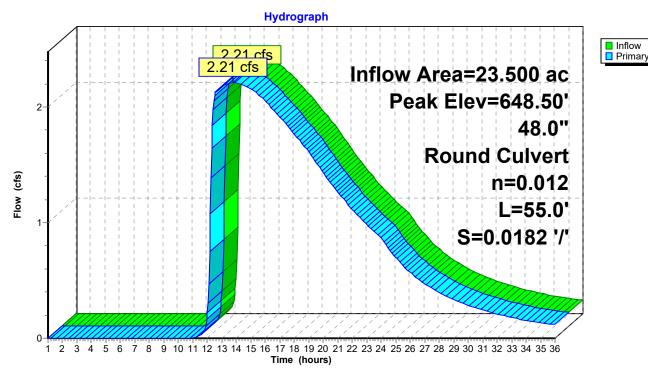
Inflow Area = 23.500 ac, 17.02% Impervious, Inflow Depth > 1.01" for 1 year event

Inflow = 2.21 cfs @ 13.75 hrs, Volume= 1.983 af

Outflow = 2.21 cfs @ 13.75 hrs, Volume= 1.983 af, Atten= 0%, Lag= 0.0 min

Primary = 2.21 cfs @ 13.75 hrs, Volume= 1.983 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 648.50' @ 13.75 hrs

Flood Elev= 712.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	648.00'	48.0" Round Culvert L= 55.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 648.00' / 647.00' S= 0.0182 '/' Cc= 0.900 n= 0.012, Flow Area= 12.57 sf

Primary OutFlow Max=2.21 cfs @ 13.75 hrs HW=648.50' TW=647.29' (Dynamic Tailwater)
1=Culvert (Inlet Controls 2.21 cfs @ 2.42 fps)

Pond C9P: 48" HDPE

Page 107

Summary for Pond PB11: POND B11

Inflow Area = 21.550 ac, 7.89% Impervious, Inflow Depth = 1.18" for 1 year event

Inflow = 20.71 cfs @ 12.22 hrs, Volume= 2.122 af

Outflow = 8.70 cfs @ 12.63 hrs, Volume= 2.086 af, Atten= 58%, Lag= 24.4 min

Primary = 8.70 cfs @ 12.63 hrs, Volume= 2.086 af

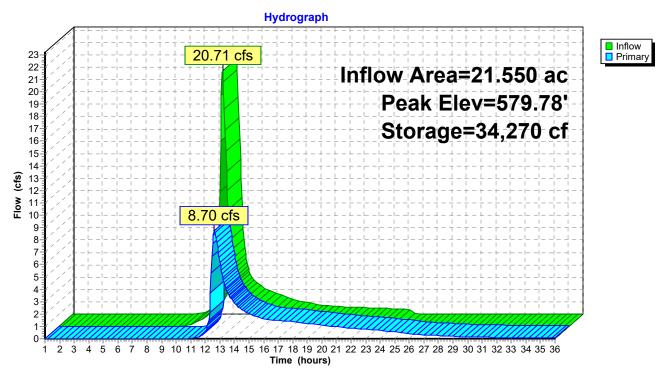
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 579.78' @ 12.63 hrs Surf.Area= 22,140 sf Storage= 34,270 cf

Plug-Flow detention time= 183.1 min calculated for 2.086 af (98% of inflow)

Center-of-Mass det. time= 173.2 min (1,024.2 - 851.1)

Volume	Inver	: Avail.Stor	age Storage	Description	
#1	578.00	91,99	0 cf Custom	Stage Data (Pr	rismatic)Listed below (Recalc)
Elevation	on S	urf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
578.0	00	16,290	0	0	
580.0	00	22,850	39,140	39,140	
582.0	00	30,000	52,850	91,990	
Device	Routing	Invert	Outlet Devices	3	
#1	Primary	576.00'	36.0" Round	Culvert X 2.00	
	•		L= 100.0' CP	P, square edge	e headwall, Ke= 0.500
			Inlet / Outlet Ir	nvert= 576.00 /	572.00' S= 0.0400 '/' Cc= 0.900
			n= 0.012, Flo	w Area= 7.07 sf	f
#2	Device 1	581.75'			Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	579.30'	4.9' long Sha	rp-Crested Rec	ctangular Weir 2 End Contraction(s)
			0.5' Crest Heigh	ght	ζ ,
#4	Device 1	578.00'	0.5' long Sha 0.5' Crest Heig		ctangular Weir 2 End Contraction(s)

Primary OutFlow Max=8.68 cfs @ 12.63 hrs HW=579.78' TW=575.54' (Dynamic Tailwater)


1=Culvert (Passes 8.68 cfs of 102.84 cfs potential flow)

2=Orifice/Grate (Controls 0.00 cfs)

-3=Sharp-Crested Rectangular Weir (Weir Controls 5.88 cfs @ 2.54 fps)

-4=Sharp-Crested Rectangular Weir (Weir Controls 2.79 cfs @ 6.27 fps)

Pond PB11: POND B11

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC Page 109

Summary for Pond PB12: POND B12

24.200 ac, 20.87% Impervious, Inflow Depth = 0.73" for 1 year event Inflow Area =

Inflow 13.96 cfs @ 12.23 hrs, Volume= 1.468 af

Outflow = 1.16 cfs @ 15.61 hrs, Volume= 1.263 af, Atten= 92%, Lag= 202.7 min

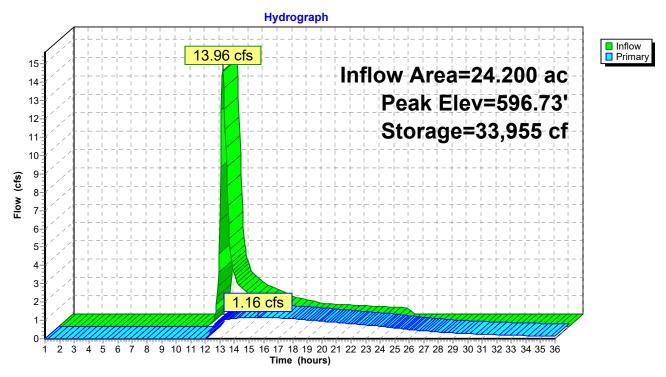
1.16 cfs @ 15.61 hrs, Volume= Primary 1.263 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 596.73' @ 15.61 hrs Surf.Area= 48,253 sf Storage= 33,955 cf

Plug-Flow detention time= 410.9 min calculated for 1.261 af (86% of inflow)

Center-of-Mass det. time= 348.3 min (1,228.4 - 880.1)

Volume	Inve	ert Avail.Sto	rage Stor	age Description			
#1	596.0	0' 216,6	00 cf Cus	tom Stage Data (P	rismatic)Listed below (Recalc)		
Elevation		Surf.Area	Inc.Stor				
(fee	et)	(sq-ft)	(cubic-feet	t) (cubic-feet)			
596.0	00	44,900		0 0			
598.0	00	54,100	99,00	0 99,000			
600.0	00	63,500	117,60	0 216,600			
Device	Routing	Invert	Outlet De	vices			
#1	Primary	596.00'	36.0" Ro	und Culvert X 2.00	L= 40.0' Ke= 0.500		
	,		Inlet / Out	tlet Invert= 596.00' /	595.00' S= 0.0250 '/' Cc= 0.900		
			n= 0.012,	Flow Area= 7.07 s	f		
#2	Device 1	596.00'	8.5" Vert. Orifice/Grate C= 0.600				
#3	Device 1	597.00'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)				
			2.1' Crest	•	• ()		
#4	Device 1	599.75'	48.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads				


Primary OutFlow Max=1.16 cfs @ 15.61 hrs HW=596.73' TW=586.17' (Dynamic Tailwater) 1=Culvert (Passes 1.16 cfs of 7.72 cfs potential flow)

2=Orifice/Grate (Orifice Controls 1.16 cfs @ 2.95 fps)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PB12: POND B12

Page 111

Summary for Pond PB2: POND B2

Inflow Area = 6.100 ac, 13.11% Impervious, Inflow Depth = 0.82" for 1 year event

Inflow = 4.26 cfs @ 12.21 hrs, Volume= 0.418 af

Outflow = 0.20 cfs @ 17.41 hrs, Volume= 0.326 af, Atten= 95%, Lag= 311.8 min

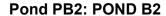
Primary = 0.20 cfs @ 17.41 hrs, Volume= 0.326 af

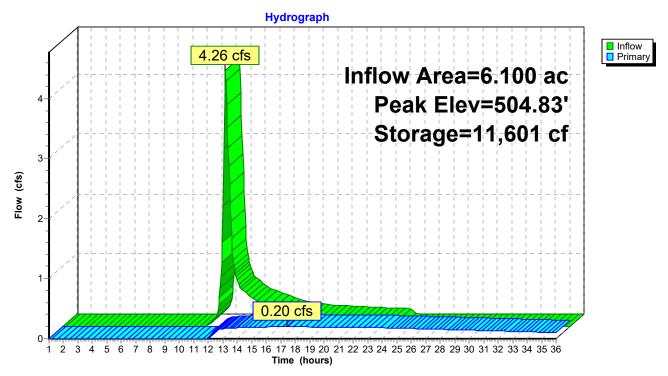
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 504.83' @ 17.41 hrs Surf.Area= 14,922 sf Storage= 11,601 cf

Plug-Flow detention time= 599.9 min calculated for 0.326 af (78% of inflow)

Center-of-Mass det. time= 512.3 min (1,383.9 - 871.6)

Volume	Inv	ert Avail.Sto	orage Storag	ge Description			
#1	504.0	00' 70,6	00 cf Custo	om Stage Data (Prismatic)Listed below (Recalc)			
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
504.0	00	13,100	0	0			
506.0	00	17,500	30,600	30,600			
508.0	00	22,500	40,000	70,600			
Device	Routing	Invert	Outlet Devi	ices			
#1	Primary	504.00'	30.0" Roui	nd Culvert L= 40.0' Ke= 0.500	_		
	-		Inlet / Outle	et Invert= 504.00' / 498.00' S= 0.1500 '/' Cc= 0.900			
			n= 0.012, F	Flow Area= 4.91 sf			
#2	Device 1	504.00'		3.0" Vert. Orifice/Grate C= 0.600			
#3	Device 1	505.50'		1.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)			
			2.0' Crest Height				
#4	Device 1	507.50'	30.0" x 48.0	.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low head	s		


Primary OutFlow Max=0.20 cfs @ 17.41 hrs HW=504.83' TW=500.09' (Dynamic Tailwater)


1=Culvert (Passes 0.20 cfs of 4.40 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.20 cfs @ 4.04 fps)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-4=Orifice/Grate (Controls 0.00 cfs)

Page 113

Summary for Pond PB3: POND B3

26.650 ac, 15.57% Impervious, Inflow Depth = 0.93" for 1 year event Inflow Area =

Inflow 18.72 cfs @ 12.29 hrs, Volume= 2.056 af

Outflow = 2.25 cfs @ 14.17 hrs, Volume= 1.972 af, Atten= 88%, Lag= 112.5 min

2.25 cfs @ 14.17 hrs, Volume= Primary 1.972 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 521.49' @ 14.17 hrs Surf.Area= 30,841 sf Storage= 42,538 cf

Plug-Flow detention time= 278.6 min calculated for 1.969 af (96% of inflow)

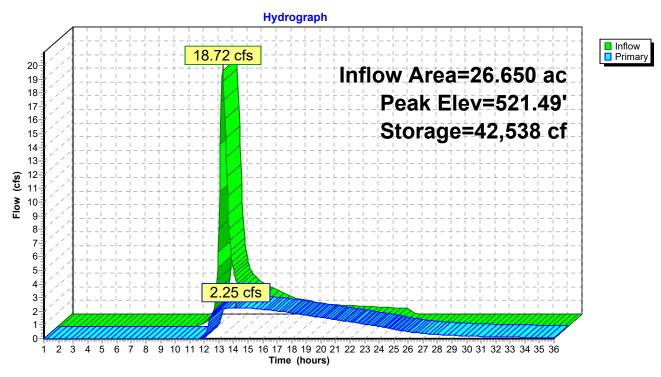
Center-of-Mass det. time= 257.3 min (1,126.9 - 869.6)

Volume	Inver	t Avail.Stor	age Storage	e Description	
#1	520.00	170,60	0 cf Custom	n Stage Data (Prismatic)Listed below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
520.0	00	26,300	0	0	
522.0	00	32,400	58,700	58,700	
524.0	00	38,900	71,300	130,000	
525.0	00	42,300	40,600	170,600	
Device	Routing	Invert	Outlet Devices	es	
#1	Primary	518.00'	30.0" Round	d Culvert X 2.00 L= 70.0' Ke= 0.500	
				Invert= 518.00' / 514.00' S= 0.0571 '/' Cc= 0.900 ow Area= 4.91 sf	
#2	Device 1	520.00'	,	ifice/Grate C= 0.600	
#3	Device 1	522.40'	4.9' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
#4	Device 1	523.75'	0.5' Crest Height 30.0" x 48.0" Horiz. Orifice/Grate X 2.00 C= 0.600		
π-1	Device 1	323.73		eir flow at low heads	
#5	Device 1	523.25'	6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s) 0.5' Crest Height		

Primary OutFlow Max=2.25 cfs @ 14.17 hrs HW=521.49' TW=504.62' (Dynamic Tailwater)

-1=Culvert (Passes 2.25 cfs of 70.73 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 2.25 cfs @ 5.08 fps)


-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-4=Orifice/Grate (Controls 0.00 cfs)

-5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Page 114

Pond PB3: POND B3

Page 115

Summary for Pond PB4: POND B4

Inflow Area = 10.200 ac, 13.73% Impervious, Inflow Depth = 1.09" for 1 year event

Inflow = 10.15 cfs @ 12.19 hrs, Volume= 0.930 af

Outflow = 1.23 cfs @ 13.37 hrs, Volume= 0.904 af, Atten= 88%, Lag= 71.1 min

Primary = 1.23 cfs @ 13.37 hrs, Volume= 0.904 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 559.21' @ 13.37 hrs Surf.Area= 17,025 sf Storage= 18,771 cf

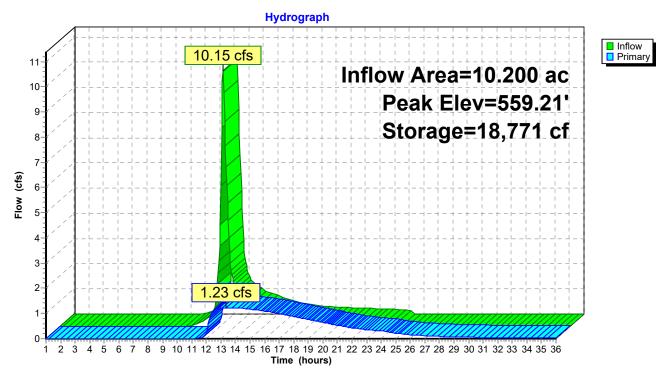
Plug-Flow detention time= 230.4 min calculated for 0.904 af (97% of inflow)

Center-of-Mass det. time= 214.7 min (1,067.5 - 852.7)

Volume	Inver	t Avail.Stor	age Storage D	Description
#1	558.00	' 76,00	0 cf Custom	Stage Data (Prismatic)Listed below (Recalc)
Elevatio (fee 558.0 560.0	et) 00	urf.Area (sq-ft) 14,000 19,000	Inc.Store (cubic-feet) 0 33,000	Cum.Store (cubic-feet) 0 33,000
562.0	-	24,000	43,000	76,000
<u>Device</u>	Routing	Invert	Outlet Devices	
#1	Primary	558.00'	Inlet / Outlet In	Culvert L= 50.0' Ke= 0.500 nvert= 558.00' / 554.00' S= 0.0800 '/' Cc= 0.900 w Area= 7.07 sf
#2	Device 1	558.00'	,	fice/Grate C= 0.600
#3	Device 1	560.00'	2.5' long Shar 0.5' Crest Heig	rp-Crested Rectangular Weir 2 End Contraction(s)
#4 #5	Device 1 Device 1	561.50' 561.00'	30.0" x 48.0" F	Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads rp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=1.23 cfs @ 13.37 hrs HW=559.21' TW=0.00' (Dynamic Tailwater)

1=Culvert (Passes 1.23 cfs of 10.00 cfs potential flow)


⁻²⁼Orifice/Grate (Orifice Controls 1.23 cfs @ 4.61 fps)

⁻³⁼Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

⁻⁴⁼Orifice/Grate (Controls 0.00 cfs)

⁻⁵⁼Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond PB4: POND B4

Page 117

Summary for Pond PB5: POND B5

Inflow Area = 5.500 ac, 38.00% Impervious, Inflow Depth = 1.49" for 1 year event

Inflow = 8.19 cfs @ 12.15 hrs, Volume= 0.684 af

Outflow = 0.63 cfs @ 14.02 hrs, Volume= 0.606 af, Atten= 92%, Lag= 112.2 min

Primary = 0.63 cfs @ 14.02 hrs, Volume= 0.606 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 564.12' @ 14.02 hrs Surf.Area= 10,030 sf Storage= 17,534 cf

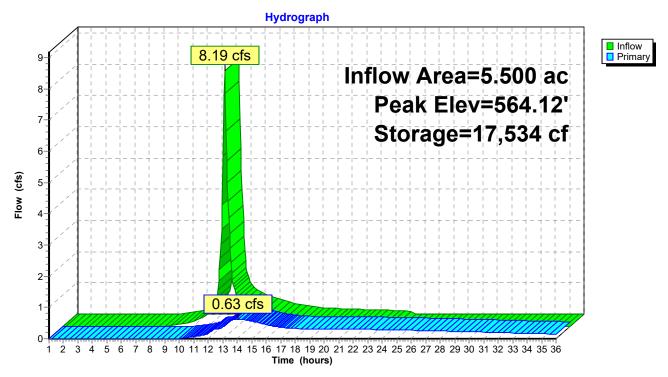
Plug-Flow detention time= 521.8 min calculated for 0.606 af (89% of inflow)

Center-of-Mass det. time= 468.1 min (1,295.7 - 827.6)

Volume	Inve	ert Avail.St	orage S	torage	Description					
#1	562.0	00' 39,6	600 cf C	ustom	Stage Data (P	rismatic)Li	isted be	low (Recal	c)	
Elevatio		Surf.Area (sq-ft)	Inc.St (cubic-fe		Cum.Store (cubic-feet)					
562.0	00	6,500		0	0					
564.0	00	9,800	16,	300	16,300					
566.0	00	13,500	23,	300	39,600					
Device	Routing	Invert	Outlet I	Device:	S					
#1	Primary	562.00'	30.0"	Round	Culvert L= 75	.0' Ke= 0.	.500			
			Inlet / C	otlet l	nvert= 562.00' /	558.00'	S = 0.053	33 '/' Cc=	0.900	
			n= 0.01	2, Flo	w Area= 4.91 s	f				
#2	Device 1	562.00'		3.0" Vert. Orifice/Grate C= 0.600						
#3	Device 1	564.00'	2.0' lor	2.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)						
			0.5' Cre	st Hei	ght					
#4	Device 1	565.50'	36.0" x	54.0"	Horiz. Orifice/	Grate C=	0.600	Limited to v	weir flow at lov	v heads

Primary OutFlow Max=0.63 cfs @ 14.02 hrs HW=564.12' TW=0.00' (Dynamic Tailwater)

1=Culvert (Passes 0.63 cfs of 22.06 cfs potential flow)


-2=Orifice/Grate (Orifice Controls 0.33 cfs @ 6.81 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 0.29 cfs @ 1.19 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Page 118

Pond PB5: POND B5

Page 119

Summary for Pond PB6: POND B6

Inflow Area = 8.000 ac, 27.12% Impervious, Inflow Depth = 1.35" for 1 year event

Inflow = 9.97 cfs @ 12.19 hrs, Volume= 0.900 af

Outflow = 0.73 cfs @ 14.63 hrs, Volume= 0.858 af, Atten= 93%, Lag= 146.7 min

Primary = 0.73 cfs @ 14.63 hrs, Volume= 0.858 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 657.45' @ 14.63 hrs Surf.Area= 16,976 sf Storage= 22,071 cf

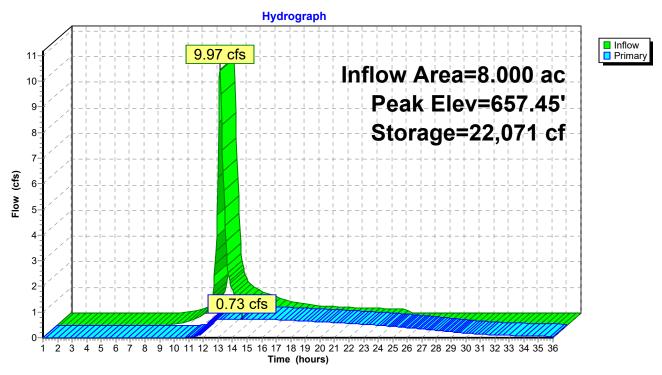
Plug-Flow detention time= 398.1 min calculated for 0.858 af (95% of inflow)

Center-of-Mass det. time= 372.3 min (1,210.3 - 837.9)

Volume	Inve	rt Avail.Sto	orage Stora	age Description				
#1	656.0	0' 74,6	600 cf Cust	om Stage Data (P	rismatic)Listed below (Recalc)			
Elevation		Surf.Area	Inc.Store	•				
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)				
656.0	00	13,500	0	0				
658.0	00	18,300	31,800	31,800				
660.0	00	24,500	42,800	74,600				
Device	Routing	Invert	Outlet Dev	rices				
#1	Primary	656.00'	30.0" Rou	und Culvert L= 13	0.0' Ke= 0.500			
	•		Inlet / Outl	et Invert= 656.00' /	551.00' S= 0.8077 '/' Cc= 0.900			
			n = 0.012	Flow Area= 4.91 s	F .			
#2	Device 1	656.00'	5.0" Vert.	5.0" Vert. Orifice/Grate C= 0.600				
#3	Device 1	658.10'	4.0' long \$	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)				
			0.5' Crest	Height				
#4	Device 1	659.50'	30.0" x 48	30.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads				

Primary OutFlow Max=0.73 cfs @ 14.63 hrs HW=657.45' TW=550.56' (Dynamic Tailwater)

1=Culvert (Passes 0.73 cfs of 12.08 cfs potential flow)


-2=Orifice/Grate (Orifice Controls 0.73 cfs @ 5.36 fps)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-4=Orifice/Grate (Controls 0.00 cfs)

Page 120

Pond PB6: POND B6

Page 121

Summary for Pond PB7: POND B7

13.450 ac, 27.88% Impervious, Inflow Depth = 1.04" for 1 year event Inflow Area =

11.45 cfs @ 12.25 hrs, Volume= 0.25 cfs @ 23.28 hrs, Volume= Inflow 1.161 af

Outflow = 0.460 af, Atten= 98%, Lag= 661.9 min

0.25 cfs @ 23.28 hrs, Volume= Primary 0.460 af

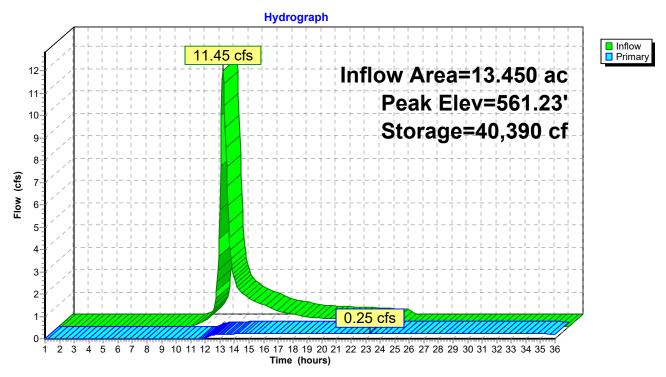
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 561.23' @ 23.28 hrs Surf.Area= 34,600 sf Storage= 40,390 cf

Plug-Flow detention time= 716.2 min calculated for 0.460 af (40% of inflow)

Center-of-Mass det. time= 585.7 min (1,445.5 - 859.8)

Volume	Inve	ert Avail.Sto	rage Storaç	ge Description
#1	560.0	0' 148,2	00 cf Custo	om Stage Data (Prismatic)Listed below (Recalc)
Elevation	on	Surf.Area	Inc.Store	Cum.Store
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)
560.0	00	30,900	0	0
562.0	00	36,900	67,800	67,800
564.0	00	43,500	80,400	148,200
Device	Routing	Invert	Outlet Devi	ices
#1	Primary	560.00'	36.0" Roui	ind Culvert L= 100.0' Ke= 0.500
	•		Inlet / Outle	et Invert= 560.00' / 558.00' S= 0.0200 '/' Cc= 0.900
			n= 0.012, F	Flow Area= 7.07 sf
#2	Device 1	560.00'	3.0" Vert. C	Orifice/Grate C= 0.600
#3	Device 1	561.50'	2.0' long Si	Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest H	Height
#4	Device 1	563.65'	36.0" x 48.0	.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low head

Primary OutFlow Max=0.25 cfs @ 23.28 hrs HW=561.23' TW=554.31' (Dynamic Tailwater)


-1=Culvert (Passes 0.25 cfs of 10.35 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.25 cfs @ 5.07 fps)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PB7: POND B7

Page 123

Summary for Pond PC10: POND C10

Inflow Area = 21.300 ac, 16.90% Impervious, Inflow Depth = 1.28" for 1 year event

Inflow = 24.03 cfs @ 12.21 hrs, Volume= 2.277 af

Outflow = 3.51 cfs @ 13.10 hrs, Volume= 2.233 af, Atten= 85%, Lag= 53.3 min

Primary = 3.51 cfs @ 13.10 hrs, Volume= 2.233 af

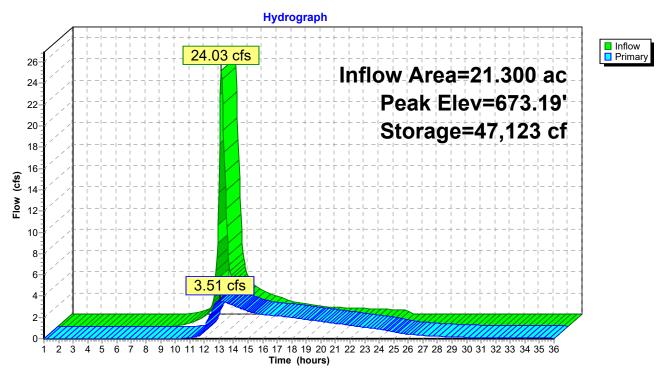
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 673.19' @ 13.10 hrs Surf.Area= 42,130 sf Storage= 47,123 cf

Plug-Flow detention time= 239.4 min calculated for 2.233 af (98% of inflow)

Center-of-Mass det. time= 228.0 min (1,071.6 - 843.5)

Volume	Inve	rt Avail.Sto	rage Storage	Description	
#1	672.00	0' 182,50	00 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
672.0	00	37,200	0	0	
674.0	00	45,500	82,700	82,700	
676.0	00	54,300	99,800	182,500	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	672.00'	L= 80.0' CPI Inlet / Outlet I		headwall, Ke= 0.500 670.00' S= 0.0250 '/' Cc= 0.900
#2 #3 #4	Device 1 Device 1 Device 1	672.00' 675.70' 673.00'	30.0" x 48.0"	rp-Crested Red	OO C= 0.600 Grate C= 0.600 Limited to weir flow at low heads ctangular Weir 2 End Contraction(s)

Primary OutFlow Max=3.51 cfs @ 13.10 hrs HW=673.19' TW=660.24' (Dynamic Tailwater)


1=Culvert (Passes 3.51 cfs of 19.34 cfs potential flow)

2=Orifice/Grate (Orifice Controls 2.55 cfs @ 4.87 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

-4=Sharp-Crested Rectangular Weir (Weir Controls 0.96 cfs @ 1.43 fps)

Pond PC10: POND C10

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 125

Summary for Pond PC2: POND C2

Inflow Area = 5.950 ac, 32.77% Impervious, Inflow Depth = 1.42" for 1 year event

Inflow = 7.05 cfs @ 12.24 hrs, Volume= 0.704 af

Outflow = 0.39 cfs @ 15.91 hrs, Volume= 0.612 af, Atten= 95%, Lag= 220.3 min

Primary = 0.39 cfs @ 15.91 hrs, Volume= 0.612 af

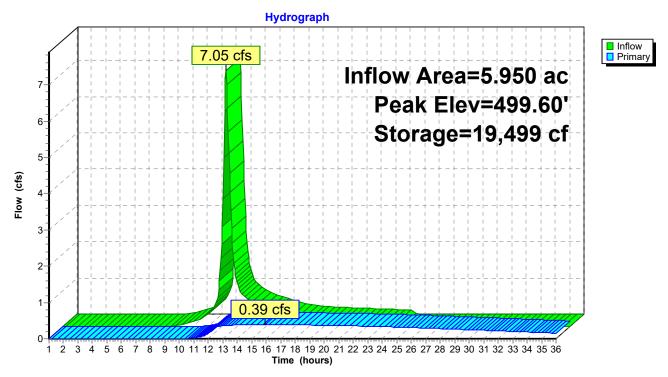
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 499.60' @ 15.91 hrs Surf.Area= 13,797 sf Storage= 19,499 cf

Plug-Flow detention time= 567.9 min calculated for 0.612 af (87% of inflow)

Center-of-Mass det. time= 508.4 min (1,346.4 - 837.9)

Volume	Inve	ert Avail.Sto	orage Storag	ge Description	
#1	498.0	0' 58,9	00 cf Custo	om Stage Data (Prismatic)Listed below (Recalc)	_
Elevation		Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
498.0	00	10,600	0	0	
500.0	00	14,600	25,200	25,200	
502.0	00	19,100	33,700	58,900	
Device	Routing	Invert	Outlet Device	ices	
#1	Primary	498.00'	24.0" Rour	ind Culvert L= 50.0' Ke= 0.500	_
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Inlet / Outle	et Invert= 498.00' / 496.00' S= 0.0400 '/' Cc= 0.900	
			n= 0.012. F	Flow Area= 3.14 sf	
#2	Device 1	498.00'	3.5" Vert. C	Orifice/Grate C= 0.600	
#3	Device 1	499.90'	1.6' long SI	Sharp-Crested Rectangular Weir 2 End Contraction(s)	
			0.5' Crest H	Height	
#4	Device 1	501.75'	30.0" x 48.0	0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	3

Primary OutFlow Max=0.39 cfs @ 15.91 hrs HW=499.60' TW=486.39' (Dynamic Tailwater)


_1=Culvert (Passes 0.39 cfs of 11.59 cfs potential flow)

^{—2=}Orifice/Grate (Orifice Controls 0.39 cfs @ 5.80 fps)

⁻³⁼Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

⁻⁴⁼Orifice/Grate (Controls 0.00 cfs)

Pond PC2: POND C2

Page 127

Summary for Pond PC4: POND C4

Inflow Area = 7.400 ac, 22.70% Impervious, Inflow Depth = 1.22" for 1 year event

Inflow = 7.74 cfs @ 12.22 hrs, Volume= 0.751 af

Outflow = 0.50 cfs (a) 15.54 hrs, Volume= 0.701 af, Atten= 94%, Lag= 198.7 min

Primary = 0.50 cfs @ 15.54 hrs, Volume= 0.701 af

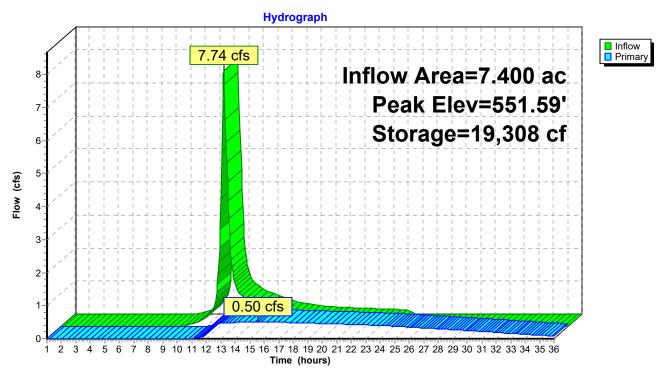
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 551.59' @ 15.54 hrs Surf.Area= 13,565 sf Storage= 19,308 cf

Plug-Flow detention time= 480.2 min calculated for 0.700 af (93% of inflow)

Center-of-Mass det. time= 446.4 min (1,294.4 - 848.0)

Volume	Inve	rt Avail.Sto	orage Storage	e Description	
#1	550.0	0' 57,7	00 cf Custon	m Stage Data (Prismatic)Listed below (Recalc)	
Elevatio		Surf.Area (sg-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
550.0		10.700	(cubic-leet) 0	(cubic-leet)	
552.0	-	14,300	25,000	25,000	
554.0	00	18,400	32,700	57,700	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	550.00'	Inlet / Outlet	d Culvert L= 40.0' Ke= 0.500 Invert= 550.00' / 547.50' S= 0.0625 '/' Cc= 0.900 low Area= 4.91 sf	
#2	Device 1	550.00'	4.0" Vert. Or	rifice/Grate C= 0.600	
#3	Device 1	551.80'	3.0' long Sha 1.0' Crest He	eight earp-Crested Rectangular Weir 2 End Contraction(s)	
#4	Device 1	553.75'	36.0" x 48.0"	"Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low he	eads

Primary OutFlow Max=0.50 cfs @ 15.54 hrs HW=551.59' TW=546.07' (Dynamic Tailwater)


1=Culvert (Passes 0.50 cfs of 14.16 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.50 cfs @ 5.75 fps)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PC4: POND C4

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 129

Summary for Pond PC6: POND C6

16.250 ac, 15.08% Impervious, Inflow Depth = 1.09" for 1 year event Inflow Area =

Inflow 15.95 cfs @ 12.20 hrs, Volume= 1.482 af

Outflow = 1.96 cfs @ 13.39 hrs, Volume= 1.392 af, Atten= 88%, Lag= 71.5 min

1.96 cfs @ 13.39 hrs, Volume= Primary 1.392 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 638.97' @ 13.39 hrs Surf.Area= 32,681 sf Storage= 30,550 cf

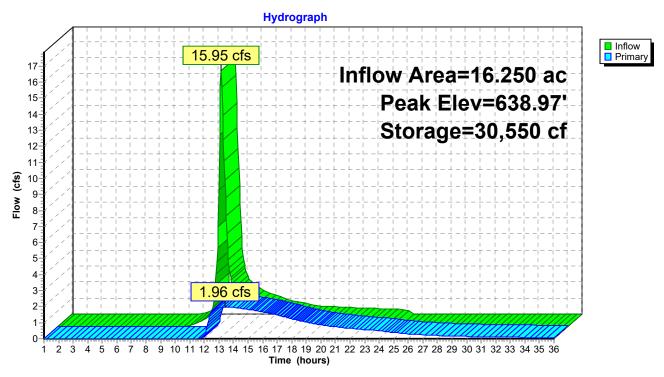
Plug-Flow detention time= 267.4 min calculated for 1.390 af (94% of inflow)

Center-of-Mass det. time= 236.5 min (1,089.7 - 853.3)

Volume	Inve	ert Avail.Sto	rage	Storage [Description	
#1	638.0	00' 143,0	00 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevation (fee		Surf.Area (sq-ft)		Store c-feet)	Cum.Store (cubic-feet)	
638.0	00	30,000		0	0	
640.0	00	35,500	6	5,500	65,500	
642.0	00	42,000	7	7,500	143,000	
Device	Routing	Invert	Outle	et Devices		
#1	Primary	638.00'	30.0	' Round	Culvert X 2.00	
			L= 50	0.0' CPP	, square edge	headwall, Ke= 0.500
						634.00' S= 0.0800 '/' Cc= 0.900
					v Area= 4.91 s	
#2	Device 1	638.00'			ifice/Grate Ca	0.000
#3	Device 1	639.00'				ctangular Weir 2 End Contraction(s)
				Crest Heig		
#4	Device 1	641.75'	30.0	' x 48.0" ŀ	Horiz. Orifice/	Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=1.96 cfs @ 13.39 hrs HW=638.97' TW=638.32' (Dynamic Tailwater)

-1=Culvert (Passes 1.96 cfs of 10.56 cfs potential flow)


⁻²⁼Orifice/Grate (Orifice Controls 1.96 cfs @ 3.60 fps)

⁻³⁼Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

⁻⁴⁼Orifice/Grate (Controls 0.00 cfs)

Page 130

Pond PC6: POND C6

<u>Page 131</u>

Summary for Pond PC7: POND C7

Inflow Area = 19.700 ac, 20.30% Impervious, Inflow Depth = 1.28" for 1 year event

Inflow = 23.53 cfs @ 12.18 hrs, Volume= 2.106 af

Outflow = 2.09 cfs @ 14.00 hrs, Volume= 1.909 af, Atten= 91%, Lag= 109.5 min

Primary = 2.09 cfs @ 14.00 hrs, Volume= 1.909 af

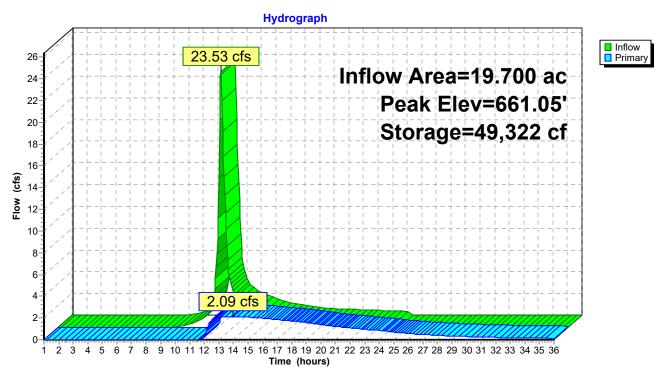
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 661.05' @ 14.00 hrs Surf.Area= 48,685 sf Storage= 49,322 cf

Plug-Flow detention time= 356.3 min calculated for 1.909 af (91% of inflow)

Center-of-Mass det. time= 310.1 min (1,151.5 - 841.3)

Volume	Inve	ert Avail.Sto	rage Storag	e Description	
#1	660.0	0' 209,0	00 cf Custo	m Stage Data (Pr	ismatic)Listed below (Recalc)
Elevation		Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
660.0	00	45,000	0	0	
662.0	00	52,000	97,000	97,000	
664.0	00	60,000	112,000	209,000	
Device	Routing	Invert	Outlet Device	ces	
#1	Primary	660.00'	36.0" Rour	nd Culvert L= 60.	0' Ke= 0.500
	,		Inlet / Outle	t Invert= 660.00' /	656.00' S= 0.0667 '/' Cc= 0.900
			n= 0.012, F	low Area= 7.07 sf	
#2	Device 1	660.00'	10.0" Vert.	Orifice/Grate C=	: 0.600
#3	Device 1	661.30'	6.0' long SI	narp-Crested Red	tangular Weir 2 End Contraction(s)
			0.6' Crest H	eight .	- ()
#4	Device 1	663.75'		•	Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=2.09 cfs @ 14.00 hrs HW=661.05' TW=660.31' (Dynamic Tailwater)


1=Culvert (Passes 2.09 cfs of 6.92 cfs potential flow)

²⁼Orifice/Grate (Orifice Controls 2.09 cfs @ 3.84 fps)

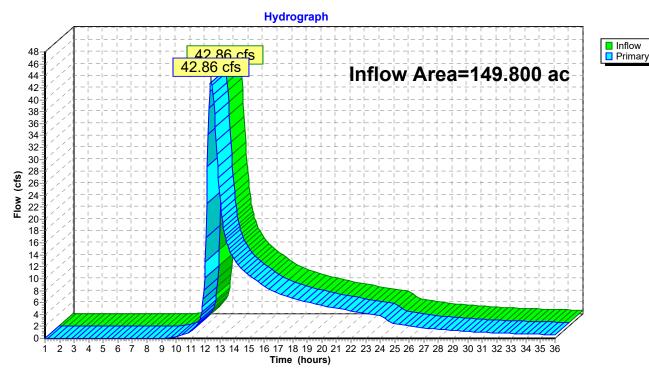
⁻³⁼Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

⁻⁴⁼Orifice/Grate (Controls 0.00 cfs)

Pond PC7: POND C7

Page 133

Summary for Pond XP: EXISTING POND


Inflow Area = 149.800 ac, 14.03% Impervious, Inflow Depth > 0.91" for 1 year event

Inflow = 42.86 cfs @ 12.39 hrs, Volume= 11.412 af

Primary = 42.86 cfs @ 12.39 hrs, Volume= 11.412 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Pond XP: EXISTING POND

Page 134

Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment A: BASIN A	Runoff Area=37.220 ac 2.79% Impervious Runoff Depth=1.99" Flow Length=2,020' Tc=29.1 min CN=71 Runoff=48.73 cfs 6.169 af
Subcatchment B1: BASIN B1	Runoff Area=62.900 ac 11.46% Impervious Runoff Depth=2.66" Flow Length=4,780' Tc=19.0 min CN=79 Runoff=134.57 cfs 13.921 af
Subcatchment B10: BASIN 10	Runoff Area=16.750 ac 15.52% Impervious Runoff Depth=3.12" Flow Length=1,710' Tc=21.5 min CN=84 Runoff=39.78 cfs 4.348 af
Subcatchment B11: BASIN B11	Runoff Area=11.550 ac 3.46% Impervious Runoff Depth=2.93" Flow Length=1,030' Tc=12.2 min CN=82 Runoff=32.16 cfs 2.818 af
Subcatchment B12: BASIN B12	Runoff Area=24.200 ac 20.87% Impervious Runoff Depth=2.31" Flow Length=1,280' Tc=15.1 min CN=75 Runoff=49.01 cfs 4.663 af
Subcatchment B13: BASIN B13	Runoff Area=23.350 ac 0.00% Impervious Runoff Depth=1.99" Flow Length=2,650' Tc=32.1 min CN=71 Runoff=29.24 cfs 3.870 af
Subcatchment B14: BASIN 14	Runoff Area=10.000 ac 13.00% Impervious Runoff Depth=3.21" Flow Length=1,345' Tc=18.7 min CN=85 Runoff=25.88 cfs 2.676 af
Subcatchment B15: BASIN B15	Runoff Area=6.050 ac 9.09% Impervious Runoff Depth=3.12" Flow Length=550' Tc=7.1 min CN=84 Runoff=20.88 cfs 1.571 af
Subcatchment B16: BASIN B16	Runoff Area=3.650 ac 0.00% Impervious Runoff Depth=2.84" Flow Length=630' Tc=12.5 min CN=81 Runoff=9.76 cfs 0.862 af
Subcatchment B2: BASIN B2	Runoff Area=6.100 ac 13.11% Impervious Runoff Depth=2.48" Flow Length=675' Tc=13.9 min CN=77 Runoff=13.70 cfs 1.261 af
Subcatchment B3: BASIN B3	Runoff Area=26.650 ac 15.57% Impervious Runoff Depth=2.66" Flow Length=1,596' Tc=19.6 min CN=79 Runoff=56.28 cfs 5.898 af
Subcatchment B4: BASIN B4	Runoff Area=10.200 ac 13.73% Impervious Runoff Depth=2.93" Flow Length=795' Tc=13.0 min CN=82 Runoff=27.62 cfs 2.488 af
Subcatchment B5: BASIN B5	Runoff Area=5.500 ac 38.00% Impervious Runoff Depth=3.51" Flow Length=537' Tc=10.6 min CN=88 Runoff=18.85 cfs 1.608 af
Subcatchment B6: BASIN B6	Runoff Area=8.000 ac 27.12% Impervious Runoff Depth=3.31" Flow Length=895' Tc=13.1 min CN=86 Runoff=24.21 cfs 2.206 af
Subcatchment B7: BASIN 7	Runoff Area=13.450 ac 27.88% Impervious Runoff Depth=2.84" Flow Length=1,580' Tc=16.8 min CN=81 Runoff=32.18 cfs 3.178 af
Subcatchment B8: BASIN B8	Runoff Area=11.900 ac 2.94% Impervious Runoff Depth=2.66" Flow Length=2,100' Tc=22.3 min CN=79 Runoff=23.82 cfs 2.634 af
Subcatchment B9: BASIN B9	Runoff Area=5.200 ac 25.96% Impervious Runoff Depth=3.41" Flow Length=1,275' Tc=18.4 min CN=87 Runoff=14.27 cfs 1.477 af
Subcatchment C1: BASIN C1	Runoff Area=9.550 ac 19.90% Impervious Runoff Depth=3.12"

Flow Length=972' Tc=10.9 min CN=84 Runoff=29.26 cfs 2.479 af

Prepared by Kirk Rother, PE, PLLC

Reach RB11: RB11

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 135

Runoff Area=21.300 ac 16.90% Impervious Runoff Depth=3.21" Subcatchment C10: BASIN C10 Flow Length=2,285' Tc=15.0 min CN=85 Runoff=60.06 cfs 5.700 af Subcatchment C11: BASIN C11 Runoff Area=9.550 ac 0.00% Impervious Runoff Depth=2.75" Flow Length=1,075' Tc=18.6 min CN=80 Runoff=21.30 cfs 2.185 af Runoff Area=68.270 ac 0.00% Impervious Runoff Depth=2.48" Subcatchment C12: BASIN C12 Flow Length=3,260' Tc=19.0 min CN=77 Runoff=136.17 cfs 14.117 af Runoff Area=68.220 ac 0.00% Impervious Runoff Depth=2.57" Subcatchment C13: BASIN C13 Flow Length=3,910' Tc=20.4 min CN=78 Runoff=136.65 cfs 14.599 af Runoff Area=39.280 ac 0.00% Impervious Runoff Depth=2.48" Subcatchment C14: BASIN C12 Flow Length=3,650' Tc=12.4 min CN=77 Runoff=92.04 cfs 8.123 af Subcatchment C2: BASIN C2 Runoff Area=5.950 ac 32.77% Impervious Runoff Depth=3.41" Flow Length=1,030' Tc=17.3 min CN=87 Runoff=16.70 cfs 1.690 af Runoff Area=6.300 ac 0.00% Impervious Runoff Depth=2.75" Subcatchment C3: BASIN C3 Flow Length=905' Tc=19.4 min CN=80 Runoff=13.82 cfs 1.441 af Subcatchment C4: BASIN C4 Runoff Area=7.400 ac 22.70% Impervious Runoff Depth=3.12" Flow Length=920' Tc=15.8 min CN=84 Runoff=19.90 cfs 1.921 af Runoff Area=23.850 ac 0.00% Impervious Runoff Depth=1.83" Subcatchment C5: BASIN C5 Flow Length=1,840' Tc=18.8 min CN=69 Runoff=34.27 cfs 3.647 af Subcatchment C6: BASIN C6 Runoff Area=16.250 ac 15.08% Impervious Runoff Depth=2.93" Flow Length=1,470' Tc=13.6 min CN=82 Runoff=43.40 cfs 3.964 af Subcatchment C7: BASIN C7 Runoff Area=19.700 ac 20.30% Impervious Runoff Depth=3.21" Flow Length=1,860' Tc=12.6 min CN=85 Runoff=59.13 cfs 5.272 af Subcatchment C8: BASIN C8 Runoff Area=11.050 ac 4.25% Impervious Runoff Depth=1.20" Flow Length=730' Tc=16.5 min CN=60 Runoff=9.91 cfs 1.108 af Subcatchment C9: BASIN C9 Runoff Area=3.800 ac 0.00% Impervious Runoff Depth=1.27" Flow Length=1,030' Tc=11.0 min CN=61 Runoff=4.24 cfs 0.402 af Subcatchment D: BASIN D Runoff Area=2.200 ac 0.00% Impervious Runoff Depth=2.57" Flow Length=1,702' Tc=14.9 min CN=78 Runoff=5.00 cfs 0.471 af Inflow=344.26 cfs 59.668 af Reach AP2: ANALYSIS POINT 2 Outflow=344.26 cfs 59.668 af **Reach AP3: ANALYSIS POINT 3** Inflow=482.14 cfs 65.940 af Outflow=482.14 cfs 65.940 af Inflow=5.00 cfs 0.471 af Reach AP4: ANALYSIS POINT 4 Outflow=5.00 cfs 0.471 af Reach RB1: RB1 Avg. Flow Depth=2.04' Max Vel=13.07 fps Inflow=190.65 cfs 38.613 af n=0.025 L=1,055.0' S=0.0360 '/' Capacity=783.31 cfs Outflow=190.35 cfs 38.603 af

Avg. Flow Depth=1.16' Max Vel=6.74 fps Inflow=42.26 cfs 5.447 af n=0.025 L=1,080.0' S=0.0194'/' Capacity=575.53 cfs Outflow=41.90 cfs 5.445 af

	,	,	,
HvdroC/	AD® 10.00-20	s/n 02530	© 2017 HvdroCAD Software Solutions LLC

Reach RB13: RB13	Avg. Flow Depth=1.19' Max Vel=8.97 fps Inflow=39.02 cfs 8.246 af n=0.025 L=335.0' S=0.0358 '/' Capacity=476.13 cfs Outflow=38.98 cfs 8.246 af
Reach RB14: RB14	Avg. Flow Depth=0.78' Max Vel=13.18 fps Inflow=25.88 cfs 2.676 af n=0.020 L=1,100.0' S=0.0864 '/' Capacity=182.82 cfs Outflow=25.79 cfs 2.676 af
Reach RB15: RB15	Avg. Flow Depth=1.33' Max Vel=4.16 fps Inflow=20.88 cfs 1.571 af n=0.030 L=600.0' S=0.0100 '/' Capacity=105.64 cfs Outflow=19.70 cfs 1.571 af
Reach RB16: RB16	Avg. Flow Depth=1.28' Max Vel=9.59 fps Inflow=42.95 cfs 9.108 af n=0.025 L=340.0' S=0.0382 '/' Capacity=247.88 cfs Outflow=42.94 cfs 9.107 af
Reach RB2: RB2	Avg. Flow Depth=0.23' Max Vel=4.39 fps Inflow=1.37 cfs 0.976 af n=0.025 L=460.0' S=0.0696 '/' Capacity=131.26 cfs Outflow=1.37 cfs 0.975 af
Reach RB3: RB3	Avg. Flow Depth=1.85' Max Vel=14.13 fps Inflow=178.30 cfs 32.846 af n=0.025 L=885.0' S=0.0475 '/' Capacity=899.13 cfs Outflow=178.21 cfs 32.839 af
Reach RB4: RB4	Avg. Flow Depth=1.26' Max Vel=5.62 fps Inflow=37.56 cfs 4.110 af n=0.030 L=340.0' S=0.0176 '/' Capacity=99.85 cfs Outflow=37.54 cfs 4.110 af
Reach RB6: RB6	Avg. Flow Depth=2.05' Max Vel=5.06 fps Inflow=124.12 cfs 23.231 af n=0.025 L=800.0' S=0.0050 '/' Capacity=516.81 cfs Outflow=123.46 cfs 23.218 af
Reach RB7: RB7	Avg. Flow Depth=1.74' Max Vel=7.40 fps Inflow=85.19 cfs 16.768 af n=0.025 L=285.0' S=0.0140 '/' Capacity=488.96 cfs Outflow=85.18 cfs 16.766 af
Reach RC1: RC1	Avg. Flow Depth=3.63' Max Vel=16.76 fps Inflow=463.43 cfs 63.463 af n=0.025 L=280.0' S=0.0321 '/' Capacity=566.54 cfs Outflow=463.53 cfs 63.461 af
Reach RC10: RC10	Avg. Flow Depth=0.56' Max Vel=4.03 fps Inflow=22.37 cfs 5.645 af n=0.030 L=600.0' S=0.0250 '/' Capacity=79.34 cfs Outflow=22.32 cfs 5.644 af
Reach RC11A: RC11-A	Avg. Flow Depth=3.12' Max Vel=19.21 fps Inflow=423.77 cfs 56.522 af n=0.025 L=380.0' S=0.0500 '/' Capacity=706.60 cfs Outflow=423.90 cfs 56.521 af
Reach RC11B: RC11-B	Avg. Flow Depth=1.51' Max Vel=19.58 fps Inflow=145.05 cfs 15.225 af n=0.025 L=660.0' S=0.1227 '/' Capacity=1,107.03 cfs Outflow=145.12 cfs 15.225 af
Reach RC11C: RC11-C	Avg. Flow Depth=2.84' Max Vel=14.55 fps Inflow=278.66 cfs 41.297 af n=0.025 L=125.0' S=0.0320 '/' Capacity=565.28 cfs Outflow=278.69 cfs 41.297 af
Reach RC12: RC12	Avg. Flow Depth=1.35' Max Vel=21.60 fps Inflow=136.17 cfs 14.117 af n=0.020 L=565.0' S=0.1097 '/' Capacity=1,308.49 cfs Outflow=136.17 cfs 14.117 af
Reach RC13: RC13	Avg. Flow Depth=1.72' Max Vel=15.71 fps Inflow=136.65 cfs 14.599 af n=0.025 L=530.0' S=0.0679 '/' Capacity=434.48 cfs Outflow=136.66 cfs 14.599 af
Reach RC14: RC14	Avg. Flow Depth=1.45' Max Vel=16.98 fps Inflow=92.04 cfs 8.123 af n=0.025 L=460.0' S=0.1043 '/' Capacity=409.49 cfs Outflow=91.51 cfs 8.123 af
Reach RC2: RC2	Avg. Flow Depth=3.07' Max Vel=20.65 fps Inflow=444.66 cfs 58.705 af n=0.025 L=510.0' S=0.0588 '/' Capacity=766.42 cfs Outflow=444.82 cfs 58.704 af
Reach RC3: RC3	Avg. Flow Depth=0.35' Max Vel=8.38 fps Inflow=8.69 cfs 1.819 af n=0.020 L=175.0' S=0.0914 '/' Capacity=590.61 cfs Outflow=8.69 cfs 1.819 af

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 137

Reach RC4: RC4

Avg. Flow Depth=0.28' Max Vel=5.90 fps Inflow=8.69 cfs 1.819 af n=0.030 L=230.0' S=0.1348'/ Capacity=137.70 cfs Outflow=8.69 cfs 1.819 af

Reach RC5A: RC5-AAvg. Flow Depth=2.43' Max Vel=19.36 fps Inflow=244.60 cfs 37.653 af n=0.025 L=800.0' S=0.0725'/ Capacity=677.36 cfs Outflow=244.61 cfs 37.651 af

Reach RC5B: RC5-BAvg. Flow Depth=2.26' Max Vel=19.96 fps Inflow=225.45 cfs 28.365 af n=0.025 L=655.0' S=0.0840 '/' Capacity=728.98 cfs Outflow=225.61 cfs 28.365 af

Reach RC5C: RC5-CAvg. Flow Depth=2.30' Max Vel=16.00 fps Inflow=215.02 cfs 22.722 af n=0.025 L=180.0' S=0.0500'/ Capacity=372.77 cfs Outflow=215.11 cfs 22.722 af

Reach RC6: RC6 Avg. Flow Depth=0.85' Max Vel=11.03 fps Inflow=34.32 cfs 9.290 af n=0.025 L=600.0' S=0.0800 '/' Capacity=893.79 cfs Outflow=34.29 cfs 9.288 af

Reach RC7: RC7 Avg. Flow Depth=0.88' Max Vel=7.08 fps Inflow=19.39 cfs 5.031 af n=0.025 L=400.0' S=0.0325 '/' Capacity=453.52 cfs Outflow=19.37 cfs 5.030 af

Reach RC8: RC8 Avg. Flow Depth=1.02' Max Vel=9.25 fps Inflow=136.17 cfs 14.117 af n=0.030 L=820.0' S=0.0585 '/' Capacity=576.22 cfs Outflow=135.33 cfs 14.117 af

Reach RC9: RC9

Avg. Flow Depth=0.83' Max Vel=7.02 fps Inflow=21.06 cfs 5.432 af n=0.025 L=270.0' S=0.0333 '/' Capacity=576.94 cfs Outflow=21.06 cfs 5.431 af

Pond B13P: ARCH CULV Peak Elev=587.14' Inflow=39.02 cfs 8.246 af

120.0" x 48.0", R=96.0" Arch Culvert n=0.012 L=85.0' S=0.0588 '/' Outflow=39.02 cfs 8.246 af

48.0" Round Culvert x 2.00 n=0.012 L=60.0' S=0.0333 '/' Outflow=92.04 cfs 8.123 af

Pond B16P: ARCH CULV Peak Elev=570.21' Inflow=42.95 cfs 9.108 af 120.0" x 48.0", R=96.0" Arch Culvert n=0.012 L=65.0' S=0.0308 '/' Outflow=42.95 cfs 9.108 af

Pond B4P: 36" HDPE Peak Elev=555.84' Inflow=37.56 cfs 4.110 af 36.0" Round Culvert n=0.012 L=68.0' S=0.0100 '/' Outflow=37.56 cfs 4.110 af

Pond C11P: ARCH CULV Peak Elev=511.75' Inflow=444.66 cfs 58.705 af 216.0" x 72.0", R=156.0" Arch Culvert n=0.020 L=60.0' S=0.0300 '/' Outflow=444.66 cfs 58.705 af

Pond C12P: (2) 54" HDPE Peak Elev=730.55' Inflow=136.17 cfs 14.117 af 54.0" Round Culvert x 2.00 n=0.012 L=75.0' S=0.0700 '/' Outflow=136.17 cfs 14.117 af

Pond C13P: ARCH CULV Peak Elev=698.69' Inflow=136.65 cfs 14.599 af 120.0" x 60.0", R=60.0" Arch Culvert n=0.025 L=60.0' S=0.1000 '/' Outflow=136.65 cfs 14.599 af

Pond C14P: (2) 48" HDPE Peak Elev=704.74' Inflow=92.04 cfs 8.123 af

Pond C2P: 48" HDPE Peak Elev=487.86' Inflow=21.40 cfs 4.759 af 48.0" Round Culvert n=0.012 L=206.0' S=0.0100 '/' Outflow=21.40 cfs 4.759 af

Pond C3P: 36" HDPE Peak Elev=500.70' Inflow=18.41 cfs 3.260 af 36.0" Round Culvert n=0.012 L=250.0' S=0.0479 '/' Outflow=18.41 cfs 3.260 af

Pond C5P: (2) 60" CULV Peak Elev=536.74' Inflow=278.66 cfs 41.297 af 60.0" Round Culvert x 2.00 n=0.012 L=62.0' S=0.0113 '/' Outflow=278.66 cfs 41.297 af

Pond C8P: ARCH CULV Peak Elev=614.46' Inflow=145.05 cfs 15.225 af

144.0" x 48.0", R=96.0" Arch Culvert n=0.012 L=50.0' S=0.0800 '/' Outflow=145.05 cfs 15.225 af

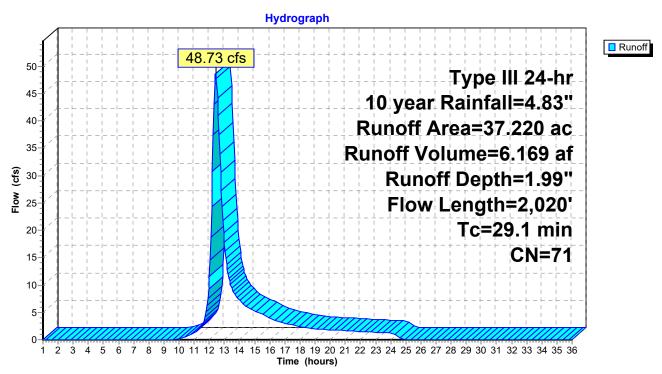
Primary=178.30 cfs 32.846 af

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 138

Pond C9P: 48" HDPE	Peak Elev=649.64' Inflow=21.06 cfs 5.432 af 48.0" Round Culvert n=0.012 L=55.0' S=0.0182'/ Outflow=21.06 cfs 5.432 af
Pond PB11: POND B11	Peak Elev=580.76' Storage=57,485 cf Inflow=54.71 cfs 5.494 af Outflow=42.26 cfs 5.447 af
Pond PB12: POND B12	Peak Elev=597.82' Storage=89,106 cf Inflow=49.01 cfs 4.663 af Outflow=11.98 cfs 4.376 af
Pond PB2: POND B2	Peak Elev=505.99' Storage=30,433 cf Inflow=13.70 cfs 1.261 af Outflow=1.37 cfs 0.976 af
Pond PB3: POND B3	Peak Elev=523.36' Storage=105,936 cf Inflow=56.28 cfs 5.898 af Outflow=22.48 cfs 5.774 af
Pond PB4: POND B4	Peak Elev=560.74' Storage=47,808 cf Inflow=27.62 cfs 2.488 af Outflow=7.83 cfs 2.454 af
Pond PB5: POND B5	Peak Elev=565.09' Storage=28,120 cf Inflow=18.85 cfs 1.608 af Outflow=8.85 cfs 1.493 af
Pond PB6: POND B6	Peak Elev=658.69' Storage=45,098 cf Inflow=24.21 cfs 2.206 af Outflow=7.56 cfs 2.116 af
Pond PB7: POND B7	Peak Elev=562.21' Storage=75,574 cf Inflow=32.18 cfs 3.178 af Outflow=4.60 cfs 2.217 af
Pond PC10: POND C10	Peak Elev=674.36' Storage=99,238 cf Inflow=60.06 cfs 5.700 af Outflow=22.37 cfs 5.645 af
Pond PC2: POND C2	Peak Elev=500.72' Storage=36,293 cf Inflow=16.70 cfs 1.690 af Outflow=4.70 cfs 1.500 af
Pond PC4: POND C4	Peak Elev=552.65' Storage=34,750 cf Inflow=19.90 cfs 1.921 af Outflow=8.69 cfs 1.819 af
Pond PC6: POND C6	Peak Elev=640.21' Storage=73,073 cf Inflow=43.40 cfs 3.964 af Outflow=13.37 cfs 3.859 af
Pond PC7: POND C7	Peak Elev=662.12' Storage=103,136 cf Inflow=59.13 cfs 5.272 af Outflow=19.39 cfs 5.031 af
Pond XP: EXISTING POND	Inflow=178.30 cfs 32.846 af

Total Runoff Area = 595.340 ac Runoff Volume = 128.766 af Average Runoff Depth = 2.60" 91.56% Pervious = 545.080 ac 8.44% Impervious = 50.260 ac

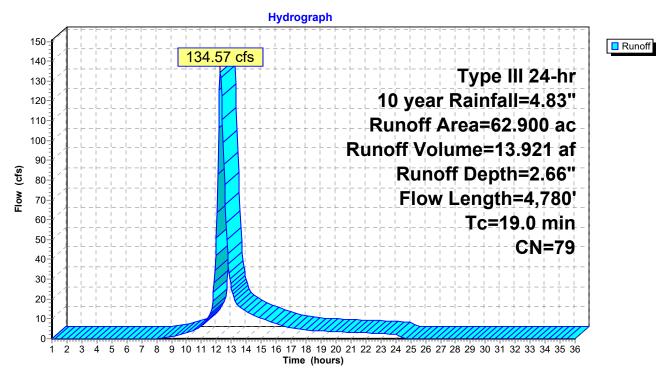

Page 139

Summary for Subcatchment A: BASIN A

Runoff = 48.73 cfs @ 12.42 hrs, Volume= 6.169 af, Depth= 1.99"

	Area ((ac) (CN	Desc	cription		
*	7.3	350	89	Wetl	ands		
*			98	Impe	rvious Sui	rfaces	
			80			over, Good,	HSG D
			30		ds, Good,		
			55		ds, Good,		
			70		ds, Good,		
			77		ds, Good,		
			30		h, Good, F		
			48		h, Good, F		
			65 70		h, Good, F		
*			73 75		h, Good, F		
*			75 84		oads, HS0 oads, HS0		
*			88		oads, HS(
*			90		oads, HS0		
_			71		hted Aver		
		180			1% Pervio		
	1.0	040		2.79	% Impervi	ous Area	
					·		
	Тс	Length		Slope	Velocity	Capacity	Description
_	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
	20.5	100	0.	0200	0.08		Sheet Flow,
			_				Woods: Light underbrush n= 0.400 P2= 3.50"
	5.1	690	0.	0200	2.28		Shallow Concentrated Flow,
			_		4.00		Unpaved Kv= 16.1 fps
	2.7	690	0.	0700	4.26		Shallow Concentrated Flow,
	0.0	E40	0	0400	40.04	450.70	Unpaved Kv= 16.1 fps
	8.0	540	U.	0400	10.91	152.70	Parabolic Channel, W=7.00' D=3.00' Area=14.0 sf Perim=9.6' n= 0.035
_	00.4	0.000		4-1			W-7.00 D-3.00 Alea-14.0 St Petitil-9.0 II- 0.035
	29.1	2,020	10	otal			

Subcatchment A: BASIN A


Page 141

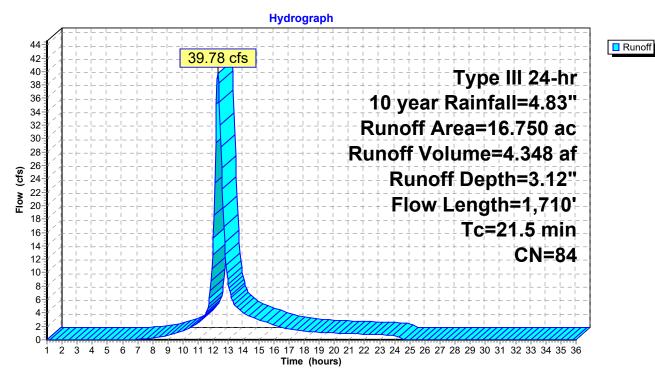
Summary for Subcatchment B1: BASIN B1

Runoff = 134.57 cfs @ 12.26 hrs, Volume= 13.921 af, Depth= 2.66"

	Area ((ac)	CN	Desc	ription					
*	3.8	320	98	WAT	ER SURF	ACE				
*	11.0	670	89	WET	LANDS					
*			35	OLD	COURSE	., A				
*			90		ROAD					
	19.2		77		ds, Good,	HSG D				
*			85	LOT	,					
*			98		PPING C					
			80			ss cover, Good, HSG D				
			78			grazed, HS				
			30			grazed, HS	G A			
*			30		ds, Good,	HSG A				
*			98		ing Road	4 🗖:1:4				
_			98			ent Facility				
	62.9		79	_	hted Aver	•				
	55.6				4% Pervio					
	7.2	210		11.40	o% imperv	∕ious Area				
	Тс	Longth		Slope	Velocity	Canacity	Description			
	(min)	Length (feet)		Slope (ft/ft)	(ft/sec)	Capacity (cfs)	Description			
_	13.2	100				(615)	Chaet Flour			
	13.2	100	U.	0600	0.13		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.50"			
	1.3	270	Ω	0450	3.42		Shallow Concentrated Flow,			
	1.5	210	0.	0430	5.42		Unpaved Kv= 16.1 fps			
	2.3	1,665	0	0140	12.21	488.35	Parabolic Channel,			
	2.0	1,000	٥.	0140	12.21	400.00	W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025			
	2.2	2,745	0	0400	20.64	825.46	Parabolic Channel,			
		_,. 10	٥.	- 100	20.01	020.10	W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025			
_	19.0	4,780	Tr	otal						
		.,,,,		,						

Subcatchment B1: BASIN B1

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

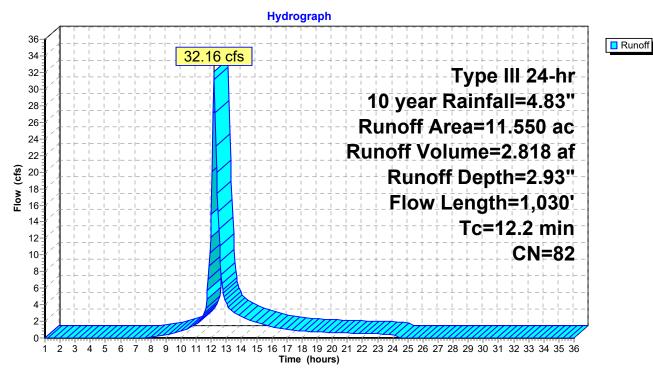

Page 143

Summary for Subcatchment B10: BASIN 10

Runoff = 39.78 cfs @ 12.29 hrs, Volume= 4.348 af, Depth= 3.12"

	Area	(ac) (CN	Desc	cription		
*	6.	250	85	LOT	S, D		
*	2.	100	98 RC		DS, WAL	KS	
*	0.	500	98	BUILDING, PA		RKING	
	2.	350	77	Woo	ds, Good,	HSG D	
	3.	870	78	Mea	dow, non-g	grazed, HS	G D
	1.	680	80	>75%	% Grass co	over, Good,	, HSG D
	16.	750	84	Weig	hted Aver	age	
	14.	150		84.4	8% Pervio	us Area	
	2.	600		15.5	2% Imperv	ious Area	
	Tc	Length	SI	ope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	18.0	100	0.0	100	0.09		Sheet Flow,
							Grass: Dense n= 0.240 P2= 3.50"
	1.4	350	0.0	650	4.10		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.2	30	0.0	250	3.21		Shallow Concentrated Flow,
							Paved Kv= 20.3 fps
	1.5	890	0.0	250	10.18	17.99	Pipe Channel,
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.012
	0.4	340	0.0	400	14.86	99.05	Parabolic Channel,
							W=5.00' D=2.00' Area=6.7 sf Perim=6.7' n= 0.020
	21.5	1,710	Tot	al			

Subcatchment B10: BASIN 10

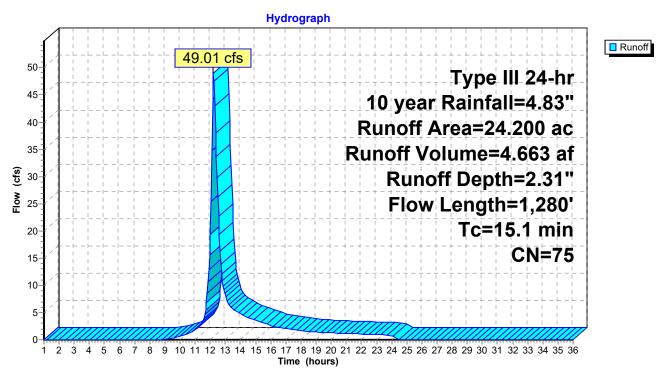

Summary for Subcatchment B11: BASIN B11

Runoff = 32.16 cfs @ 12.17 hrs, Volume= 2.818 af, Depth= 2.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

_	Area ((ac)	CN	Desc	cription					
*	0.4	400	98	PON	D					
*	5.3	350	85	LOT	OTS, D					
	2.	800	80	>75%	75% Grass cover, Good, HSG D					
	3.0	000	77	Woo	ds, Good,	HSG D				
	11.550 82 Weighted Average									
	11.	150		96.5	4% Pervio	us Area				
	0.400 3.46% Impervious Area				% Impervi	ous Area				
	Tc (min)	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	11.8	100	0.	0800	0.14		Sheet Flow,			
	0.4	930	0.	0864	38.09	304.76	Woods: Light underbrush n= 0.400 P2= 3.50" Parabolic Channel, W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.012			
	12.2	1,030	Тс	otal						

Subcatchment B11: BASIN B11

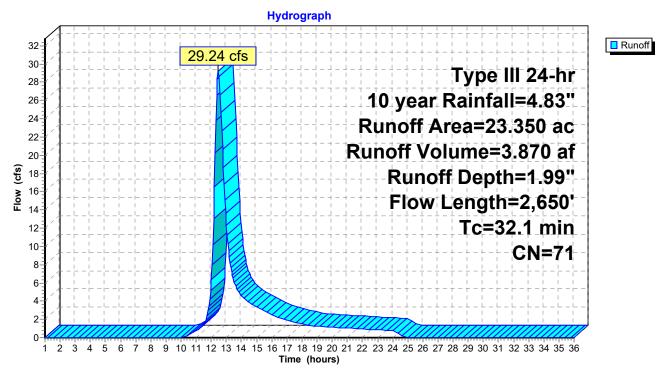

Page 146

Summary for Subcatchment B12: BASIN B12

Runoff = 49.01 cfs @ 12.21 hrs, Volume= 4.663 af, Depth= 2.31"

	Area ((ac) C	N Desc	cription		
*	1.0	000	NO9 8	ID		
*	3.0	050	8 ROA	DS, WALI	KS	
*	3.0	000 6	0 LOT	S, A		
	1.0	070 3	39 >759	% Grass co	over, Good,	HSG A
*	3.6	650 8	5 LOT	S, D		
*	1.0	000	8 BUIL	DING, PA	RKING	
	5.8	850 8	30 >759	% Grass co	over, Good,	, HSG D
				ds, Good,		
					grazed, HS	G A
*	0.	100 8	86 Well	Acess Ro	ad	
	24.2	200 7	'5 Weig	ghted Aver	age	
	19.		79.1	3% Pervio	us Area	
	5.0	050	20.8	7% Imper\	/ious Area	
	_					
		Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	13.2	100	0.0600	0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.7	160	0.0625	4.03		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.3	65	0.0300	3.52		Shallow Concentrated Flow,
	0.0	000	0.0700	47.04	00.44	Paved Kv= 20.3 fps
	0.9	890	0.0700	17.04	30.11	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
	0.0	0.5	0.4000	04.00	400.44	n= 0.012
	0.0	65	0.1200	24.02	128.11	Parabolic Channel,
						M-400' D-200' Area-E2 of Derim-E0' n=000
_	15.1	1,280	Total			W=4.00' D=2.00' Area=5.3 sf Perim=5.9' n= 0.020

Subcatchment B12: BASIN B12

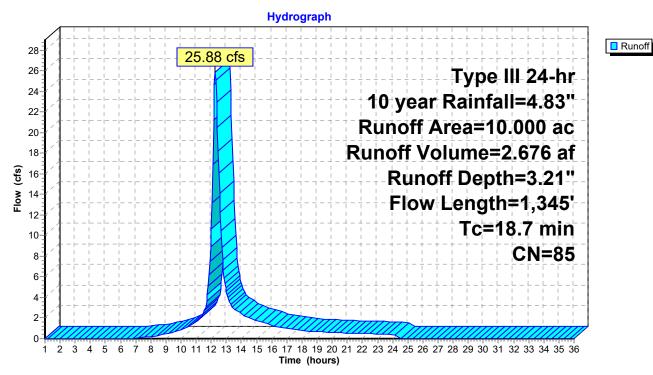

Summary for Subcatchment B13: BASIN B13

Runoff = 29.24 cfs @ 12.47 hrs, Volume= 3.870 af, Depth= 1.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac)	CN	Desc	ription		
*	2.	300	60	LOT	S, A		
*	4.	000	85	LOT	S, D		
*	1.	420	89	WET	LANDS		
	0.	900	39	>75%	6 Grass co	over, Good,	HSG A
	1.	450	80	>75%	6 Grass co	over, Good,	HSG D
	10.	830	77	Woo	ds, Good,	HSG D	
	2.	450	30	Mea	dow, non-g	grazed, HS	G A
	23.	350	71	Weig	hted Aver	age	
	23.350				00% Pervi		
	Tc	Length	1	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	<u> </u>
	20.5	100	0 (.0200	0.08		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	11.2	2,020	0 (.0350	3.01		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.4	530	0 (.0750	24.88	298.60	Parabolic Channel,
							W=6.00' D=3.00' Area=12.0 sf Perim=8.9' n= 0.020
	32.1	2,650) T	otal		·	

Subcatchment B13: BASIN B13

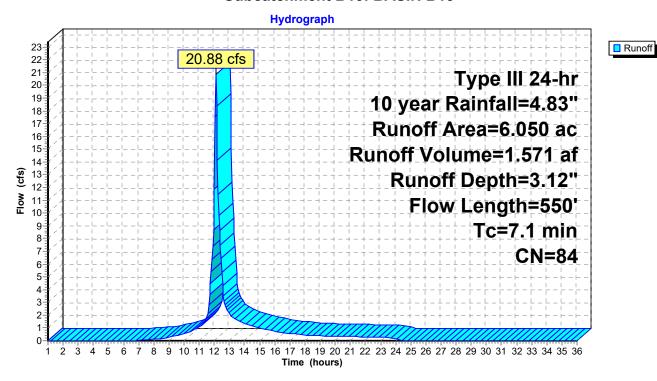

Summary for Subcatchment B14: BASIN 14

Runoff = 25.88 cfs @ 12.25 hrs, Volume= 2.676 af, Depth= 3.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac) C	N Des	cription		
*	6.	250	35 LOT	S, D		
*	1.	300	98 ROA	ROADS, WALKS		
	1.	350	30 >75	% Grass c	over, Good,	, HSG D
	1.	100	77 Woo	ds, Good,	HSG D	
	10.	000	35 Wei	ghted Aver	age	
		700		00% Pervio		
	1.300		13.0	0% Imperv	∕ious Area	
				•		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	15.6	100	0.0400	0.11		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	2.4	700	0.0900	4.83		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.3	70	0.0400	4.06		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.4	475	0.0760	21.51	67.56	Pipe Channel,
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
_						n= 0.012
	18.7	1,345	Total			

Subcatchment B14: BASIN 14

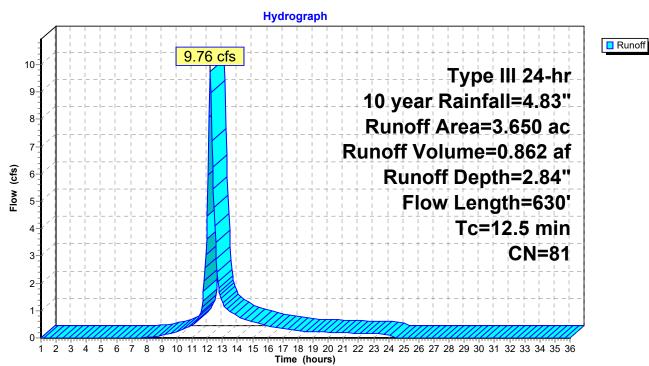

Page 150

Summary for Subcatchment B15: BASIN B15

Runoff = 20.88 cfs @ 12.10 hrs, Volume= 1.571 af, Depth= 3.12"

	Area	(ac) (CN	Desc	cription							
*	3.	050	85	LOT	S, D							
*	0.	400	98	ROA	DS, WALI	KS						
*	0.	150	98	BUIL	.DING							
	1.	000	80	>75% Grass cover, Good, HSG D								
	1.	000	77	Woo	Woods, Good, HSG D							
_	0.	450	78	Mea	dow, non-	grazed, HS	G D					
	6.	050	84	Weig	hted Aver	age						
	5.	500		90.9	1% Pervio	us Area						
	0.	550		9.09	% Impervi	ous Area						
		Length		Slope		Capacity	Description					
_	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)						
	6.0	100	0.	0600	0.28		Sheet Flow,					
							Grass: Short n= 0.150 P2= 3.50"					
	0.5	140	0.	0800	4.55		Shallow Concentrated Flow,					
			_				Unpaved Kv= 16.1 fps					
	0.1	40	0.	0250	10.18	17.99	Pipe Channel,					
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'					
	0.0	0.0	_	0000	0.00		n= 0.012					
	0.2	80	0.	3000	8.82		Shallow Concentrated Flow,					
	0.0	400	^	0250	40.05	24.20	Unpaved Kv= 16.1 fps					
	0.3	190	U.	0350	12.05	21.29	Pipe Channel,					
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'					
_	7.4			-4-1			n= 0.012					
	7.1	550	10	otal								

Subcatchment B15: BASIN B15

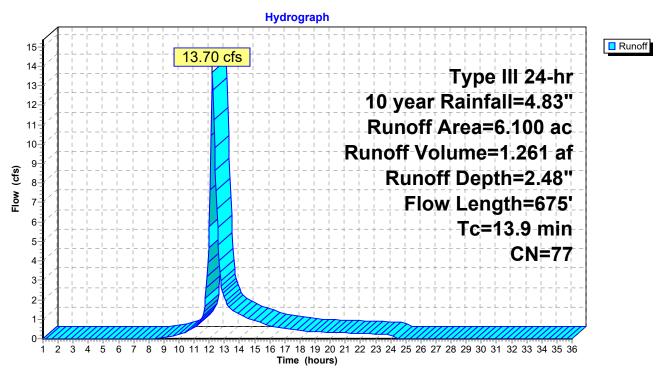

Summary for Subcatchment B16: BASIN B16

Runoff = 9.76 cfs @ 12.17 hrs, Volume= 0.862 af, Depth= 2.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

_	Area	(ac) (ON E	escription					
*	1.	950	85 L	OTS, D					
	0.	200	80 >	75% Grass	cover, Good	, HSG D			
	1.	350	77 V	loods, Good	l, HSG D				
	0.150 78 Meadow, non-grazed, HSG D								
	3.650 81 Weighted Average								
	3.	650	1	00.00% Per	∕ious Area				
	Тс	Length	Slo	oe Velocity	Capacity	Description			
	(min)	(feet)	(ft	ft) (ft/sec	(cfs)				
	10.8	100	0.10	0.15		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.50"			
	1.7	530	0.11	00 5.34		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	12.5	630	Tota						

Subcatchment B16: BASIN B16

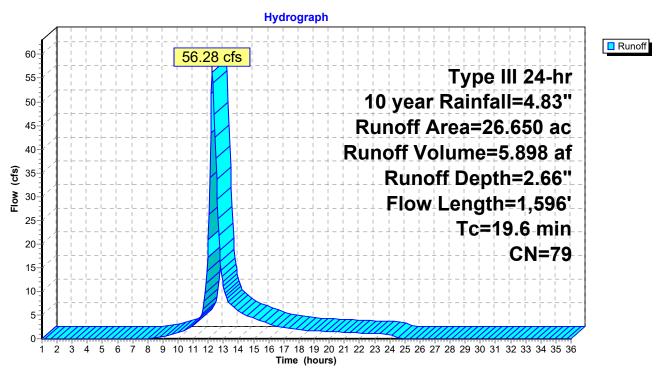

Page 153

Summary for Subcatchment B2: BASIN B2

Runoff = 13.70 cfs @ 12.20 hrs, Volume= 1.261 af, Depth= 2.48"

	Area	(ac) (N Des	scription		
*	0.	500	98 RO	ADS, WALI	KS	
	0.			ods, Good,		
	0.	750	80 >75	% Grass c	over, Good	, HSG D
*	2.	900	85 LO	ΓS, D		
*	0.	300	98 Por	nd		
*	0.	200	30 LO	ΓS, A		
	0.	200			grazed, HS	G A
	0.	700			grazed, HS	
	6.	100		ighted Aver		
		300		39% Pervio		
	0.	800	13.	11% Imperv	∕ious Area	
				·		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	12.4	100	0.0700	0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.5	200	0.1500	6.24		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	45	0.5000	14.35		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.8	190	0.0600	3.94		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	140	0.0869	18.98	33.55	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.012
	13.9	675	Total			

Subcatchment B2: BASIN B2

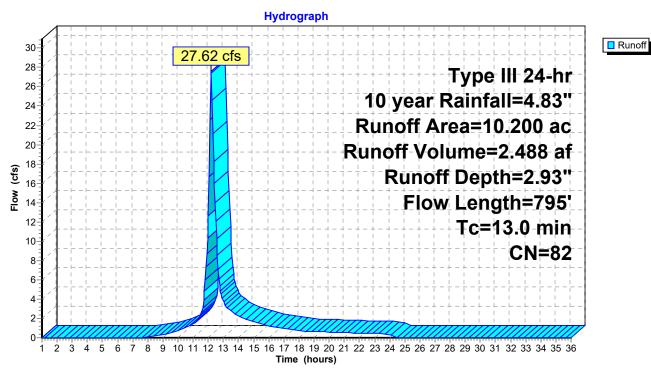

Page 155

Summary for Subcatchment B3: BASIN B3

Runoff = 56.28 cfs @ 12.27 hrs, Volume= 5.898 af, Depth= 2.66"

	Area (ac) CN		CN	Description							
*	0.	600	98	PON	ID						
*	0.	350	30	Mea	dow, non-	grazed, HS	G A				
*	3.	550	98	ROA	DS, WALI	KS					
	3.	000	80			over, Good,	HSG D				
		400	77		ds, Good,						
*		650	85	LOT							
		000	78		,	grazed, HS	G D				
		300	30		ds, Good,		-				
*		350	60	LOTS, A							
		450	39		>75% Grass cover, Good, HSG A						
_		650	79		hted Aver						
		500	15		3% Pervio						
		150		-	-	/ious Area					
	٦.	100		10.0	7 70 IIIIpci V	nous Arca					
	Tc	Length	n 5	Slope	Velocity	Capacity	Description				
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	Besonption				
_	17.5	100		0300	0.10	(013)	Sheet Flow,				
	17.5	100	0.0	0300	0.10		Woods: Light underbrush n= 0.400 P2= 3.50"				
	0.6	100		0300	2.79		Shallow Concentrated Flow,				
	0.0	100	0.0	0300	2.19		Unpaved Kv= 16.1 fps				
	0.1	36	. 0	0200	9.11	16.09	Pipe Channel,				
	0.1	30	0.0	0200	9.11	10.09	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
							n= 0.012				
	0.3	100	0.	1000	5.09		Shallow Concentrated Flow,				
	0.5	100	0.	1000	5.09		Unpaved Kv= 16.1 fps				
	0.4	240		0427	12 21	00 51					
	0.4	310	0.0	0427	13.31	23.51	Pipe Channel, 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
							n= 0.012				
	0.2	220		0550	15.40	164.31					
	0.2	230	0.0	USSU	15.40	104.31	Parabolic Channel,				
	0.4	F0(0000	22.47	70.04	W=8.00' D=2.00' Area=10.7 sf Perim=9.2' n= 0.025				
	0.4	520	0.0	0830	22.47	70.61	Pipe Channel, 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
	0.4	000		4000	07.00	050.00	n= 0.012				
	0.1	200	J U.	1000	27.22	653.23	Parabolic Channel,				
_							W=12.00' D=3.00' Area=24.0 sf Perim=13.8' n= 0.025				
	19.6	1,596	i To	otal							

Subcatchment B3: BASIN B3

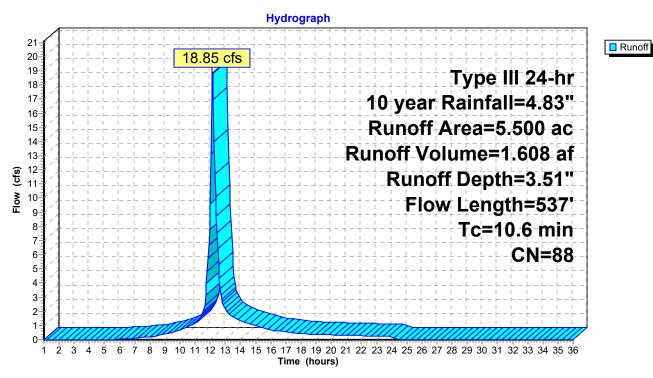

Page 157

Summary for Subcatchment B4: BASIN B4

Runoff = 27.62 cfs @ 12.18 hrs, Volume= 2.488 af, Depth= 2.93"

_	Area ((ac) (CN	Desc	ription					
*	0.3	350	98	PON	D					
*	0.3	350	98	ROA	DS, WAL	(S				
*	2.	100	85		LOTS, D					
*	0.	500	98	BUIL	DINGS					
*	0.2	200	98	PARI	KING					
	1.	700	80	>75%	6 Grass co	over, Good,	HSG D			
	4.0	050	77	Woods, Good, HSG D						
	0.9	950	78	Mead	dow, non-g	grazed, HS	GD			
	10.2	200	82	Weia	hted Aver	age				
		800		86.27% Pervious Area						
	1.400					ious Area				
					•					
	Tc	Length	S	lope	Velocity	Capacity	Description			
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	<u> </u>			
	11.8	100	0.0	0800	0.14		Sheet Flow,			
							Woods: Light underbrush n= 0.400 P2= 3.50"			
	0.4	180	0.2	2000	7.20		Shallow Concentrated Flow,			
							Unpaved Kv= 16.1 fps			
	0.5	220	0.0	0150	7.62	60.95	Parabolic Channel,			
							W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025			
	0.3	295	0.0	0700	17.04	30.11	Pipe Channel,			
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'			
							n= 0.012			
	13.0	795	То	tal	•					

Subcatchment B4: BASIN B4

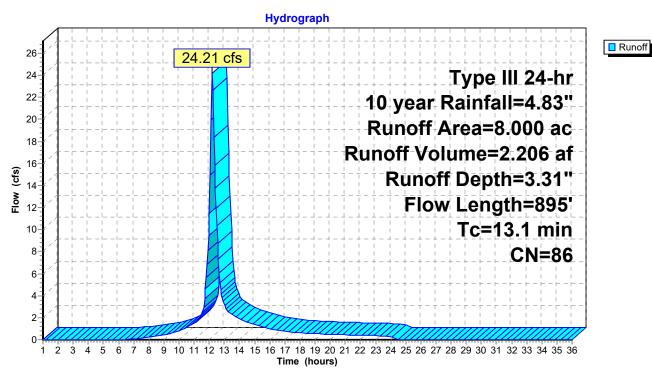

Page 159

Summary for Subcatchment B5: BASIN B5

Runoff = 18.85 cfs @ 12.15 hrs, Volume= 1.608 af, Depth= 3.51"

	Area	(ac) (CN	Desc	ription					
*	0.	340	98	ROA	DS, WALK	(S				
*	0.	150	98	POND						
*	1.600 98 PARKING									
*	1.	800	85	LOTS	S, D					
	0.	500	80			over, Good,	, HSG D			
		810	77		ds, Good,					
_	0.	300	78	Mead	dow, non-g	grazed, HS	G D			
		500	88	Weig	hted Aver	age				
	3.410 62.00% Pervious <i>i</i>									
	2.090 38.00% Impervious A					vious Area				
	_		_							
	Tc	Length		•	Velocity		Description			
_	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)				
	10.0	100	0.1	200	0.17		Sheet Flow,			
	0.0				0.00		Woods: Light underbrush n= 0.400 P2= 3.50"			
	0.2	90	0.1	1800	6.83		Shallow Concentrated Flow,			
	0.4	00		2000	0.44	40.00	Unpaved Kv= 16.1 fps			
	0.1	60	0.0)200	9.11	16.09	Pipe Channel,			
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' n= 0.012			
	0.3	287	0.0)500	17.44	54.80	Pipe Channel,			
	0.5	201	0.0	<i>,</i> 500	17.44	34.00	24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'			
							n= 0.012			
_	10.6	537	To	tal			11 0.012			
	10.0	551	10	ıaı						

Subcatchment B5: BASIN B5

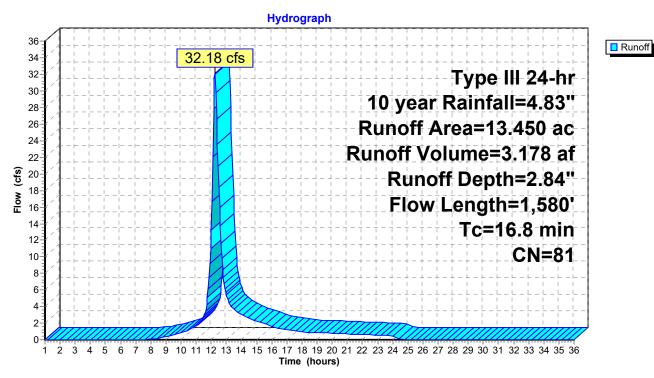

Page 161

Summary for Subcatchment B6: BASIN B6

Runoff = 24.21 cfs @ 12.18 hrs, Volume= 2.206 af, Depth= 3.31"

	Area	(ac) C	N Des	cription				
*	0.	850	98 ROA	DS, WLAI	KS			
*	0.	420 9	98 PON	ID				
*	2.	600	35 LOT	S, D				
*	0.	900	98 PAR	KING				
	1.	250	30 >759	% Grass co	over, Good	, HSG D		
	1.	300	77 Woo	ds, Good,	HSG D			
	0.	680	78 Mea	dow, non-	grazed, HS	G D		
	8.	000	36 Weig	ghted Aver	age			
	5.830 72.88% Pervious A							
	2.	170	27.1	27.12% Impervious Area				
	Тс	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	10.8	100	0.1000	0.15		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 3.50"		
	0.9	300	0.1200	5.58		Shallow Concentrated Flow,		
						Unpaved Kv= 16.1 fps		
	8.0	120	0.0150	2.49		Shallow Concentrated Flow,		
						Paved Kv= 20.3 fps		
	0.6	375	0.0300	11.15	19.71	Pipe Channel,		
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'		
_						n= 0.012		
	13.1	895	Total					

Subcatchment B6: BASIN B6


Page 163

Summary for Subcatchment B7: BASIN 7

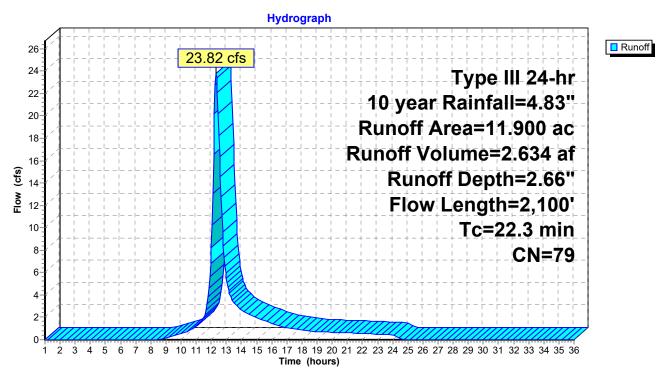
Runoff = 32.18 cfs @ 12.23 hrs, Volume= 3.178 af, Depth= 2.84"

	Area (ac) (CN	Desc	ription					
*	3.0	050	98	ROA	DS, WAL	<				
*	4.	150	85	LOT	S, D					
*		700	98	PON						
*		250	60	LOT						
		750	39	>75% Grass cover, Good, HSG A						
			80		>75% Grass cover, Good, HSG D					
		350	77		ds, Good,					
_		<u> </u>	78	Mea	dow, non-o	grazed, HS	G D			
			81		hted Aver					
		700			2% Pervio	/				
	3.	750		27.88	3% Imperv	ious Area				
	T -	1 41-		N	17-14.	0:	Description.			
	Tc	Length		Slope	Velocity	Capacity	Description			
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	Object Ele			
	14.2	100	0.0	0500	0.12		Sheet Flow,			
	0.6	230		1700	6.64		Woods: Light underbrush n= 0.400 P2= 3.50"			
	0.6	230	υ.	1700	6.64		Shallow Concentrated Flow,			
	0.5	120		0400	4.06		Unpaved Kv= 16.1 fps Shallow Concentrated Flow,			
	0.5	120	0.0	0400	4.00		Paved Kv= 20.3 fps			
	0.6	545		0650	16.42	29.01	Pipe Channel,			
	0.0	040	0.0	0000	10.72	25.01	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'			
							n= 0.012			
	0.9	585	0.0	0215	11.44	35.94	Pipe Channel,			
							24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'			
							n= 0.012			
	16.8	1,580	To	otal						

Subcatchment B7: BASIN 7

Clovewood Post Developed2022 ABCD

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC


Page 165

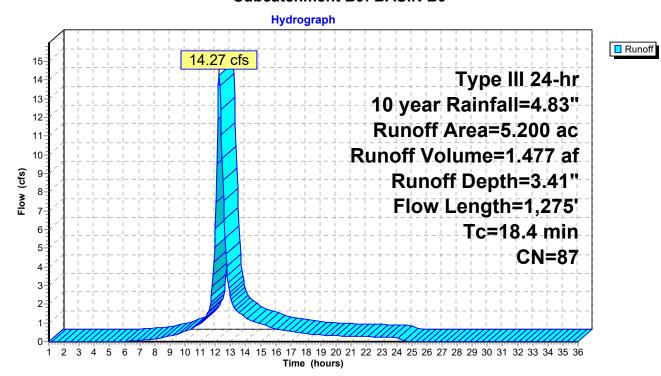
Summary for Subcatchment B8: BASIN B8

Runoff = 23.82 cfs @ 12.31 hrs, Volume= 2.634 af, Depth= 2.66"

	Area ((ac)	CN	Desc	ription		
*	0.3	200	90	DIRT	ROAD, H	ISG D	
*	0.3	350	98	ROA	D		
	3.	500	77	Woo	ds, Good,	HSG D	
	2.	500	80			over, Good,	
	5.	100	78	Mead	dow, non-დ	grazed, HS	G D
*	0.2	250	85	Lots,	D		
	11.9	900	79	Weig	hted Aver	age	
	11.	550			6% Pervio		
	0.3	350		2.94	% Impervi	ous Area	
	_					_	
	Tc	Length		Slope	Velocity		Description
_	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
	15.6	100	0.	0400	0.11		Sheet Flow,
			_				Woods: Light underbrush n= 0.400 P2= 3.50"
	5.1	915	0.	0350	3.01		Shallow Concentrated Flow,
			_		40		Unpaved Kv= 16.1 fps
	1.5	950	0.	0300	10.77	86.20	Parabolic Channel,
	0.4	405	_	0540	00.00	404.04	W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025
	0.1	135	0.	0519	23.29	164.61	Pipe Channel,
							36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'
_		0.400					n= 0.012
	22.3	2,100	To	otal			

Subcatchment B8: BASIN B8

Summary for Subcatchment B9: BASIN B9

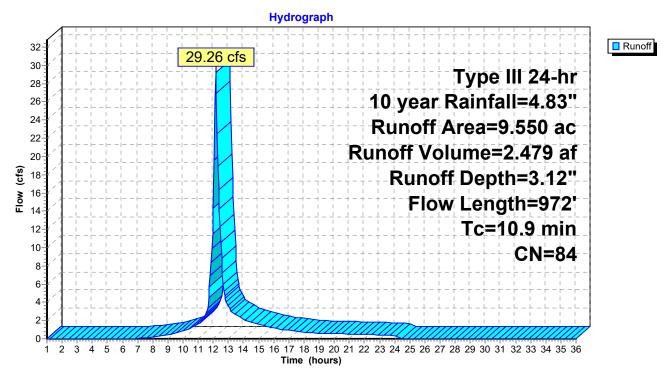

Runoff = 14.27 cfs @ 12.25 hrs, Volume= 1.477 af, Depth= 3.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac) C	N Des	cription		
*	2.	750 8	35 LOT	S, D		
*	1.3	350 9		AĎS, WALI	KS	
	1.	100 8			over, Good,	HSG D
_	5	200 8	37 Wei	ghted Aver	age	
		850) 4% Pervio		
	_	350	25.9	6% Imperv	ious Area	
				•		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'
	15.6	100	0.0400	0.11		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	1.7	435	0.0700	4.26		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.3	90	0.0600	4.97		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.8	650	0.0415	13.12	23.18	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.012
	40.4	4.075				<u> </u>

18.4 1,275 Total

Subcatchment B9: BASIN B9

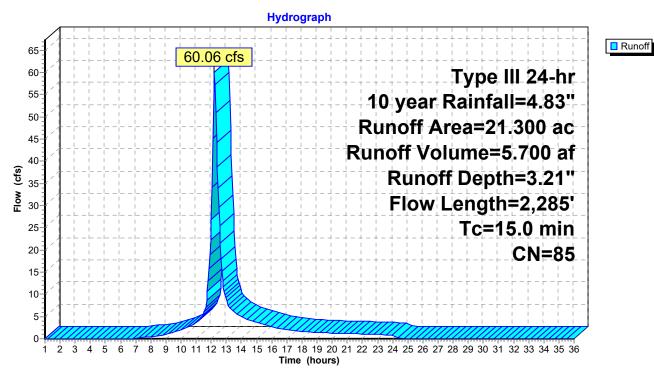

Summary for Subcatchment C1: BASIN C1

Runoff = 29.26 cfs @ 12.15 hrs, Volume= 2.479 af, Depth= 3.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac) (CN De	scription		
*	1.	900	98 R	DADS, WAL	KS, POND	
	3.	450	80 >7	5% Grass c	over, Good	, HSG D
	2.	200	77 W	oods, Good,	, HSG D	
*	2.	000	85 LC	TS, D		
	9.	550	84 W	eighted Ave	rage	
	7.	650	80	.10% Pervio	ous Area	
	1.	900	19	.90% Imper	vious Area	
	Тс	Length	Slop		Capacity	Description
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	6.0	100	0.060	0 0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	4.7	780	0.030	0 2.79		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.2	92	0.010	0 6.44	11.38	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_						n= 0.012
	10.9	972	Total			

Subcatchment C1: BASIN C1

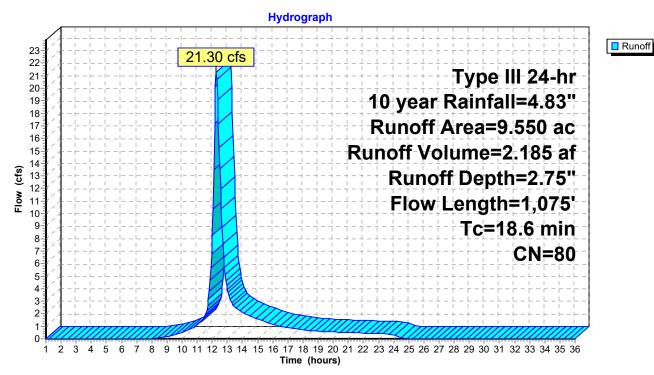

Page 169

Summary for Subcatchment C10: BASIN C10

Runoff = 60.06 cfs @ 12.21 hrs, Volume= 5.700 af, Depth= 3.21"

_	Area (ac) CN		CN De	Description						
*	9.	600	85 LC	LOTS, D						
*	2.750 98			ROADS, WALKS						
	3.	300	80 >7	>75% Grass cover, Good, HSG D						
*	0.	850		POND						
	3.	350	77 W	ods, Good,	HSG D					
	1.	450		eadow, non-grazed, HSG D						
				eighted Ave						
		700		.10% Pervice						
		600		.90% Imper						
	Тс	Length	Slop	e Velocity	Capacity	Description				
	(min)	(feet)		•	(cfs)	'				
	12.4	100	0.070	0.13	,	Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.50"				
	1.1	490	0.200	7.20		Shallow Concentrated Flow,				
						Unpaved Kv= 16.1 fps				
	0.7	195	0.050	0 4.54		Shallow Concentrated Flow,				
						Paved Kv= 20.3 fps				
	0.2	790	0.670	0 52.71	93.15	Pipe Channel,				
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
						n= 0.012				
	0.6	710	0.073	0 21.08	66.22	Pipe Channel,				
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
						n= 0.012				
	15.0	2,285	Total							

Subcatchment C10: BASIN C10

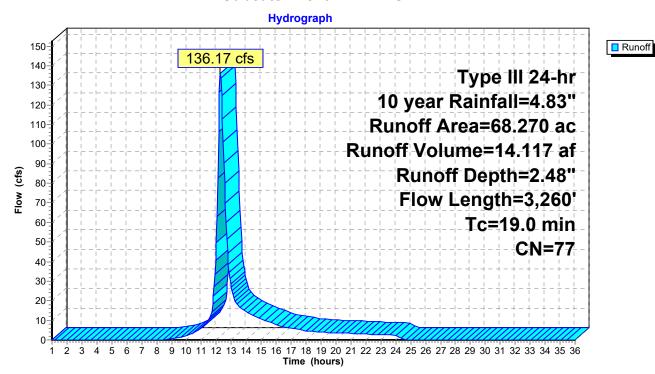

Summary for Subcatchment C11: BASIN C11

Runoff = 21.30 cfs @ 12.26 hrs, Volume= 2.185 af, Depth= 2.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	۸roo	(20)	N Des	cription						
_	Area	· /								
*			85 LOT	LOTS, D						
	1.	000	30 >75	>75% Grass cover, Good, HSG D						
	3.	350	77 Woo	Woods, Good, HSG D						
	2	000		Meadow, non-grazed, HSG D						
				ghted Aver	·	 				
	_			.00% Pervi						
	9.	550	100	.00% Pervi	ous Area					
	_				_					
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	17.5	100	0.0300	0.10		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.50"				
	0.7	315	0.2500	8.05		Shallow Concentrated Flow,				
	0.7	313	0.2300	0.03						
	0.4	000	0.4007	04.50	4 400 04	Unpaved Kv= 16.1 fps				
	0.1	280	0.1227	34.59	1,106.91	Parabolic Channel,				
						W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.025				
	0.3	380	0.0500	22.08	706.60	Parabolic Channel,				
						W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.025				
	18.6	1.075	Total							
	18.6	1,075	Total							

Subcatchment C11: BASIN C11

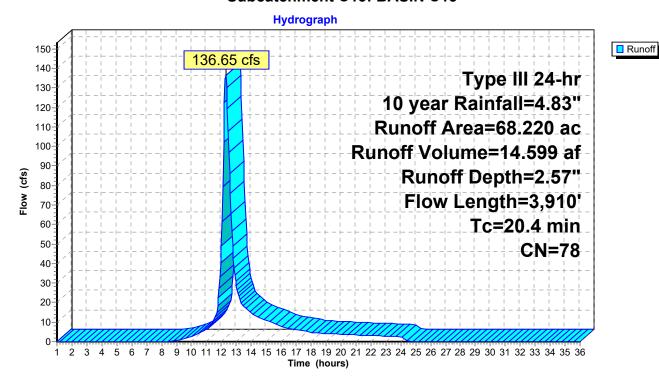

Summary for Subcatchment C12: BASIN C12

Runoff = 136.17 cfs @ 12.27 hrs, Volume= 14.117 af, Depth= 2.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac) (N Des	scription						
	67.	000	77 Wo	ods, Good,	HSG D					
*	0.	600	30 Lav	n, Good, F	ISG D					
	0.	670	78 Me	adow, non-	grazed, HS	G D				
	68.	270	77 We	Weighted Average						
	68.	270	100	.00% Pervi	ous Area					
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.8	100	0.1000	0.15		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.50"				
	0.5	360	0.5900	12.37		Shallow Concentrated Flow,				
						Unpaved Kv= 16.1 fps				
	7.7	2,800	0.1400	6.02		Shallow Concentrated Flow,				
_						Unpaved Kv= 16.1 fps				
	19.0	3,260	Total							

Subcatchment C12: BASIN C12

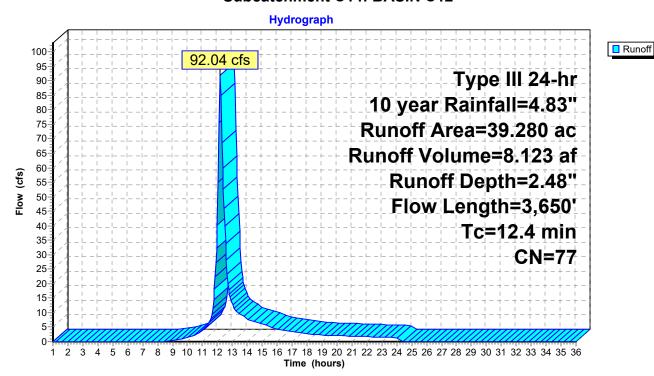

Summary for Subcatchment C13: BASIN C13

Runoff = 136.65 cfs @ 12.29 hrs, Volume= 14.599 af, Depth= 2.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac) (CN	Desc	cription		
*	4.	000	89	WET	LANDS		
*	1.	150	85	LOT	S, D		
*	0.	750	96	Well	access Ro	oad	
	1.	000	80	>75% Grass cover, Good,			HSG D
	68.	220	78	Weig	hted Aver	age	
	68.	220		100.0	00% Pervi	ous Area	
	Tc	Length	S	Slope	Velocity	Capacity	Description
_	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
	15.6	100	0.0	0400	0.11		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	1.6	900	0.3	3500	9.52		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	1.5	610	0.0	0200	6.83	91.11	Parabolic Channel,
							W=10.00' D=2.00' Area=13.3 sf Perim=11.0' n= 0.035
	1.7	2,300	0.	1400	22.28	445.55	Parabolic Channel,
_							W=10.00' D=3.00' Area=20.0 sf Perim=12.0' n= 0.035
	20.4	3,910	To	otal			

Subcatchment C13: BASIN C13


Summary for Subcatchment C14: BASIN C12

Runoff = 92.04 cfs @ 12.17 hrs, Volume= 8.123 af, Depth= 2.48"

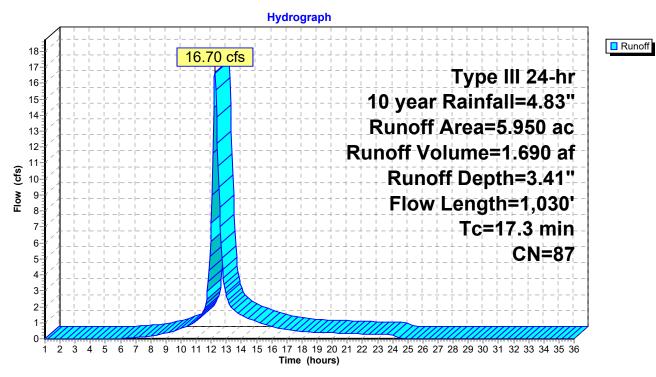
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac) C	N Desc	cription		
*	0.	0.780 89 WETLANDS				
	38.	500 7	7 Woo	ds, Good,	HSG D	
				hted Aver		
	39.	280	100.	00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	8.2	100	0.2000	0.20		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	3.0	1,460	0.2500	8.05		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	1.1	1,800	0.1500	27.32	874.19	Parabolic Channel,
						W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.035
	0.0	50	0.0200	20.32	399.01	Pipe Channel,
						60.0" Round Area= 19.6 sf Perim= 15.7' r= 1.25'
						n= 0.012
	0.1	240	0.0800	27.93	893.79	Parabolic Channel,
						W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.025
	12.4	3,650	Total			

Subcatchment C14: BASIN C12

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 175

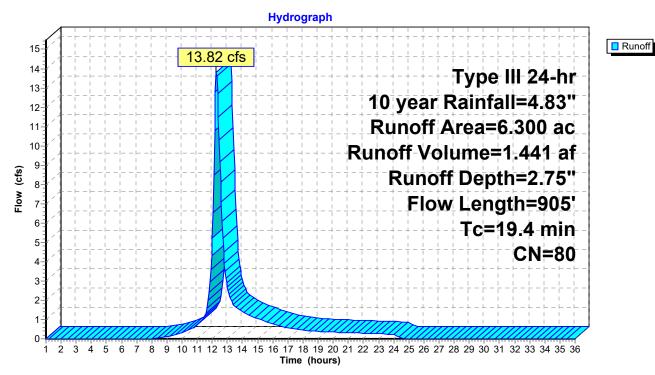

Summary for Subcatchment C2: BASIN C2

Runoff = 16.70 cfs @ 12.23 hrs, Volume= 1.690 af, Depth= 3.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac) (N Des	cription					
*	0.	250	98 POI	ND					
*			98 RO						
*	1.	700		S, Ď					
	0.	500	80 >75	% Grass c	over, Good,	HSG D			
	0.	800		ods, Good,					
	1.	000	78 Mea	dow, non-	grazed, HS	GD			
	5.	950	87 Wei	ghted Aver	age				
		000		3% Pervio					
		950	32.7	7% Imper	vious Area				
				·					
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·			
	15.6	100	0.0400	0.11		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.50"			
	0.4	160	0.1400	6.02		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	0.1	60	0.4500	10.80		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	0.4	135	0.1000	5.09		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	0.2	70	0.0600	4.97		Shallow Concentrated Flow,			
						Paved Kv= 20.3 fps			
	0.6	505	0.0330	14.17	44.52	Pipe Channel,			
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'			
_						n= 0.012			
	17.3	1,030	Total						

Subcatchment C2: BASIN C2


Summary for Subcatchment C3: BASIN C3

Runoff = 13.82 cfs @ 12.27 hrs, Volume= 1.441 af, Depth= 2.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac) (CN Des	cription		
*	0.	380	89 WE	TLANDS		
*	1.	500	85 LO1	S, D		
	0.	350	78 Mea	adów, non-	grazed, HS	GD
	4.	070		ods, Good,		
	6.	300	80 Wei	ghted Aver	age	
	6.	300		.00% Pervi		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	17.5	100	0.0300	0.10		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	1.8	630	0.1300	5.80		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	175	0.0900	23.44	468.78	Parabolic Channel,
						W=12.00' D=2.50' Area=20.0 sf Perim=13.3' n= 0.025
	19.4	905	Total			

Subcatchment C3: BASIN C3

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 178

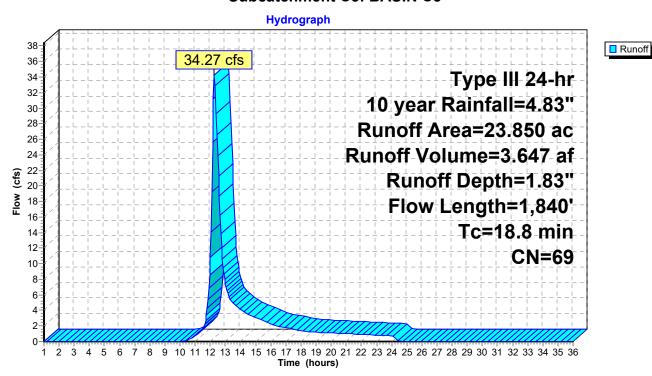

Summary for Subcatchment C4: BASIN C4

Runoff = 19.90 cfs @ 12.22 hrs, Volume= 1.921 af, Depth= 3.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area (ac) (CN	Desc	cription		
*	1.4	430	98	ROA	DS/ WAL	KS	
*	3.1	100	85	LOT	S, D		
*	0.2	250	98	PON	ID		
	0.4	400	78	Mea	dow, non-g	grazed, HS	G D
*	0.5	580	60	LOT	S, A		
	1.2	280	77	Woo	ds, Good,	HSG D	
	0.3	360	80			over, Good,	HSG D
	7.4	400	84	Weio	hted Aver	age	
		720			, 0% Pervio		
	1.6	380		22.7	0% Imperv	ious Area	
					•		
	Tc	Length	1 3	Slope	Velocity	Capacity	Description
	(min)	(feet))	(ft/ft)	(ft/sec)	(cfs)	<u> </u>
	14.2	100	0.	.0500	0.12		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	0.5	220	0.	1800	6.83		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.7	140	0.	.0300	3.52		Shallow Concentrated Flow,
							Paved Kv= 20.3 fps
	0.3	340	0.	.0650	16.42	29.01	Pipe Channel,
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.012
	0.1	120	0.	.2000	24.81	132.31	Parabolic Channel,
							W=4.00' D=2.00' Area=5.3 sf Perim=5.9' n= 0.025
	15.8	920) T	otal			

Subcatchment C4: BASIN C4


Summary for Subcatchment C5: BASIN C5

Runoff = 34.27 cfs @ 12.27 hrs, Volume= 3.647 af, Depth= 1.83"

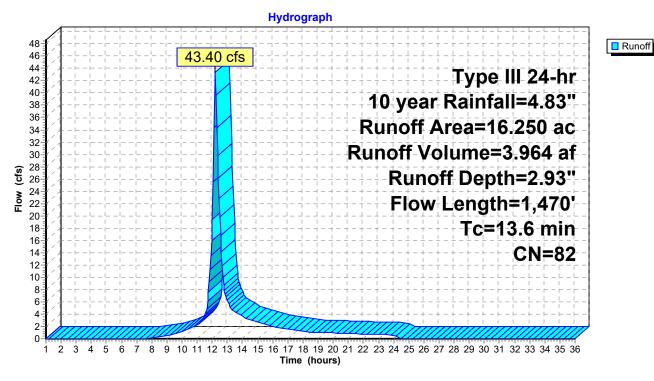
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

_	Area	(ac)	CN	Desc	cription		
	10.250 77 Woods, Good, HSG D						
*	3.	700	85	LOT	S, D		
1.100 80 >75% Grass cover, Good, HSG D							HSG D
	1.000 39 >75% Grass cover, Good, HSG A						
*	1.	250	60	LOT	S, A		
	3.	950	30	Woo	ds, Good,	HSG A	
*	0.	700	96	Well	Access R	oads	
*	0.	420	89	Wetl	ands		
_	1.	480	78	Mea	dow, non-g	grazed, HS	G D
23.850 69 Weighted Average							
	23.850			100.	00% Pervi	ous Area	
	Тс	Lengt	h	Slope	Velocity	Capacity	Description
_	(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)	
	15.6	10	0 0	.0400	0.11		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	2.3	58	0 0	.0700	4.26		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.9	1,16	0 0	.0750	22.54	721.17	Parabolic Channel,
							W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.030
	18.8	1,84	0 T	otal			

Subcatchment C5: BASIN C5

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 181


Summary for Subcatchment C6: BASIN C6

Runoff = 43.40 cfs @ 12.19 hrs, Volume= 3.964 af, Depth= 2.93"

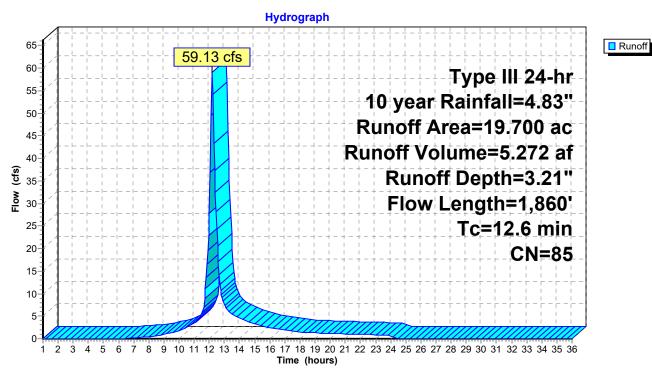
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac) (N Des	cription		
*	0.	650	98 POI	ND		
*	0.	100	60 LOT	S, A		
*	1.	800	98 ROA	ADS, WALI	KS	
*	10.	000	85 LOT	S, D		
	0.	500	39 >75	% Grass c	over, Good	, HSG A
	0.	950	80 >75	% Grass c	over, Good	, HSG D
	0.	700	77 Woo	ods, Good,	HSG D	
	0.	250	30 Woo	ods, Good,	HSG A	
	0.	400			grazed, HS	
	0.	900	78 Mea	idow, non-	grazed, HS	G D
	16.	250	82 Wei	ghted Aver	age	
	13.	800	84.9	2% Pervio	us Area	
	2.	450	15.0	8% Imper	∕ious Area	
	Тс	Length		Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	11.8	100	0.0800	0.14		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.4	170	0.1600	6.44		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.3	235	0.0400	12.88	22.76	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.012
	1.0	830	0.0300	13.51	42.45	Pipe Channel,
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
						n= 0.012
	0.1	135	0.1400	23.28	186.21	Parabolic Channel,
_						W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025
	13.6	1,470	Total			

Subcatchment C6: BASIN C6

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 183

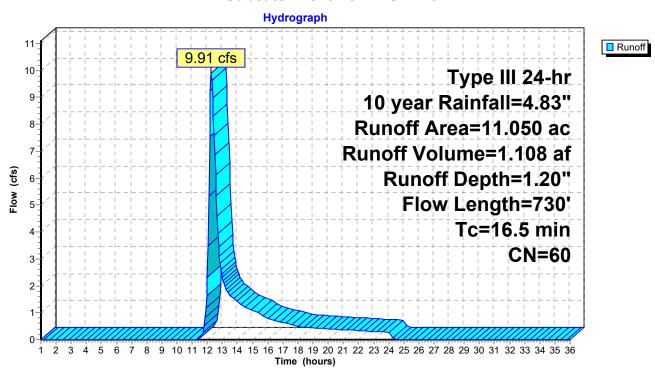

Summary for Subcatchment C7: BASIN C7

Runoff = 59.13 cfs @ 12.17 hrs, Volume= 5.272 af, Depth= 3.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac) (CN	Desc	cription		
*	2.	500	98	ROA	DS / WAL	KS	
*	0.	500	98	BLD	G		
*		450	85	LOT	S, D		
*			98	PON	-		
		400	39			over, Good,	
		750	80			over, Good,	HSG D
		000	77		ds, Good,		
_		100	78	Mea	dow, non-զ	grazed, HS	G D
			85		ghted Aver		
		700		. •	0% Pervio		
	4.	000		20.3	0% Imperv	ious Area	
	- -	141-	_	N	\/-l!4.	0:	Decadation
	Tc (min)	Length		Slope	Velocity	Capacity	Description
_	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	Ob (El .
	10.5	100	0.0	0150	0.16		Sheet Flow, Grass: Short n= 0.150 P2= 3.50"
	0.5	150		1000	5.09		
	0.5	150	0.	1000	5.09		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	1.0	900	0.0	0600	15.77	27.87	Pipe Channel,
	1.0	900	0.0	3000	13.77	21.01	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.012
	0.5	630	0.0	0600	19.11	60.03	Pipe Channel,
	0.0	000	0.0		10.11	00.00	24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
							n= 0.012
	0.1	80	0.2	2000	24.81	132.31	Parabolic Channel,
							W=4.00' D=2.00' Area=5.3 sf Perim=5.9' n= 0.025
	12.6	1,860	To	tal	•		

Subcatchment C7: BASIN C7

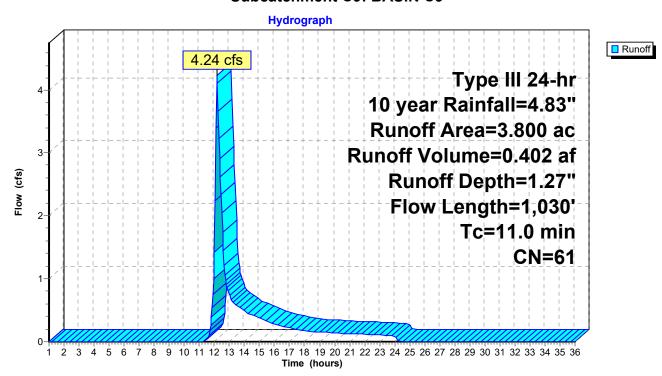

Summary for Subcatchment C8: BASIN C8

Runoff = 9.91 cfs @ 12.26 hrs, Volume= 1.108 af, Depth= 1.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac) (CN	Desc	cription		
*	0.	710	89	Wetl	ands		
*	0.	470	98	Impe	rvious Su	rfaces	
	3.	390	77	Woo	ds, Good,	HSG D	
*	1.	030	79	Old (Golf Cours	e, HSG D	
*	1.	900	35	Old (Golf Cours	e, HSG A	
	0.	770	78	Mea	dow, non-g	grazed, HS	G D
*	2.	780	30	Woo	ds, Good,	HSG A	
	11.	050	60	Weig	hted Aver	age	
	10.	580		95.7	5% Pervio	us Area	
	0.470 4.2			4.25	% Impervi	ous Area	
	Тс	Length		lope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.6	100	0.0	400	0.11		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	0.6	130	0.0	500	3.60		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.3	500	0.0	585	25.56	2,555.82	Parabolic Channel,
_							W=30.00' D=5.00' Area=100.0 sf Perim=32.1' n= 0.030
	16.5	730	Tot	tal			

Subcatchment C8: BASIN C8

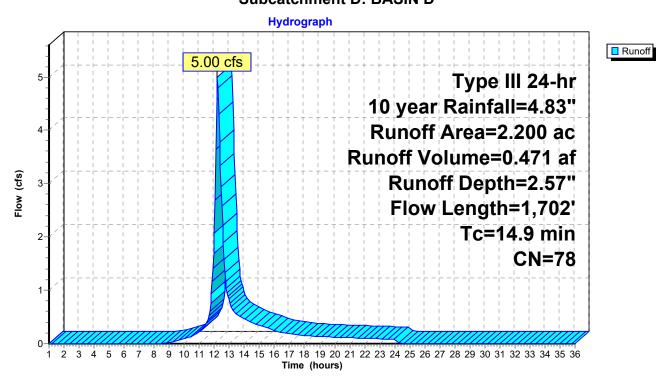

Summary for Subcatchment C9: BASIN C9

Runoff = 4.24 cfs @ 12.17 hrs, Volume= 0.402 af, Depth= 1.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac) C	N Desc	cription		
	1.	000 3	30 Woo	ds, Good,	HSG A	
	0.	350 3			over, Good.	, HSG A
*	0.	500 6	0 LOT	S, A	,	
*	1.	000	S5 LOT	S, D		
	0.	950	77 Woo	ds, Good,	HSG D	
	3.	800 6	31 Weig	hted Aver	age	
	3.800 100.00% Pervious Area					
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	9.4	100	0.1400	0.18		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.7	200	0.1000	5.09		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.9	730	0.0325	14.17	377.93	Parabolic Channel,
						W=10.00' D=4.00' Area=26.7 sf Perim=13.3' n= 0.030
	11 0	1 030	Total	•		

Subcatchment C9: BASIN C9


Summary for Subcatchment D: BASIN D

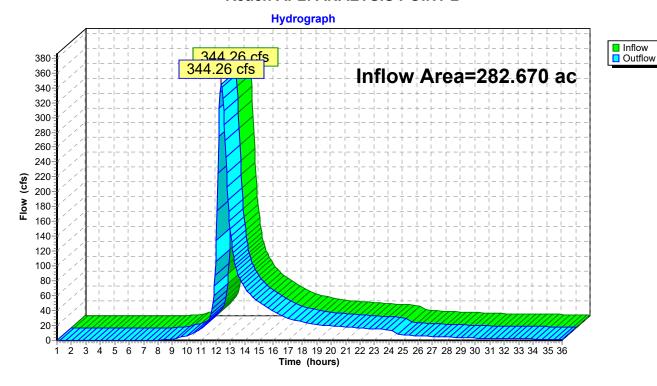
Runoff = 5.00 cfs @ 12.21 hrs, Volume= 0.471 af, Depth= 2.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

Area	(ac) C	N Desc	cription						
0.	.850 7	'8 Mea	dow, non-	grazed, HS	G D				
0.	0.900 77 Woods, Good, HSG D								
0.	0.450 80 >75% Grass cover, Good, HSG D								
2.	2.200 78 Weighted Average								
2.	.200	100.	00% Pervi	ous Area					
				_					
Tc	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
13.2	100	0.0600	0.13		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 3.50"				
0.2	90	0.2500	8.05		Shallow Concentrated Flow,				
					Unpaved Kv= 16.1 fps				
8.0	900	0.1000	19.67	157.38	Parabolic Channel,				
			44.40	400.40	W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025				
0.1	72	0.0200	14.46	102.19	Pipe Channel,				
					36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'				
	5.40	0.0000	44.50	07.05	n= 0.012				
0.6	540	0.0600	14.56	97.05	Parabolic Channel,				
					W=5.00' D=2.00' Area=6.7 sf Perim=6.7' n= 0.025				
14.9	1,702	Total							

Subcatchment D: BASIN D

Summary for Reach AP2: ANALYSIS POINT 2


Inflow Area = 282.670 ac, 12.10% Impervious, Inflow Depth > 2.53" for 10 year event

Inflow = 344.26 cfs @ 12.38 hrs, Volume= 59.668 af

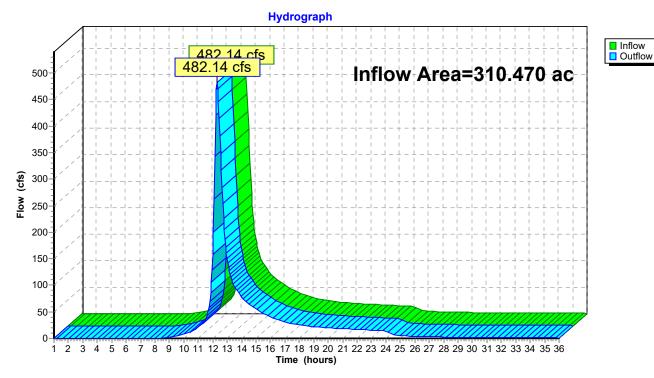
Outflow = 344.26 cfs @ 12.38 hrs, Volume= 59.668 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP2: ANALYSIS POINT 2

Page 189

Summary for Reach AP3: ANALYSIS POINT 3


Inflow Area = 310.470 ac, 5.17% Impervious, Inflow Depth > 2.55" for 10 year event

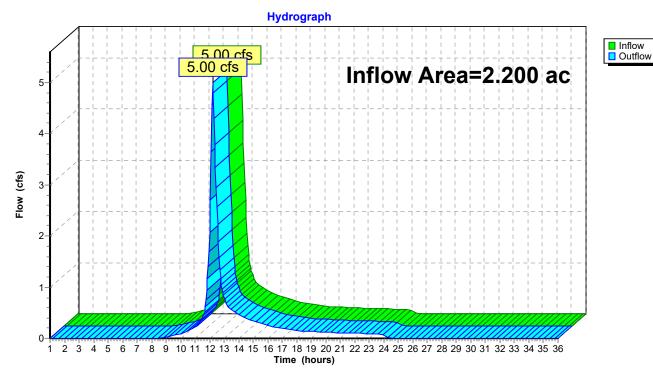
Inflow = 482.14 cfs @ 12.30 hrs, Volume= 65.940 af

Outflow = 482.14 cfs @ 12.30 hrs, Volume= 65.940 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP3: ANALYSIS POINT 3

Summary for Reach AP4: ANALYSIS POINT 4


2.200 ac, 0.00% Impervious, Inflow Depth = 2.57" for 10 year event Inflow Area =

5.00 cfs @ 12.21 hrs, Volume= 5.00 cfs @ 12.21 hrs, Volume= Inflow 0.471 af

Outflow 0.471 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP4: ANALYSIS POINT 4

Page 191

Summary for Reach RB1: RB1

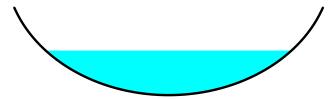
Inflow Area = 176.450 ac, 14.26% Impervious, Inflow Depth > 2.63" for 10 year event

Inflow = 190.65 cfs @ 12.46 hrs, Volume= 38.613 af

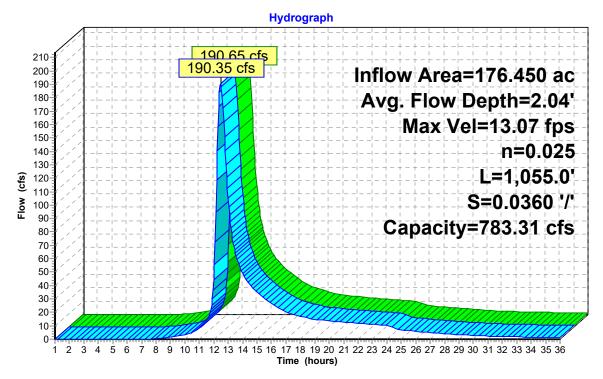
Outflow = 190.35 cfs @ 12.48 hrs, Volume= 38.603 af, Atten= 0%, Lag= 1.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 13.07 fps, Min. Travel Time= 1.3 min Avg. Velocity = 5.00 fps, Avg. Travel Time= 3.5 min


Peak Storage= 15,360 cf @ 12.48 hrs Average Depth at Peak Storage= 2.04'

Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 783.31 cfs


15.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 1,055.0' Slope= 0.0360 '/'

Inlet Invert= 504.00', Outlet Invert= 466.00'

Reach RB1: RB1

Page 192

Summary for Reach RB11: RB11

Inflow Area = 21.550 ac, 7.89% Impervious, Inflow Depth > 3.03" for 10 year event

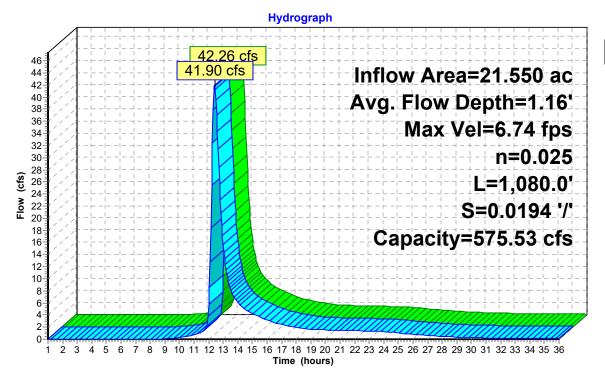
Inflow = 42.26 cfs @ 12.37 hrs, Volume= 5.447 af

Outflow = 41.90 cfs @ 12.40 hrs, Volume= 5.445 af, Atten= 1%, Lag= 2.2 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.74 fps, Min. Travel Time= 2.7 min Avg. Velocity = 2.17 fps, Avg. Travel Time= 8.3 min

Peak Storage= 6,717 cf @ 12.40 hrs Average Depth at Peak Storage= 1.16'


Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 575.53 cfs

15.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 1,080.0' Slope= 0.0194 '/'

Inlet Invert= 575.00', Outlet Invert= 554.00'

Reach RB11: RB11

Page 193

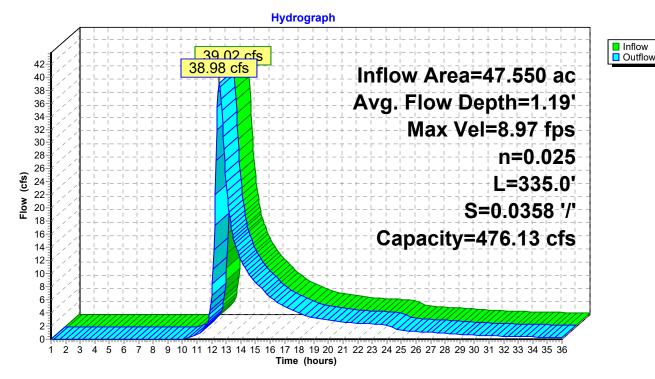
Summary for Reach RB13: RB13

Inflow Area = 47.550 ac, 10.62% Impervious, Inflow Depth > 2.08" for 10 year event

Inflow = 39.02 cfs @ 12.52 hrs, Volume= 8.246 af

Outflow = 38.98 cfs @ 12.53 hrs, Volume= 8.246 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 8.97 fps, Min. Travel Time= 0.6 min Avg. Velocity = 3.76 fps, Avg. Travel Time= 1.5 min

Peak Storage= 1,455 cf @ 12.53 hrs Average Depth at Peak Storage= 1.19'

Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 476.13 cfs

10.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 335.0' Slope= 0.0358 '/' Inlet Invert= 581.00', Outlet Invert= 569.00'

Reach RB13: RB13

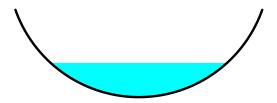
Page 194

Summary for Reach RB14: RB14

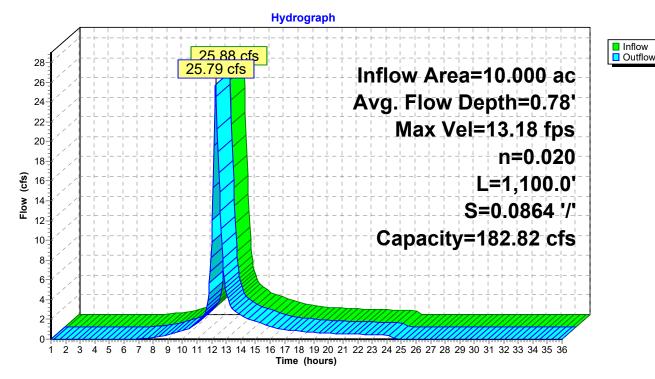
Inflow Area = 10.000 ac, 13.00% Impervious, Inflow Depth = 3.21" for 10 year event

Inflow = 25.88 cfs @ 12.25 hrs, Volume= 2.676 af

Outflow = 25.79 cfs @ 12.27 hrs, Volume= 2.676 af, Atten= 0%, Lag= 1.0 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 13.18 fps, Min. Travel Time= 1.4 min Avg. Velocity = 4.71 fps, Avg. Travel Time= 3.9 min


Peak Storage= 2,147 cf @ 12.27 hrs Average Depth at Peak Storage= 0.78'

Bank-Full Depth= 2.00' Flow Area= 8.0 sf, Capacity= 182.82 cfs

6.00' x 2.00' deep Parabolic Channel, n= 0.020 Length= 1,100.0' Slope= 0.0864 '/' Inlet Invert= 681.00', Outlet Invert= 586.00'

Reach RB14: RB14

Page 195

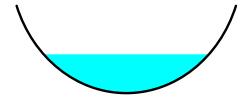
Summary for Reach RB15: RB15

Inflow Area = 6.050 ac, 9.09% Impervious, Inflow Depth = 3.12" for 10 year event

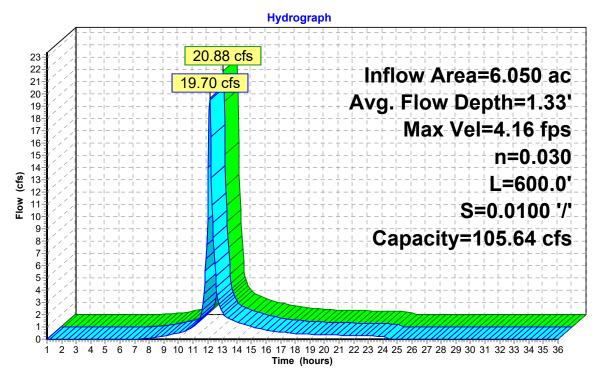
Inflow = 20.88 cfs @ 12.10 hrs, Volume= 1.571 af

Outflow = 19.70 cfs @ 12.14 hrs, Volume= 1.571 af, Atten= 6%, Lag= 1.9 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 4.16 fps, Min. Travel Time= 2.4 min Avg. Velocity = 1.33 fps, Avg. Travel Time= 7.5 min

Peak Storage= 2,835 cf @ 12.14 hrs Average Depth at Peak Storage= 1.33'


Bank-Full Depth= 3.00' Flow Area= 16.0 sf, Capacity= 105.64 cfs

 $8.00' \times 3.00'$ deep Parabolic Channel, n= 0.030 Earth, grassed & winding Length= 600.0' Slope= 0.0100'/

Inlet Invert= 552.00', Outlet Invert= 546.00'

Reach RB15: RB15

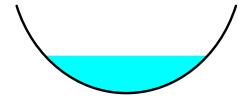
Page 196

Summary for Reach RB16: RB16

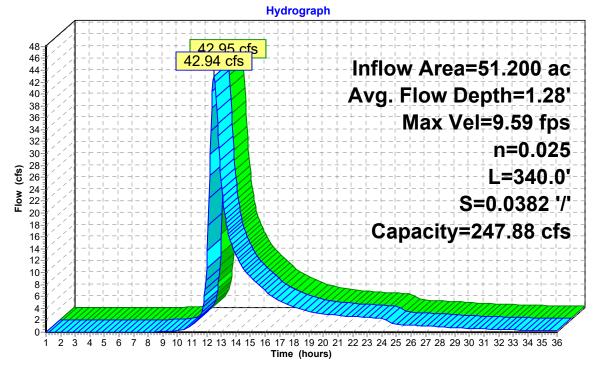
Inflow Area = 51.200 ac, 9.86% Impervious, Inflow Depth > 2.13" for 10 year event

Inflow = 42.95 cfs @ 12.50 hrs, Volume= 9.108 af

Outflow = 42.94 cfs @ 12.51 hrs, Volume= 9.107 af, Atten= 0%, Lag= 0.4 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 9.59 fps, Min. Travel Time= 0.6 min Avg. Velocity = 3.83 fps, Avg. Travel Time= 1.5 min


Peak Storage= 1,523 cf @ 12.51 hrs Average Depth at Peak Storage= 1.28'

Bank-Full Depth= 3.00' Flow Area= 16.0 sf, Capacity= 247.88 cfs

 $8.00' \times 3.00'$ deep Parabolic Channel, n= 0.025 Length= 340.0' Slope= 0.0382 '/' Inlet Invert= 567.00', Outlet Invert= 554.00'

Reach RB16: RB16

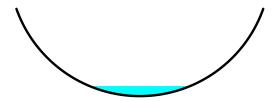
Page 197

Summary for Reach RB2: RB2

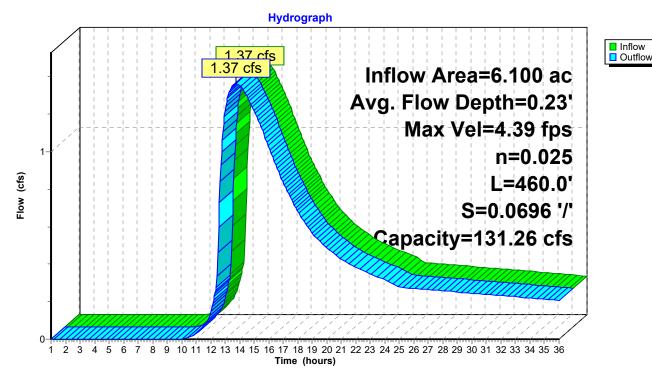
Inflow Area = 6.100 ac, 13.11% Impervious, Inflow Depth > 1.92" for 10 year event

Inflow = 1.37 cfs @ 13.76 hrs, Volume= 0.976 af

Outflow = 1.37 cfs @ 13.78 hrs, Volume= 0.975 af, Atten= 0%, Lag= 1.2 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.39 fps, Min. Travel Time= 1.7 min Avg. Velocity = 2.90 fps, Avg. Travel Time= 2.6 min


Peak Storage= 143 cf @ 13.78 hrs Average Depth at Peak Storage= 0.23'

Bank-Full Depth= 2.00' Flow Area= 8.0 sf, Capacity= 131.26 cfs

6.00' x 2.00' deep Parabolic Channel, n= 0.025 Length= 460.0' Slope= 0.0696 '/' Inlet Invert= 500.00', Outlet Invert= 468.00'

Reach RB2: RB2

Page 198

Inflow
Outflow

Summary for Reach RB3: RB3

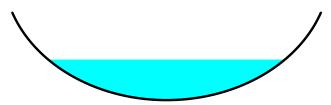
Inflow Area = 149.800 ac, 14.03% Impervious, Inflow Depth > 2.63" for 10 year event

Inflow = 178.30 cfs @ 12.41 hrs, Volume= 32.846 af

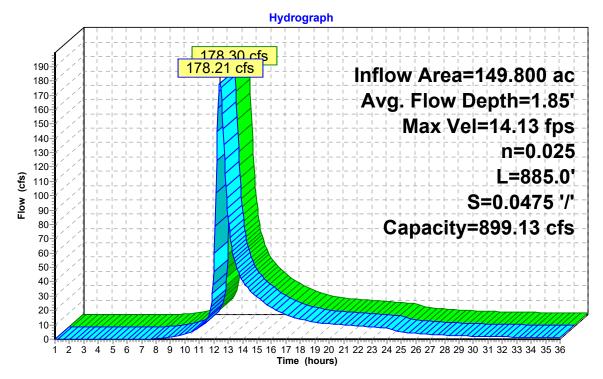
Outflow = 178.21 cfs @ 12.42 hrs, Volume= 32.839 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 14.13 fps, Min. Travel Time= 1.0 min Avg. Velocity = 5.18 fps, Avg. Travel Time= 2.8 min


Peak Storage= 11,153 cf @ 12.42 hrs Average Depth at Peak Storage= 1.85'

Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 899.13 cfs


15.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 885.0' Slope= 0.0475 '/'

Inlet Invert= 546.00', Outlet Invert= 504.00'

Reach RB3: RB3

Page 199

Summary for Reach RB4: RB4

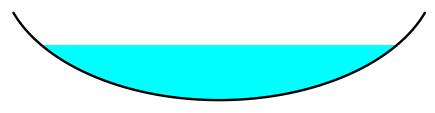
Inflow Area = 17.100 ac, 9.94% Impervious, Inflow Depth = 2.88" for 10 year event

Inflow = 37.56 cfs @ 12.29 hrs, Volume= 4.110 af

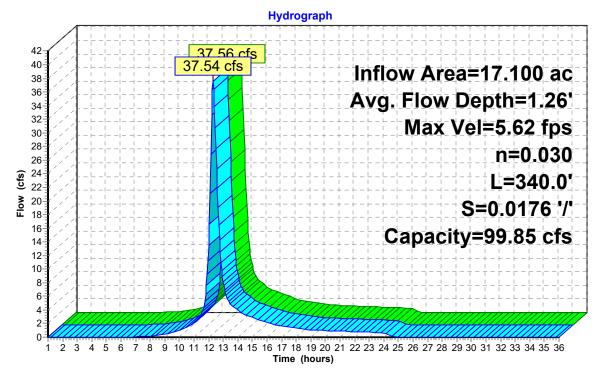
Outflow = 37.54 cfs @ 12.30 hrs, Volume= 4.110 af, Atten= 0%, Lag= 0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.62 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.91 fps, Avg. Travel Time= 3.0 min


Peak Storage= 2,269 cf @ 12.30 hrs Average Depth at Peak Storage= 1.26'

Bank-Full Depth= 2.00' Flow Area= 13.3 sf, Capacity= 99.85 cfs


10.00' x 2.00' deep Parabolic Channel, n= 0.030

Length= 340.0' Slope= 0.0176 '/'

Inlet Invert= 552.00', Outlet Invert= 546.00'

Reach RB4: RB4

Page 200

Inflow
Outflow

Summary for Reach RB6: RB6

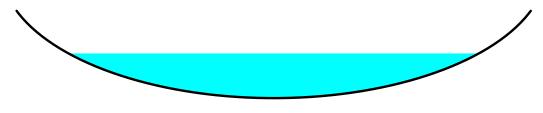
Inflow Area = 110.950 ac, 13.76% Impervious, Inflow Depth > 2.51" for 10 year event

Inflow = 124.12 cfs @ 12.42 hrs, Volume= 23.231 af

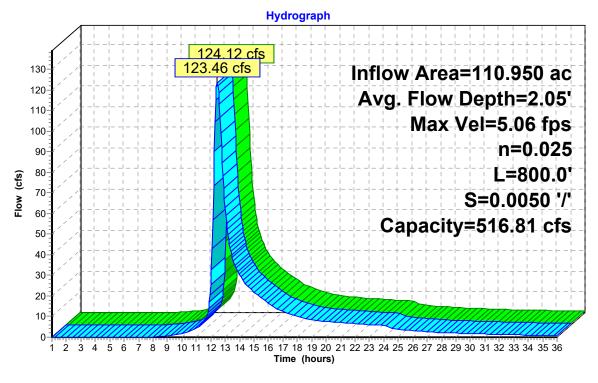
Outflow = 123.46 cfs @ 12.46 hrs, Volume= 23.218 af, Atten= 1%, Lag= 2.1 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.06 fps, Min. Travel Time= 2.6 min Avg. Velocity = 1.89 fps, Avg. Travel Time= 7.1 min


Peak Storage= 19,527 cf @ 12.46 hrs Average Depth at Peak Storage= 2.05'

Bank-Full Depth= 4.00' Flow Area= 66.7 sf, Capacity= 516.81 cfs


25.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 800.0' Slope= 0.0050 '/'

Inlet Invert= 550.00', Outlet Invert= 546.00'

Reach RB6: RB6

Page 201

Summary for Reach RB7: RB7

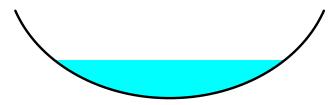
Inflow Area = 86.200 ac, 12.18% Impervious, Inflow Depth > 2.33" for 10 year event

Inflow = 85.19 cfs @ 12.46 hrs, Volume= 16.768 af

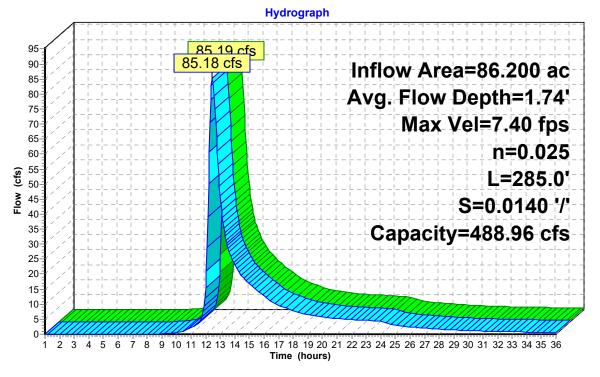
Outflow = 85.18 cfs @ 12.47 hrs, Volume= 16.766 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 7.40 fps, Min. Travel Time= 0.6 min Avg. Velocity = 2.83 fps, Avg. Travel Time= 1.7 min


Peak Storage= 3,278 cf @ 12.47 hrs Average Depth at Peak Storage= 1.74'

Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 488.96 cfs


15.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 285.0' Slope= 0.0140 '/'

Inlet Invert= 554.00', Outlet Invert= 550.00'

Reach RB7: RB7

Page 202

Inflow
Outflow

Summary for Reach RC1: RC1

Inflow Area = 300.920 ac, 4.70% Impervious, Inflow Depth > 2.53" for 10 year event

Inflow = 463.43 cfs @ 12.31 hrs, Volume= 63.463 af

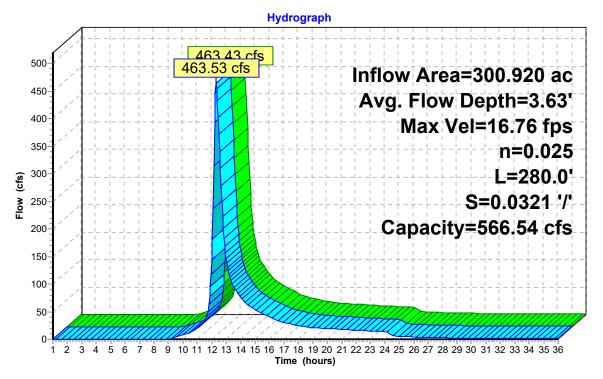
Outflow = 463.53 cfs @ 12.31 hrs, Volume= 63.461 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 16.76 fps, Min. Travel Time= 0.3 min Avg. Velocity = 5.49 fps, Avg. Travel Time= 0.8 min

Peak Storage= 7,740 cf @ 12.31 hrs Average Depth at Peak Storage= 3.63'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 566.54 cfs


12.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 280.0' Slope= 0.0321 '/'

Inlet Invert= 483.00', Outlet Invert= 474.00'

Reach RC1: RC1

Page 203

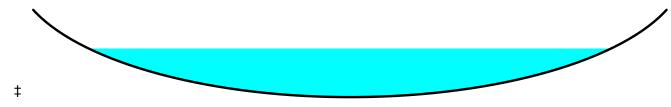
Summary for Reach RC10: RC10

Inflow Area = 21.300 ac, 16.90% Impervious, Inflow Depth > 3.18" for 10 year event

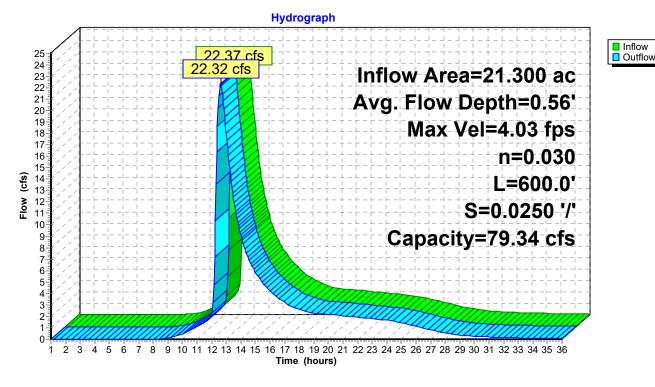
Inflow = 22.37 cfs @ 12.59 hrs, Volume= 5.645 af

Outflow = 22.32 cfs @ 12.62 hrs, Volume= 5.644 af, Atten= 0%, Lag= 1.8 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 4.03 fps, Min. Travel Time= 2.5 min Avg. Velocity = 1.61 fps, Avg. Travel Time= 6.2 min

Peak Storage= 3,321 cf @ 12.62 hrs Average Depth at Peak Storage= 0.56'


Bank-Full Depth= 1.00' Flow Area= 13.3 sf, Capacity= 79.34 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.030 Length= 600.0' Slope= 0.0250 '/'

Inlet Invert= 660.00', Outlet Invert= 645.00'

Reach RC10: RC10

Page 204

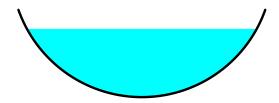
Summary for Reach RC11A: RC11-A

Inflow Area = 271.720 ac, 3.87% Impervious, Inflow Depth > 2.50" for 10 year event

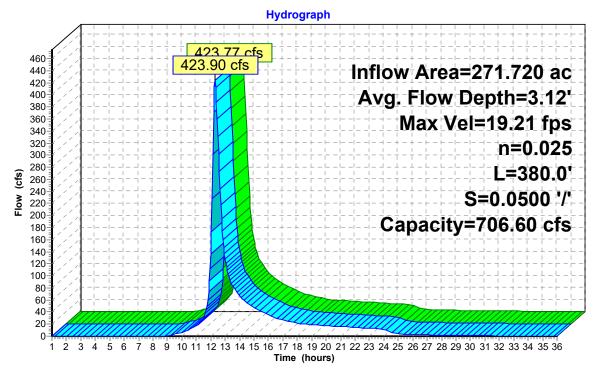
Inflow = 423.77 cfs @ 12.29 hrs, Volume= 56.522 af

Outflow = 423.90 cfs @ 12.30 hrs, Volume= 56.521 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 19.21 fps, Min. Travel Time= 0.3 min Avg. Velocity = 6.19 fps, Avg. Travel Time= 1.0 min

Peak Storage= 8,385 cf @ 12.30 hrs Average Depth at Peak Storage= 3.12'


Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 706.60 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 380.0' Slope= 0.0500'/'

Inlet Invert= 527.00', Outlet Invert= 508.00'

Reach RC11A: RC11-A

Page 205

Inflow
Outflow

Summary for Reach RC11B: RC11-B

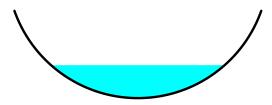
Inflow Area = 79.320 ac, 0.59% Impervious, Inflow Depth = 2.30" for 10 year event

Inflow = 145.05 cfs @ 12.29 hrs, Volume= 15.225 af

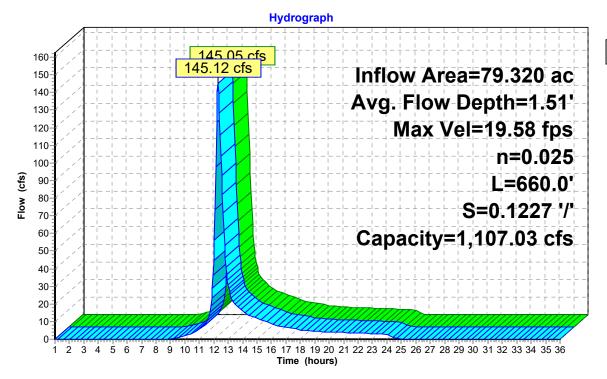
Outflow = 145.12 cfs @ 12.30 hrs, Volume= 15.225 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 19.58 fps, Min. Travel Time= 0.6 min Avg. Velocity = 7.08 fps, Avg. Travel Time= 1.6 min


Peak Storage= 4,890 cf @ 12.30 hrs Average Depth at Peak Storage= 1.51'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 1,107.03 cfs


12.00' x 4.00' deep Parabolic Channel, n=0.025

Length= 660.0' Slope= 0.1227 '/'

Inlet Invert= 608.00', Outlet Invert= 527.00'

Reach RC11B: RC11-B

Page 206

Summary for Reach RC11C: RC11-C

Inflow Area = 192.400 ac, 5.22% Impervious, Inflow Depth > 2.58" for 10 year event

Inflow = 278.66 cfs @ 12.29 hrs, Volume= 41.297 af

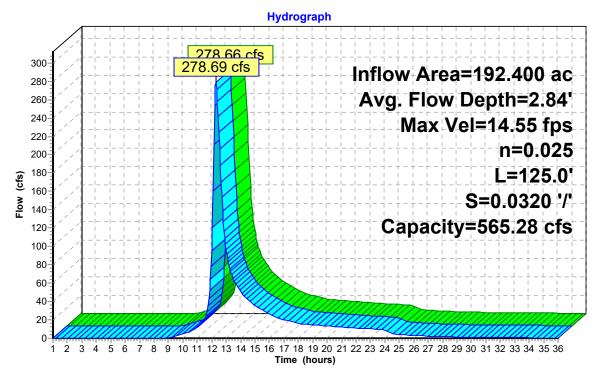
Outflow = 278.69 cfs @ 12.29 hrs, Volume= 41.297 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 14.55 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.93 fps, Avg. Travel Time= 0.4 min


Peak Storage= 2,393 cf @ 12.29 hrs Average Depth at Peak Storage= 2.84'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 565.28 cfs


12.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 125.0' Slope= 0.0320 '/'

Inlet Invert= 531.00', Outlet Invert= 527.00'

Reach RC11C: RC11-C

Page 207

Inflow
Outflow

Summary for Reach RC12: RC12

Inflow Area = 68.270 ac, 0.00% Impervious, Inflow Depth = 2.48" for 10 year event

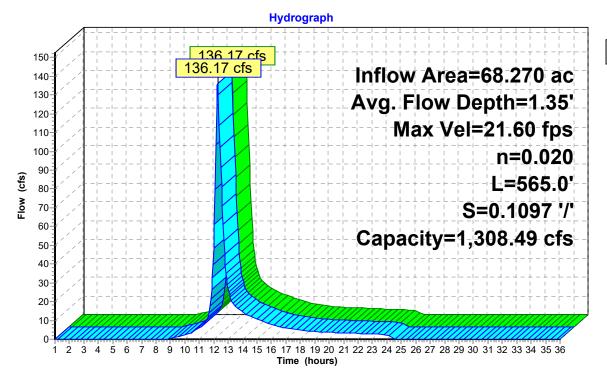
Inflow = 136.17 cfs @ 12.27 hrs, Volume= 14.117 af

Outflow = 136.17 cfs @ 12.27 hrs, Volume= 14.117 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 21.60 fps, Min. Travel Time= 0.4 min Avg. Velocity = 8.31 fps, Avg. Travel Time= 1.1 min

Peak Storage= 3,554 cf @ 12.27 hrs Average Depth at Peak Storage= 1.35'


Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 1,308.49 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.020

Length= 565.0' Slope= 0.1097 '/'
Inlet Invert= 722.00', Outlet Invert= 660.00'

Reach RC12: RC12

Page 208

Summary for Reach RC13: RC13

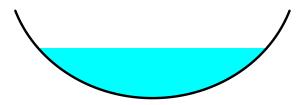
Inflow Area = 68.220 ac, 0.00% Impervious, Inflow Depth = 2.57" for 10 year event

Inflow = 136.65 cfs @ 12.29 hrs, Volume= 14.599 af

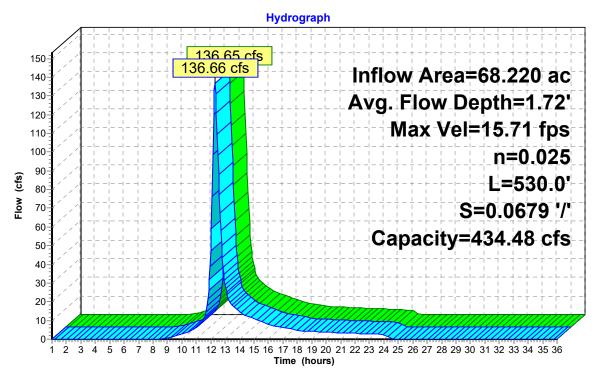
Outflow = 136.66 cfs @ 12.29 hrs, Volume= 14.599 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 15.71 fps, Min. Travel Time= 0.6 min Avg. Velocity = 5.97 fps, Avg. Travel Time= 1.5 min


Peak Storage= 4,611 cf @ 12.29 hrs Average Depth at Peak Storage= 1.72'

Bank-Full Depth= 3.00' Flow Area= 20.0 sf, Capacity= 434.48 cfs


10.00' x 3.00' deep Parabolic Channel, n=0.025

Length= 530.0' Slope= 0.0679 '/'

Inlet Invert= 690.00', Outlet Invert= 654.00'

Reach RC13: RC13

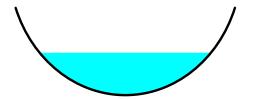
Page 209

Summary for Reach RC14: RC14

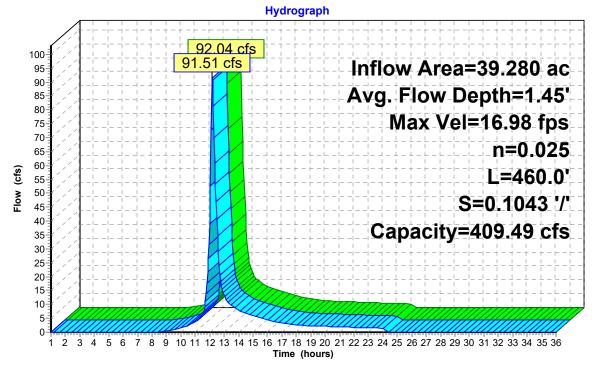
Inflow Area = 39.280 ac, 0.00% Impervious, Inflow Depth = 2.48" for 10 year event

Inflow = 92.04 cfs @ 12.17 hrs, Volume= 8.123 af

Outflow = 91.51 cfs @ 12.18 hrs, Volume= 8.123 af, Atten= 1%, Lag= 0.5 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 16.98 fps, Min. Travel Time= 0.5 min Avg. Velocity = 6.37 fps, Avg. Travel Time= 1.2 min


Peak Storage= 2,475 cf @ 12.18 hrs Average Depth at Peak Storage= 1.45'

Bank-Full Depth= 3.00' Flow Area= 16.0 sf, Capacity= 409.49 cfs

8.00' x 3.00' deep Parabolic Channel, n= 0.025 Length= 460.0' Slope= 0.1043 '/' Inlet Invert= 702.00', Outlet Invert= 654.00'

Reach RC14: RC14

Page 210

Summary for Reach RC2: RC2

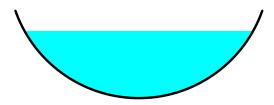
Inflow Area = 281.270 ac, 3.74% Impervious, Inflow Depth > 2.50" for 10 year event

Inflow = 444.66 cfs @ 12.30 hrs, Volume= 58.705 af

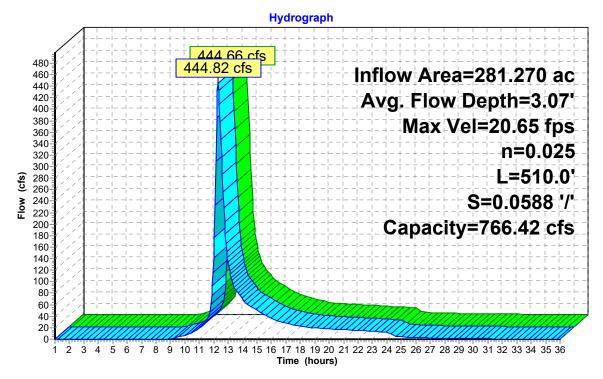
Outflow = 444.82 cfs @ 12.30 hrs, Volume= 58.704 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 20.65 fps, Min. Travel Time= 0.4 min Avg. Velocity = 6.64 fps, Avg. Travel Time= 1.3 min


Peak Storage= 10,987 cf @ 12.30 hrs Average Depth at Peak Storage= 3.07'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 766.42 cfs


12.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 510.0' Slope= 0.0588 '/'

Inlet Invert= 504.00', Outlet Invert= 474.00'

Reach RC2: RC2

Page 211

Summary for Reach RC3: RC3

Inflow Area = 7.400 ac, 22.70% Impervious, Inflow Depth > 2.95" for 10 year event

Inflow = 8.69 cfs @ 12.57 hrs, Volume= 1.819 af

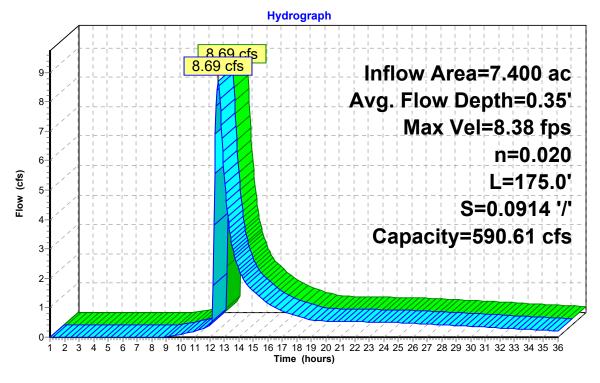
Outflow = 8.69 cfs @ 12.57 hrs, Volume= 1.819 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 8.38 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.54 fps, Avg. Travel Time= 0.8 min

Peak Storage= 181 cf @ 12.57 hrs Average Depth at Peak Storage= 0.35'

Bank-Full Depth= 2.50' Flow Area= 20.0 sf, Capacity= 590.61 cfs


12.00' x 2.50' deep Parabolic Channel, n= 0.020

Length= 175.0' Slope= 0.0914 '/'

Inlet Invert= 514.00', Outlet Invert= 498.00'

Reach RC3: RC3

Page 212

Summary for Reach RC4: RC4

Inflow Area = 7.400 ac, 22.70% Impervious, Inflow Depth > 2.95" for 10 year event

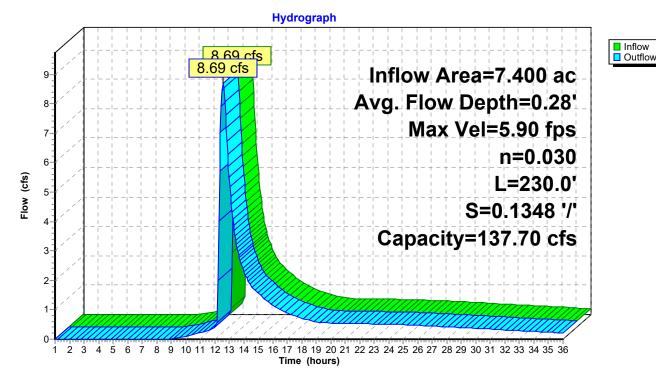
Inflow = 8.69 cfs @ 12.56 hrs, Volume= 1.819 af

Outflow = 8.69 cfs @ 12.57 hrs, Volume= 1.819 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.90 fps, Min. Travel Time= 0.6 min Avg. Velocity = 2.44 fps, Avg. Travel Time= 1.6 min

Peak Storage= 338 cf @ 12.57 hrs Average Depth at Peak Storage= 0.28'


Bank-Full Depth= 1.00' Flow Area= 10.0 sf, Capacity= 137.70 cfs

15.00' x 1.00' deep Parabolic Channel, n= 0.030 Length= 230.0' Slope= 0.1348 '/'

Inlet Invert= 546.00', Outlet Invert= 515.00'

Reach RC4: RC4

Page 213

Summary for Reach RC5A: RC5-A

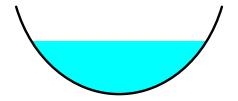
Inflow Area = 168.550 ac, 5.96% Impervious, Inflow Depth > 2.68" for 10 year event

Inflow = 244.60 cfs @ 12.28 hrs, Volume= 37.653 af

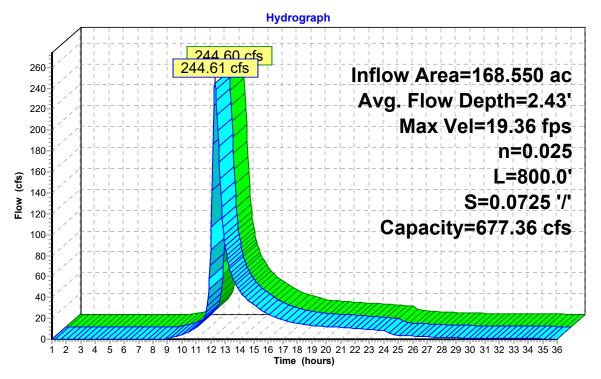
Outflow = 244.61 cfs @ 12.29 hrs, Volume= 37.651 af, Atten= 0%, Lag= 0.6 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 19.36 fps, Min. Travel Time= 0.7 min Avg. Velocity = 6.76 fps, Avg. Travel Time= 2.0 min


Peak Storage= 10,109 cf @ 12.29 hrs Average Depth at Peak Storage= 2.43'

Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 677.36 cfs


10.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 800.0' Slope= 0.0725 '/'

Inlet Invert= 590.00', Outlet Invert= 532.00'

Reach RC5A: RC5-A

Page 214

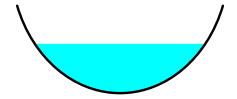
Inflow
Outflow

Summary for Reach RC5B: RC5-B

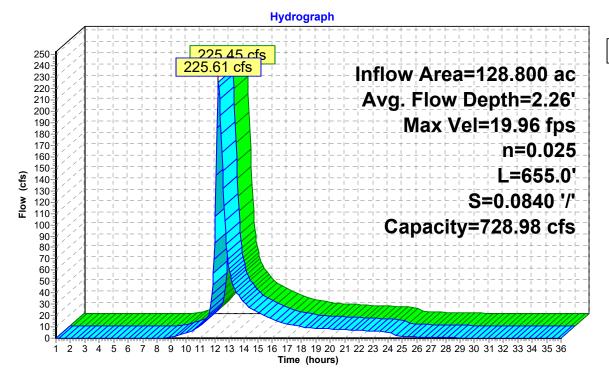
Inflow Area = 128.800 ac, 2.80% Impervious, Inflow Depth > 2.64" for 10 year event

Inflow = 225.45 cfs @ 12.26 hrs, Volume= 28.365 af

Outflow = 225.61 cfs @ 12.26 hrs, Volume= 28.365 af, Atten= 0%, Lag= 0.4 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 19.96 fps, Min. Travel Time= 0.5 min Avg. Velocity = 6.12 fps, Avg. Travel Time= 1.8 min


Peak Storage= 7,399 cf @ 12.26 hrs Average Depth at Peak Storage= 2.26'

Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 728.98 cfs

10.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 655.0' Slope= 0.0840 '/' Inlet Invert= 645.00', Outlet Invert= 590.00'

Reach RC5B: RC5-B

Summary for Reach RC5C: RC5-C

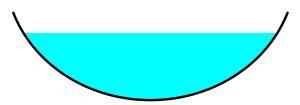
Inflow Area = 107.500 ac, 0.00% Impervious, Inflow Depth = 2.54" for 10 year event

Inflow = 215.02 cfs @ 12.24 hrs, Volume= 22.722 af

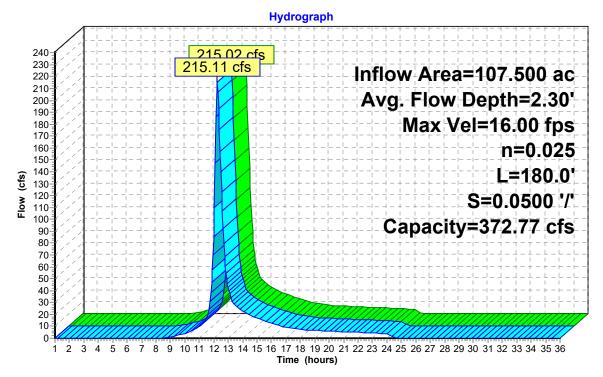
Outflow = 215.11 cfs @ 12.24 hrs, Volume= 22.722 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 16.00 fps, Min. Travel Time= 0.2 min Avg. Velocity = 6.07 fps, Avg. Travel Time= 0.5 min


Peak Storage= 2,420 cf @ 12.24 hrs Average Depth at Peak Storage= 2.30'

Bank-Full Depth= 3.00' Flow Area= 20.0 sf, Capacity= 372.77 cfs


10.00' x 3.00' deep Parabolic Channel, n= 0.025

Length= 180.0' Slope= 0.0500 '/'

Inlet Invert= 654.00', Outlet Invert= 645.00'

Reach RC5C: RC5-C

Summary for Reach RC6: RC6

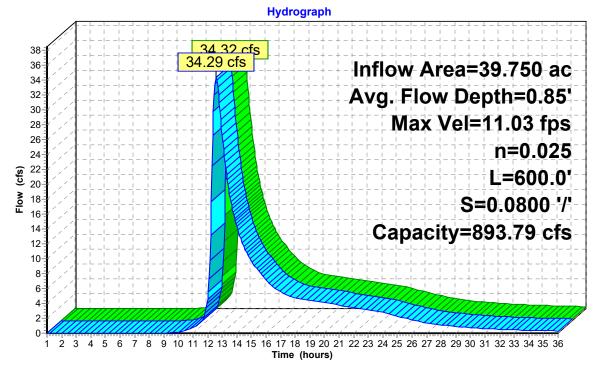
Inflow Area = 39.750 ac, 16.23% Impervious, Inflow Depth > 2.80" for 10 year event

Inflow = 34.32 cfs @ 12.57 hrs, Volume= 9.290 af

Outflow = 34.29 cfs @ 12.58 hrs, Volume= 9.288 af, Atten= 0%, Lag= 0.6 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 11.03 fps, Min. Travel Time= 0.9 min Avg. Velocity = 4.81 fps, Avg. Travel Time= 2.1 min


Peak Storage= 1,864 cf @ 12.58 hrs Average Depth at Peak Storage= 0.85'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 893.79 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 600.0' Slope= 0.0800'/' Inlet Invert= 638.00', Outlet Invert= 590.00'

Reach RC6: RC6

Page 217

Inflow
Outflow

Summary for Reach RC7: RC7

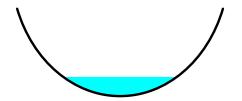
Inflow Area = 19.700 ac, 20.30% Impervious, Inflow Depth > 3.06" for 10 year event

Inflow = 19.39 cfs @ 12.57 hrs, Volume= 5.031 af

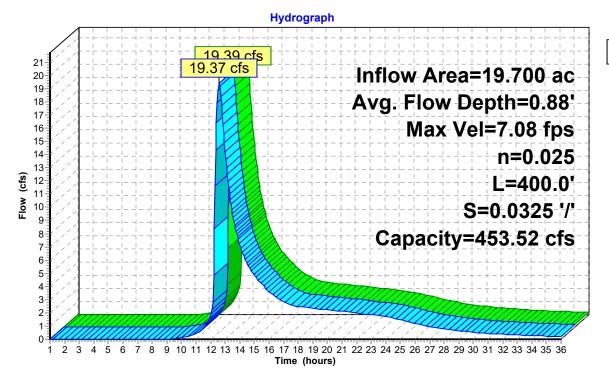
Outflow = 19.37 cfs @ 12.58 hrs, Volume= 5.030 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 7.08 fps, Min. Travel Time= 0.9 min Avg. Velocity = 3.11 fps, Avg. Travel Time= 2.1 min


Peak Storage= 1,094 cf @ 12.58 hrs Average Depth at Peak Storage= 0.88'

Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 453.52 cfs


10.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 400.0' Slope= 0.0325 '/'

Inlet Invert= 660.00', Outlet Invert= 647.00'

Reach RC7: RC7

Page 218

Inflow
Outflow

Summary for Reach RC8: RC8

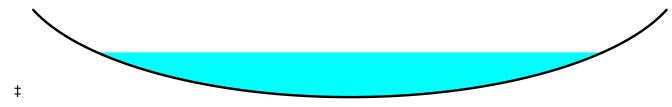
Inflow Area = 68.270 ac, 0.00% Impervious, Inflow Depth = 2.48" for 10 year event

Inflow = 136.17 cfs @ 12.27 hrs, Volume= 14.117 af

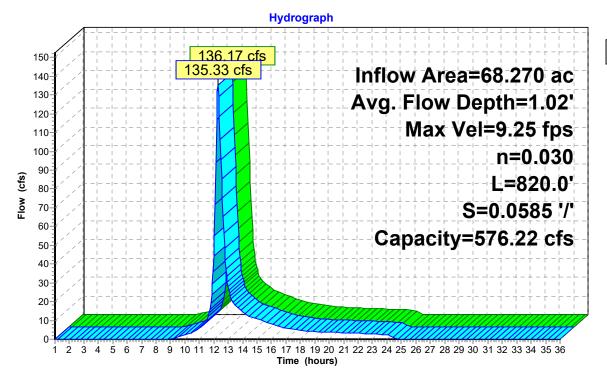
Outflow = 135.33 cfs @ 12.29 hrs, Volume= 14.117 af, Atten= 1%, Lag= 1.2 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 9.25 fps, Min. Travel Time= 1.5 min Avg. Velocity = 3.18 fps, Avg. Travel Time= 4.3 min


Peak Storage= 11,999 cf @ 12.29 hrs Average Depth at Peak Storage= 1.02'

Bank-Full Depth= 2.00' Flow Area= 40.0 sf, Capacity= 576.22 cfs


30.00' x 2.00' deep Parabolic Channel, n= 0.030

Length= 820.0' Slope= 0.0585 '/'

Inlet Invert= 660.00', Outlet Invert= 612.00'

Reach RC8: RC8

Summary for Reach RC9: RC9

Inflow Area = 23.500 ac, 17.02% Impervious, Inflow Depth > 2.77" for 10 year event

Inflow = 21.06 cfs @ 12.54 hrs, Volume= 5.432 af

Outflow = 21.06 cfs @ 12.55 hrs, Volume= 5.431 af, Atten= 0%, Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 7.02 fps, Min. Travel Time= 0.6 min Avg. Velocity = 3.05 fps, Avg. Travel Time= 1.5 min

Peak Storage= 810 cf @ 12.55 hrs Average Depth at Peak Storage= 0.83' Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 576.94 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 270.0' Slope= 0.0333'/' Inlet Invert= 647.00', Outlet Invert= 638.00'

Reach RC9: RC9

Summary for Pond B13P: ARCH CULV

Inflow Area = 47.550 ac, 10.62% Impervious, Inflow Depth > 2.08" for 10 year event

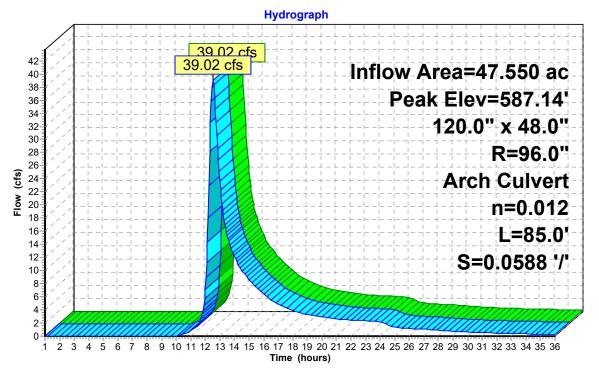
Inflow = 39.02 cfs @ 12.52 hrs, Volume= 8.246 af

Outflow = 39.02 cfs @ 12.52 hrs, Volume= 8.246 af, Atten= 0%, Lag= 0.0 min

Primary = 39.02 cfs @ 12.52 hrs, Volume= 8.246 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 587.14' @ 12.52 hrs


Flood Elev= 610.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	586.00'	120.0" W x 48.0" H, R=96.0" Arch Culvert
			L= 85.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 586.00' / 581.00' S= 0.0588 '/' Cc= 0.900
			n= 0.012 Flow Area= 34.43 sf

Primary OutFlow Max=38.89 cfs @ 12.52 hrs HW=587.14' TW=582.19' (Dynamic Tailwater)

1=Culvert (Inlet Controls 38.89 cfs @ 3.42 fps)

Pond B13P: ARCH CULV

Page 221

Summary for Pond B16P: ARCH CULV

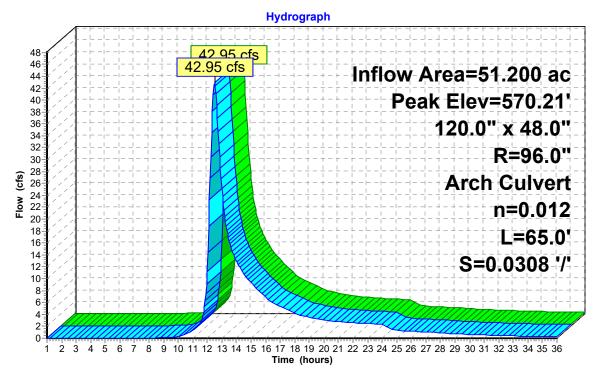
Inflow Area = 51.200 ac, 9.86% Impervious, Inflow Depth > 2.13" for 10 year event

Inflow = 42.95 cfs @ 12.50 hrs, Volume= 9.108 af

Outflow = 42.95 cfs @ 12.50 hrs, Volume= 9.108 af, Atten= 0%, Lag= 0.0 min

Primary = 42.95 cfs @ 12.50 hrs, Volume= 9.108 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 570.21' @ 12.50 hrs

Flood Elev= 578.00'

Device	Routing	Invert	Outlet Devices	
#1	Primary	569.00'	120.0" W x 48.0" H, R=96.0" Arch Culvert L= 65.0' Ke= 0.500 Inlet / Outlet Invert= 569.00' / 567.00' S= 0.0308 '/' Cc= 0.900	
#1	Primary	569.00'	·	

Primary OutFlow Max=42.94 cfs @ 12.50 hrs HW=570.21' TW=568.28' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 42.94 cfs @ 3.54 fps)

Pond B16P: ARCH CULV

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

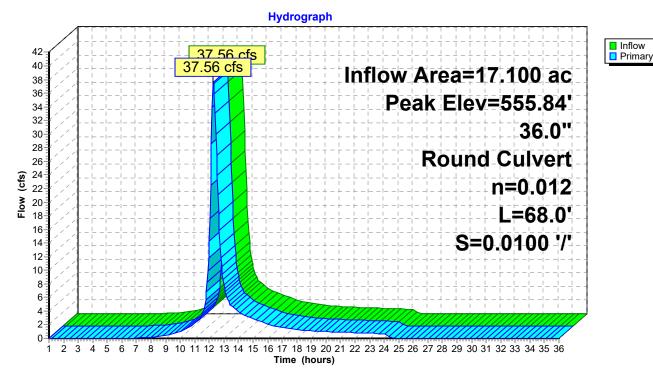
Page 222

Summary for Pond B4P: 36" HDPE

Inflow Area = 17.100 ac, 9.94% Impervious, Inflow Depth = 2.88" for 10 year event

Inflow = 37.56 cfs @ 12.29 hrs, Volume= 4.110 af

Outflow = 37.56 cfs @ 12.29 hrs, Volume= 4.110 af, Atten= 0%, Lag= 0.0 min


Primary = 37.56 cfs @ 12.29 hrs, Volume= 4.110 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 555.84' @ 12.29 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	553.00'	36.0" Round Culvert L= 68.0' Ke= 0.500 Inlet / Outlet Invert= 553.00' / 552.32' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Flow Area= 7.07 sf

Primary OutFlow Max=37.34 cfs @ 12.29 hrs HW=555.83' TW=553.26' (Dynamic Tailwater) 1=Culvert (Barrel Controls 37.34 cfs @ 6.98 fps)

Pond B4P: 36" HDPE

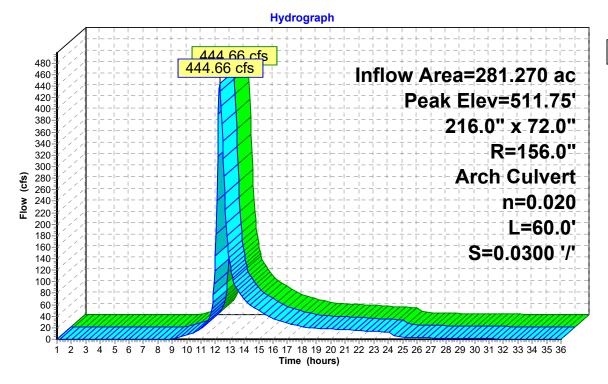
Page 223

Summary for Pond C11P: ARCH CULV

Inflow Area = 281.270 ac, 3.74% Impervious, Inflow Depth > 2.50" for 10 year event

Inflow = 444.66 cfs @ 12.30 hrs, Volume= 58.705 af

Outflow = 444.66 cfs @ 12.30 hrs, Volume= 58.705 af, Atten= 0%, Lag= 0.0 min


Primary = 444.66 cfs @ 12.30 hrs, Volume= 58.705 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 511.75' @ 12.30 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	507.80'	216.0" W x 72.0" H, R=156.0" Arch Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 507.80' / 506.00' S= 0.0300 '/' Cc= 0.900
			n= 0.020, Flow Area= 87.66 sf

Primary OutFlow Max=443.84 cfs @ 12.30 hrs HW=511.75' TW=507.07' (Dynamic Tailwater) 1=Culvert (Inlet Controls 443.84 cfs @ 6.51 fps)

Pond C11P: ARCH CULV

Page 224

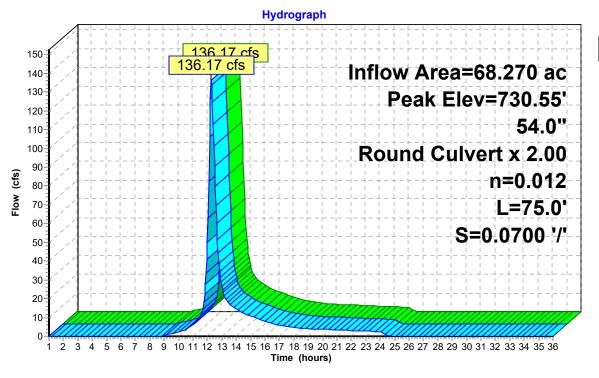
Inflow
□ Primary

Summary for Pond C12P: (2) 54" HDPE

Inflow Area = 68.270 ac, 0.00% Impervious, Inflow Depth = 2.48" for 10 year event

Inflow = 136.17 cfs @ 12.27 hrs, Volume= 14.117 af

Outflow = 136.17 cfs @ 12.27 hrs, Volume= 14.117 af, Atten= 0%, Lag= 0.0 min


Primary = 136.17 cfs @ 12.27 hrs, Volume= 14.117 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 730.55' @ 12.27 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	727.50'	54.0" Round Culvert X 2.00
	-		L= 75.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 727.50' / 722.25' S= 0.0700 '/' Cc= 0.900
			n= 0.012, Flow Area= 15.90 sf

Primary OutFlow Max=134.95 cfs @ 12.27 hrs HW=730.53' TW=723.35' (Dynamic Tailwater) 1=Culvert (Inlet Controls 134.95 cfs @ 5.93 fps)

Pond C12P: (2) 54" HDPE

Page 225

Summary for Pond C13P: ARCH CULV

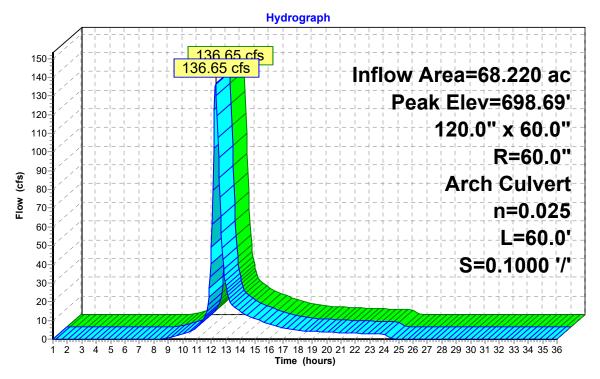
Inflow Area = 68.220 ac, 0.00% Impervious, Inflow Depth = 2.57" for 10 year event

Inflow = 136.65 cfs @ 12.29 hrs, Volume= 14.599 af

Outflow = 136.65 cfs @ 12.29 hrs, Volume= 14.599 af, Atten= 0%, Lag= 0.0 min

Primary = 136.65 cfs @ 12.29 hrs, Volume= 14.599 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 698.69' @ 12.29 hrs

Flood Elev= 712.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	696.00'	120.0" W x 60.0" H, R=60.0" Arch Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 696.00' / 690.00' S= 0.1000 '/' Cc= 0.900
			n= 0.025 Flow Area= 39.27 sf

Primary OutFlow Max=135.84 cfs @ 12.29 hrs HW=698.68' TW=691.72' (Dynamic Tailwater) 1=Culvert (Inlet Controls 135.84 cfs @ 5.34 fps)

Pond C13P: ARCH CULV

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 226

Summary for Pond C14P: (2) 48" HDPE

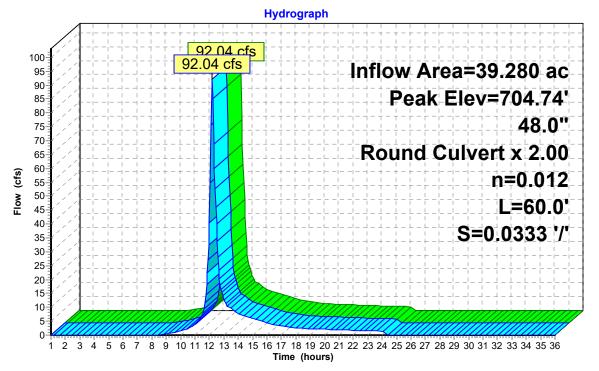
Inflow Area = 39.280 ac, 0.00% Impervious, Inflow Depth = 2.48" for 10 year event

Inflow = 92.04 cfs @ 12.17 hrs, Volume= 8.123 af

Outflow = 92.04 cfs @ 12.17 hrs, Volume= 8.123 af, Atten= 0%, Lag= 0.0 min

Primary = 92.04 cfs @ 12.17 hrs, Volume= 8.123 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 704.74' @ 12.19 hrs

Flood Elev= 712.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	702.00'	48.0" Round Culvert X 2.00
	-		L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 702.00' / 700.00' S= 0.0333 '/' Cc= 0.900
			n= 0.012, Flow Area= 12.57 sf

Primary OutFlow Max=87.72 cfs @ 12.17 hrs HW=704.71' TW=703.44' (Dynamic Tailwater) 1=Culvert (Outlet Controls 87.72 cfs @ 6.84 fps)

Pond C14P: (2) 48" HDPE

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

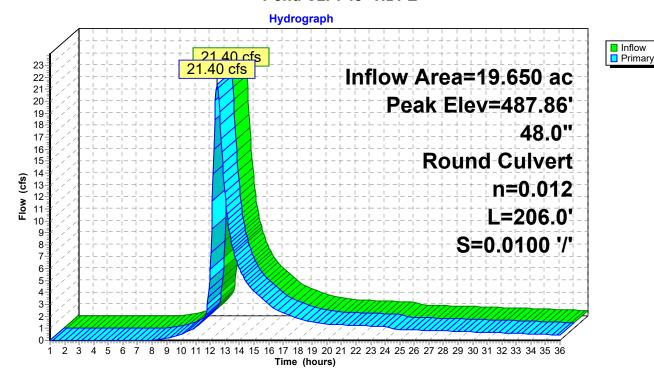
Page 227

Summary for Pond C2P: 48" HDPE

Inflow Area = 19.650 ac, 18.47% Impervious, Inflow Depth > 2.91" for 10 year event

Inflow = 21.40 cfs @ 12.47 hrs, Volume= 4.759 af

Outflow = 21.40 cfs @ 12.47 hrs, Volume= 4.759 af, Atten= 0%, Lag= 0.0 min


Primary = 21.40 cfs @ 12.47 hrs, Volume= 4.759 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 487.86' @ 12.41 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	486.02'	48.0" Round Culvert L= 206.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 486.02' / 483.97' S= 0.0100 '/' Cc= 0.900 n= 0.012. Flow Area= 12.57 sf

Primary OutFlow Max=22.28 cfs @ 12.47 hrs HW=487.83' TW=486.33' (Dynamic Tailwater) 1=Culvert (Outlet Controls 22.28 cfs @ 5.92 fps)

Pond C2P: 48" HDPE

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

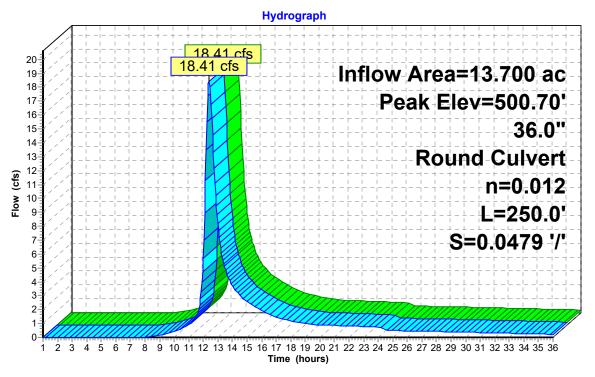
Page 228

Summary for Pond C3P: 36" HDPE

13.700 ac, 12.26% Impervious, Inflow Depth > 2.86" for 10 year event Inflow Area =

Inflow 18.41 cfs @ 12.39 hrs, Volume= 3.260 af

Outflow = 18.41 cfs @ 12.39 hrs, Volume= 3.260 af, Atten= 0%, Lag= 0.0 min


18.41 cfs @ 12.39 hrs, Volume= Primary 3.260 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 500.70' @ 12.39 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	499.00'	36.0" Round Culvert L= 250.0' Ke= 0.500
			Inlet / Outlet Invert= 499.00' / 487.02' S= 0.0479 '/' Cc= 0.900
			n= 0.012 Flow Area= 7.07 sf

Primary OutFlow Max=18.38 cfs @ 12.39 hrs HW=500.70' TW=487.86' (Dynamic Tailwater) 1=Culvert (Inlet Controls 18.38 cfs @ 4.44 fps)

Pond C3P: 36" HDPE

Page 229

Summary for Pond C5P: (2) 60" CULV

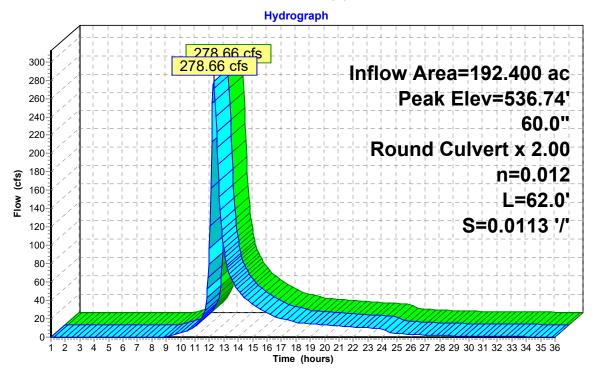
Inflow Area = 192.400 ac, 5.22% Impervious, Inflow Depth > 2.58" for 10 year event

Inflow = 278.66 cfs @ 12.29 hrs, Volume= 41.297 af

Outflow = 278.66 cfs @ 12.29 hrs, Volume= 41.297 af, Atten= 0%, Lag= 0.0 min

Primary = 278.66 cfs @ 12.29 hrs, Volume= 41.297 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 536.74' @ 12.29 hrs

Flood Elev= 551.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	531.70'	60.0" Round Culvert X 2.00
			L= 62.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 531.70' / 531.00' S= 0.0113 '/' Cc= 0.900
			n= 0.012 Flow Area= 19.63 sf

Primary OutFlow Max=277.78 cfs @ 12.29 hrs HW=536.73' TW=533.84' (Dynamic Tailwater) 1=Culvert (Barrel Controls 277.78 cfs @ 8.74 fps)

Pond C5P: (2) 60" CULV

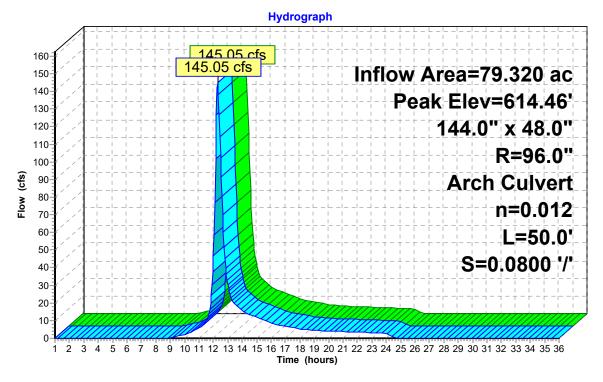
Page 230

Summary for Pond C8P: ARCH CULV

Inflow Area = 79.320 ac, 0.59% Impervious, Inflow Depth = 2.30" for 10 year event

Inflow = 145.05 cfs @ 12.29 hrs, Volume= 15.225 af

Outflow = 145.05 cfs @ 12.29 hrs, Volume= 15.225 af, Atten= 0%, Lag= 0.0 min


Primary = 145.05 cfs @ 12.29 hrs, Volume= 15.225 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 614.46' @ 12.29 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	612.00'	144.0" W x 48.0" H, R=96.0" Arch Culvert
			L= 50.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 612.00' / 608.00' S= 0.0800 '/' Cc= 0.900
			n= 0.012. Flow Area= 38.02 sf

Primary OutFlow Max=144.27 cfs @ 12.29 hrs HW=614.45' TW=609.50' (Dynamic Tailwater) 1=Culvert (Inlet Controls 144.27 cfs @ 5.14 fps)

Pond C8P: ARCH CULV

Page 231

Summary for Pond C9P: 48" HDPE

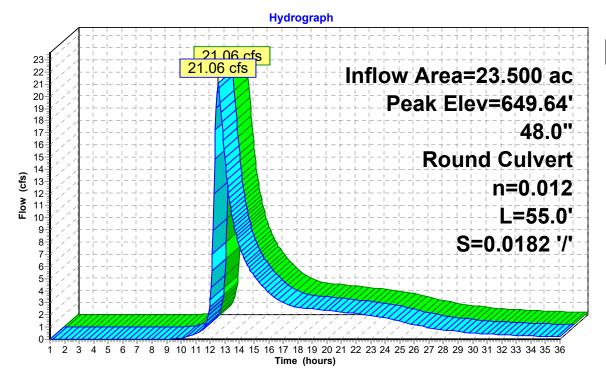
Inflow Area = 23.500 ac, 17.02% Impervious, Inflow Depth > 2.77" for 10 year event

Inflow = 21.06 cfs @ 12.54 hrs, Volume= 5.432 af

Outflow = 21.06 cfs @ 12.54 hrs, Volume= 5.432 af, Atten= 0%, Lag= 0.0 min

Primary = 21.06 cfs @ 12.54 hrs, Volume= 5.432 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 649.64' @ 12.54 hrs

Flood Elev= 712.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	648.00'	48.0" Round Culvert L= 55.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 648.00' / 647.00' S= 0.0182 '/' Cc= 0.900 n= 0.012, Flow Area= 12.57 sf

Primary OutFlow Max=21.03 cfs @ 12.54 hrs HW=649.63' TW=647.82' (Dynamic Tailwater) 1=Culvert (Inlet Controls 21.03 cfs @ 4.35 fps)

Pond C9P: 48" HDPE

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 232

Summary for Pond PB11: POND B11

Inflow Area = 21.550 ac, 7.89% Impervious, Inflow Depth = 3.06" for 10 year event

Inflow = 54.71 cfs @ 12.21 hrs, Volume= 5.494 af

Outflow = 42.26 cfs @ 12.37 hrs, Volume= 5.447 af, Atten= 23%, Lag= 9.7 min

Primary = 42.26 cfs @ 12.37 hrs, Volume= 5.447 af

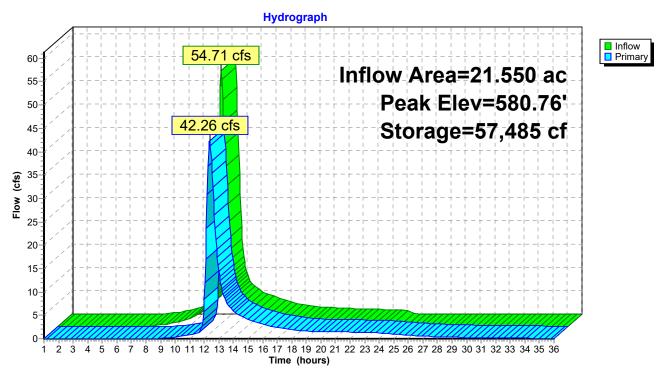
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 580.76' @ 12.37 hrs Surf.Area= 25,560 sf Storage= 57,485 cf

Plug-Flow detention time= 104.8 min calculated for 5.447 af (99% of inflow)

Center-of-Mass det. time= 99.5 min (922.8 - 823.3)

Volume	Inver	: Avail.Stor	age Storage	Description	
#1	578.00	91,99	0 cf Custom	Stage Data (Pr	rismatic)Listed below (Recalc)
Elevation	on S	urf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
578.0	00	16,290	0	0	
580.0	00	22,850	39,140	39,140	
582.0	00	30,000	52,850	91,990	
Device	Routing	Invert	Outlet Devices	3	
#1	Primary	576.00'	36.0" Round	Culvert X 2.00	
·		L= 100.0' CP	P, square edge	e headwall, Ke= 0.500	
			Inlet / Outlet Ir	nvert= 576.00 /	572.00' S= 0.0400 '/' Cc= 0.900
n= 0.012, Flow Area= 7.07 sf		f			
#2	Device 1	581.75'	30.0" x 48.0"	Horiz. Orifice/G	Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	579.30'	4.9' long Sha	rp-Crested Rec	ctangular Weir 2 End Contraction(s)
			0.5' Crest Heigh	ght	. ,
#4	Device 1	578.00'	0.5' long Sha 0.5' Crest Heig		ctangular Weir 2 End Contraction(s)

Primary OutFlow Max=42.05 cfs @ 12.37 hrs HW=580.75' TW=576.15' (Dynamic Tailwater)


1=Culvert (Passes 42.05 cfs of 122.78 cfs potential flow)

-2=Orifice/Grate (Controls 0.00 cfs)

-3=Sharp-Crested Rectangular Weir (Weir Controls 35.80 cfs @ 5.34 fps)

-4=Sharp-Crested Rectangular Weir (Weir Controls 6.25 cfs @ 9.08 fps)

Pond PB11: POND B11

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC Page 234

Summary for Pond PB12: POND B12

Inflow Area = 24.200 ac, 20.87% Impervious, Inflow Depth = 2.31" for 10 year event

Inflow = 49.01 cfs @ 12.21 hrs, Volume= 4.663 af

Outflow = 11.98 cfs @ 12.76 hrs, Volume= 4.376 af, Atten= 76%, Lag= 32.5 min

Primary = 11.98 cfs @ 12.76 hrs, Volume= 4.376 af

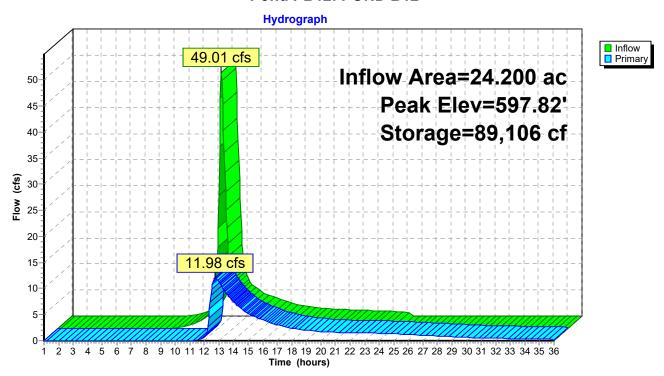
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 597.82' @ 12.76 hrs Surf.Area= 53,252 sf Storage= 89,106 cf

Plug-Flow detention time= 257.5 min calculated for 4.376 af (94% of inflow)

Center-of-Mass det. time= 225.1 min (1,070.1 - 845.0)

Volume	Inve	rt Avail.Sto	rage Storage	e Description	
#1	596.0	0' 216,6	00 cf Custor	n Stage Data (Pr	ismatic)Listed below (Recalc)
Elevation	on	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
596.0	00	44,900	0	0	
598.0	00	54,100	99,000	99,000	
600.0	00	63,500	117,600	216,600	
Device	Routing	Invert	Outlet Devic	es	
#1	Primary	596.00'	.00' 36.0" Round Culvert X 2.00 L= 40.0' Ke= 0.500		L= 40.0' Ke= 0.500
	-		Inlet / Outlet	Invert= 596.00' /	595.00' S= 0.0250 '/' Cc= 0.900
			n= 0.012, Fl	low Area= 7.07 sf	
#2	Device 1	596.00')' 8.5" Vert. Orifice/Grate C= 0.600		
#3	Device 1	597.00'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
			2.1' Crest He	eight	
#4	Device 1	599.75'	48.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads		

Primary OutFlow Max=11.97 cfs @ 12.76 hrs HW=597.82' TW=587.01' (Dynamic Tailwater)


1=Culvert (Passes 11.97 cfs of 41.04 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 2.29 cfs @ 5.82 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 9.68 cfs @ 3.09 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PB12: POND B12

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 236

Summary for Pond PB2: POND B2

Inflow Area = 6.100 ac, 13.11% Impervious, Inflow Depth = 2.48" for 10 year event

Inflow = 13.70 cfs @ 12.20 hrs, Volume= 1.261 af

Outflow = 1.37 cfs @ 13.76 hrs, Volume= 0.976 af, Atten= 90%, Lag= 93.6 min

Primary = 1.37 cfs @ 13.76 hrs, Volume= 0.976 af

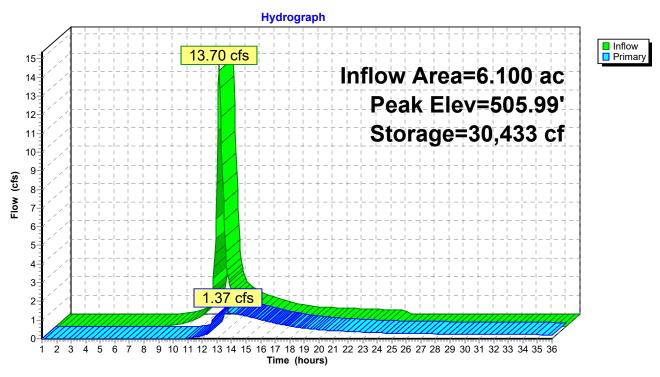
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 505.99' @ 13.76 hrs Surf.Area= 17,479 sf Storage= 30,433 cf

Plug-Flow detention time= 440.3 min calculated for 0.976 af (77% of inflow)

Center-of-Mass det. time= 356.1 min (1,194.7 - 838.6)

Volume	Inve	ert Avail.Sto	rage Storage	Description	
#1	504.0	0' 70,6	00 cf Custon	n Stage Data (P	rismatic)Listed below (Recalc)
Elevation		Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
504.0	00	13,100	0	0	
506.0	00	17,500	30,600	30,600	
508.0	00	22,500	40,000	70,600	
Davisa	Davitina	las cant	Outlet Device	_	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	ary 504.00' 30.0" Round Culvert L= 40.0' Ke= 0.500		.0' Ke= 0.500	
Inlet / Outlet Invert= 5		Invert= 504.00' /	498.00' S= 0.1500 '/' Cc= 0.900		
n= 0.012, Flow Area= 4.91 sf		f			
#2	Device 1	504.00'	0' 3.0" Vert. Orifice/Grate C= 0.600		0.600
#3	Device 1	505.50'	1.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
			2.0' Crest He	eight	-
#4	Device 1	507.50'	30.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads		

Primary OutFlow Max=1.37 cfs @ 13.76 hrs HW=505.99' TW=500.23' (Dynamic Tailwater)


1=Culvert (Passes 1.37 cfs of 20.13 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.32 cfs @ 6.58 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 1.04 cfs @ 2.36 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PB2: POND B2

Invert

Volume

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 238

Summary for Pond PB3: POND B3

Inflow Area = 26.650 ac, 15.57% Impervious, Inflow Depth = 2.66" for 10 year event

Inflow = 56.28 cfs @ 12.27 hrs, Volume= 5.898 af

Outflow = 22.48 cfs @ 12.69 hrs, Volume= 5.774 af, Atten= 60%, Lag= 25.3 min

Primary = 22.48 cfs @ 12.69 hrs, Volume= 5.774 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 523.36' @ 12.69 hrs Surf.Area= 36,835 sf Storage= 105,936 cf

Avail Storage Description

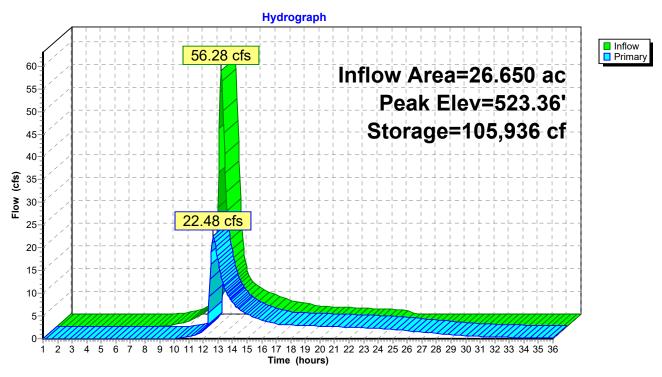
Plug-Flow detention time= 232.9 min calculated for 5.766 af (98% of inflow)

Center-of-Mass det. time= 221.4 min (1,060.0 - 838.6)

VOIGITIE	IIIVEI	. Avaii.otoi	age Glorage L	Description		
#1	520.00	170,60	0 cf Custom	Stage Data (Prismatic)Listed below (Recalc)		
Elevatio	-	urf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
520.0	00	26,300	0	0		
522.0	00	32,400	58,700	58,700		
524.0	00	38,900	71,300	130,000		
525.0	00	42,300	40,600	170,600		
Device	Routing	Invert	Outlet Devices	3		
#1	Primary	518.00'	30.0" Round	Culvert X 2.00 L= 70.0' Ke= 0.500		
	•		Inlet / Outlet In	nvert= 518.00' / 514.00' S= 0.0571 '/' Cc= 0.900		
			n= 0.012, Flov	w Area= 4.91 sf		
#2	Device 1	520.00'	9.0" Vert. Orifice/Grate C= 0.600			
#3	Device 1	522.40'	4.9' long Shar	rp-Crested Rectangular Weir 2 End Contraction(s)		
			0.5' Crest Heig	ght		
#4	Device 1	523.75'	30.0" x 48.0" Horiz. Orifice/Grate X 2.00 C= 0.600			
			Limited to weir flow at low heads			
#5	Device 1	523.25'	6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)0.5' Crest Height			

Primary OutFlow Max=22.44 cfs @ 12.69 hrs HW=523.36' TW=505.90' (Dynamic Tailwater)

—1=Culvert (Passes 22.44 cfs of 95.88 cfs potential flow)


-2=Orifice/Grate (Orifice Controls 3.68 cfs @ 8.32 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 17.99 cfs @ 3.97 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

-5=Sharp-Crested Rectangular Weir (Weir Controls 0.77 cfs @ 1.13 fps)

Pond PB3: POND B3

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 240

Summary for Pond PB4: POND B4

Inflow Area = 10.200 ac, 13.73% Impervious, Inflow Depth = 2.93" for 10 year event

Inflow = 27.62 cfs @ 12.18 hrs, Volume= 2.488 af

Outflow = 7.83 cfs @ 12.63 hrs, Volume= 2.454 af, Atten= 72%, Lag= 26.7 min

Primary = 7.83 cfs @ 12.63 hrs, Volume= 2.454 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 560.74' @ 12.63 hrs Surf.Area= 20,858 sf Storage= 47,808 cf

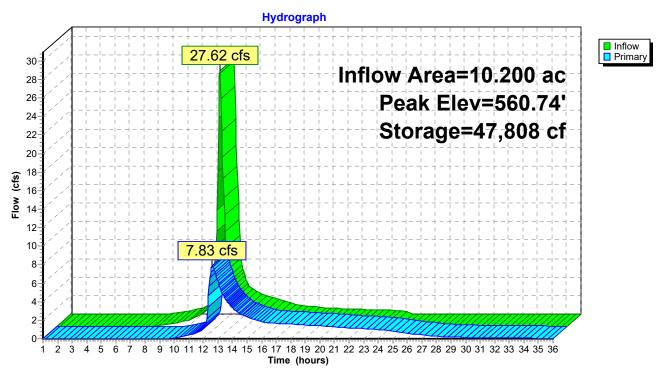
Plug-Flow detention time= 217.8 min calculated for 2.454 af (99% of inflow)

Center-of-Mass det. time= 209.6 min (1,033.8 - 824.2)

Volume	Inver	t Avail.Sto	rage S	Storage I	Description		
#1	#1 558.00' 76,000 d		00 cf C	ustom	Stage Data (P	rismatic)Listed below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Inc.S (cubic-f		Cum.Store (cubic-feet)		
558.0	00	14,000		0	0		
560.0	00	19,000	33,	000	33,000		
562.0	00	24,000	43,	000	76,000		
Device	Routing	Invert	Outlet	Devices	i		
#1	#1 Primary 558.00' 36.0" Round Culvert L= 50.0' Ke= 0.500 Inlet / Outlet Invert= 558.00' / 554.00' S= 0.0800 '/' n= 0.012. Flow Area= 7.07 sf		554.00' S= 0.0800 '/' Cc= 0.900				
#2	Device 1	Device 1 558.00'		7.0" Vert. Orifice/Grate C= 0.600			
#3	Device 1	560.00'	00' 2.5' long Sharp-Crested Rectangular Weir 2 End Contraction		ctangular Weir 2 End Contraction(s)		
				est Heig	•		
#4	Device 1	561.50'					
#5	Device 1	561.00'	' 4.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s) 0.5' Crest Height				

Primary OutFlow Max=7.82 cfs @ 12.63 hrs HW=560.74' TW=0.00' (Dynamic Tailwater)

1=Culvert (Passes 7.82 cfs of 38.19 cfs potential flow)


-2=Orifice/Grate (Orifice Controls 2.01 cfs @ 7.54 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 5.80 cfs @ 3.33 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

-5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond PB4: POND B4

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 242

Summary for Pond PB5: POND B5

Inflow Area = 5.500 ac, 38.00% Impervious, Inflow Depth = 3.51" for 10 year event

Inflow = 18.85 cfs @ 12.15 hrs, Volume= 1.608 af

Outflow = 8.85 cfs @ 12.40 hrs, Volume= 1.493 af, Atten= 53%, Lag= 15.1 min

Primary = 8.85 cfs @ 12.40 hrs, Volume= 1.493 af

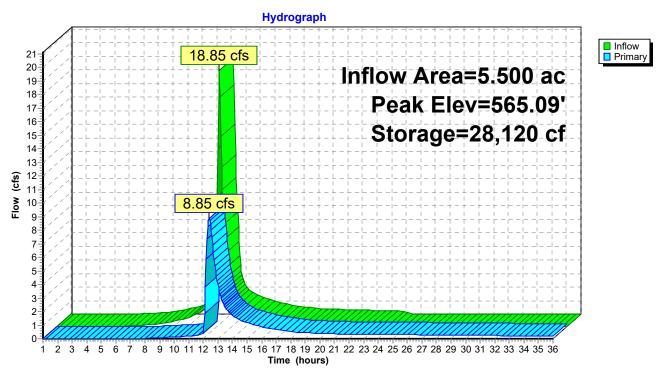
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 565.09' @ 12.40 hrs Surf.Area= 11,823 sf Storage= 28,120 cf

Plug-Flow detention time= 260.6 min calculated for 1.493 af (93% of inflow)

Center-of-Mass det. time= 223.1 min (1,026.5 - 803.4)

Volume	Inve	ert Avail.Sto	orage Storag	e Description	
#1	562.0	0' 39,6	00 cf Custo	m Stage Data (Pri	ismatic)Listed below (Recalc)
Elevation	on	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
562.0	00	6,500	0	0	
564.0	00	9,800	16,300	16,300	
566.0	00	13,500	23,300	39,600	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	ary 562.00' 30.0" Round Culvert L= 75.0' Ke= 0.500		0' Ke= 0.500	
	,		Inlet / Outlet	Invert= 562.00' / 5	558.00' S= 0.0533 '/' Cc= 0.900
			n= 0.012, F	low Area= 4.91 sf	
#2	Device 1	562.00'	00' 3.0" Vert. Orifice/Grate C= 0.600		0.600
#3	Device 1	564.00'	2.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
0.5' Crest Height			-		
#4	Device 1	565.50'	36.0" x 54.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads		

Primary OutFlow Max=8.85 cfs @ 12.40 hrs HW=565.09' TW=0.00' (Dynamic Tailwater)


1=Culvert (Passes 8.85 cfs of 32.09 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.41 cfs @ 8.30 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 8.44 cfs @ 4.33 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PB5: POND B5

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Summary for Pond PB6: POND B6

Inflow Area = 8.000 ac, 27.12% Impervious, Inflow Depth = 3.31" for 10 year event

Inflow = 24.21 cfs @ 12.18 hrs, Volume= 2.206 af

Outflow = 7.56 cfs @ 12.59 hrs, Volume= 2.116 af, Atten= 69%, Lag= 24.9 min

Primary = 7.56 cfs @ 12.59 hrs, Volume= 2.116 af

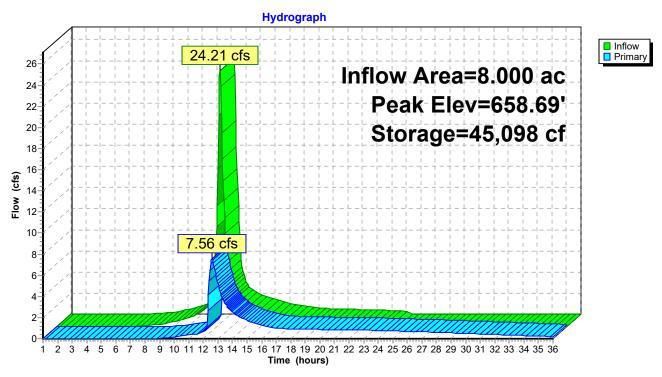
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 658.69' @ 12.59 hrs Surf.Area= 20,429 sf Storage= 45,098 cf

Plug-Flow detention time= 333.0 min calculated for 2.116 af (96% of inflow)

Center-of-Mass det. time= 310.0 min (1,122.3 - 812.3)

Volume	Inve	rt Avail.Sto	orage Stora	ge Description		
#1	656.0	0' 74,6	00 cf Custo	om Stage Data (Pr	ismatic)Listed below (Recalc)	
Elevation		Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
656.0	00	13,500	0	0		
658.0	00	18,300	31,800	31,800		
660.0	00	24,500	42,800	74,600		
Device	Routing	Invert	Outlet Devi	ces		
#1	Primary	656.00'	56.00' 30.0" Round Culvert L= 130.0' Ke= 0.500		0.0' Ke= 0.500	
	•		Inlet / Outle	et Invert= 656.00' /	551.00' S= 0.8077 '/' Cc= 0.900	
			n= 0.012,	Flow Area= 4.91 sf		
#2	Device 1	656.00'	0' 5.0" Vert. Orifice/Grate C= 0.600		0.600	
#3	Device 1	658.10'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)			
0.5' Crest Height				5		
#4	Device 1	659.50'	30.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads			

Primary OutFlow Max=7.55 cfs @ 12.59 hrs HW=658.69' TW=551.97' (Dynamic Tailwater)


1=Culvert (Passes 7.55 cfs of 28.32 cfs potential flow)

2=Orifice/Grate (Orifice Controls 1.03 cfs @ 7.58 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 6.51 cfs @ 2.86 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PB6: POND B6

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 246

Summary for Pond PB7: POND B7

Inflow Area = 13.450 ac, 27.88% Impervious, Inflow Depth = 2.84" for 10 year event

Inflow = 32.18 cfs @ 12.23 hrs, Volume= 3.178 af

Outflow = 4.60 cfs @ 13.13 hrs, Volume= 2.217 af, Atten= 86%, Lag= 54.0 min

Primary = 4.60 cfs @ 13.13 hrs, Volume= 2.217 af

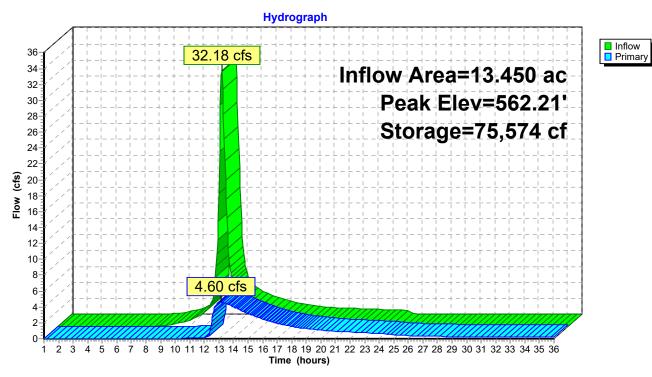
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 562.21' @ 13.13 hrs Surf.Area= 37,589 sf Storage= 75,574 cf

Plug-Flow detention time= 347.2 min calculated for 2.213 af (70% of inflow)

Center-of-Mass det. time= 252.7 min (1,083.3 - 830.6)

Volume	Inve	ert Avail.Sto	rage Stora	age Description	
#1	560.0	0' 148,2	00 cf Cust	tom Stage Data (Pi	rismatic)Listed below (Recalc)
Elevation		Surf.Area	Inc.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
560.0	00	30,900	C	0	
562.0	00	36,900	67,800	67,800	
564.0	00	43,500	80,400	148,200	
Device	Routing	Invert	Outlet Dev	vices	
#1	Primary	560.00'	36.0" Ro	und Culvert L= 10	0.0' Ke= 0.500
			Inlet / Outl	let Invert= 560.00' /	558.00' S= 0.0200 '/' Cc= 0.900
			n= 0.012,	Flow Area = 7.07 st	
#2	Device 1	560.00'	3.0" Vert. Orifice/Grate C= 0.600		
#3	Device 1	561.50'	2.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
			0.5' Crest	Height	- ,
#4	Device 1	563.65'	36.0" x 48	3.0" Horiz. Orifice/0	Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=4.59 cfs @ 13.13 hrs HW=562.21' TW=555.22' (Dynamic Tailwater)


1=Culvert (Passes 4.59 cfs of 28.22 cfs potential flow)

—2=Orifice/Grate (Orifice Controls 0.34 cfs @ 6.95 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 4.25 cfs @ 3.23 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PB7: POND B7

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 248

Summary for Pond PC10: POND C10

Inflow Area = 21.300 ac, 16.90% Impervious, Inflow Depth = 3.21" for 10 year event

Inflow = 60.06 cfs @ 12.21 hrs, Volume= 5.700 af

Outflow = 22.37 cfs @ 12.59 hrs, Volume= 5.645 af, Atten= 63%, Lag= 23.0 min

Primary = 22.37 cfs @ 12.59 hrs, Volume= 5.645 af

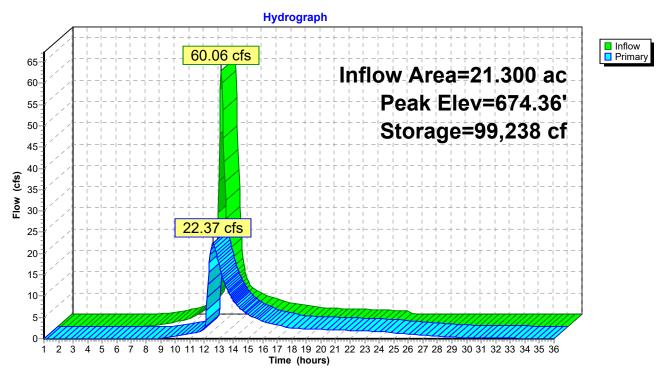
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 674.36' @ 12.59 hrs Surf.Area= 47,072 sf Storage= 99,238 cf

Plug-Flow detention time= 160.0 min calculated for 5.637 af (99% of inflow)

Center-of-Mass det. time= 154.8 min (972.1 - 817.2)

Volume	Inve	rt Avail.Sto	rage Storage	Description	
#1	672.00	0' 182,50	00 cf Custon	n Stage Data (P	rismatic)Listed below (Recalc)
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
672.0	00	37,200	0	0	
674.0	00	45,500	82,700	82,700	
676.0	00	54,300	99,800	182,500	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	672.00'	L= 80.0' CP Inlet / Outlet	, ,	neadwall, Ke= 0.500 670.00' S= 0.0250 '/' Cc= 0.900
#2 #3 #4	Device 1 Device 1 Device 1	672.00' 675.70' 673.00'	672.00' 4.0" Vert. Orifice/Grate X 6.00 C= 0.600 675.70' 30.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads		

Primary OutFlow Max=22.35 cfs @ 12.59 hrs HW=674.36' TW=660.56' (Dynamic Tailwater)


1=Culvert (Passes 22.35 cfs of 62.25 cfs potential flow)

2=Orifice/Grate (Orifice Controls 3.73 cfs @ 7.12 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

-4=Sharp-Crested Rectangular Weir (Weir Controls 18.62 cfs @ 4.12 fps)

Pond PC10: POND C10

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 250

Summary for Pond PC2: POND C2

Inflow Area = 5.950 ac, 32.77% Impervious, Inflow Depth = 3.41" for 10 year event

Inflow = 16.70 cfs @ 12.23 hrs, Volume= 1.690 af

Outflow = 4.70 cfs @ 12.72 hrs, Volume= 1.500 af, Atten= 72%, Lag= 29.4 min

Primary = 4.70 cfs @ 12.72 hrs, Volume= 1.500 af

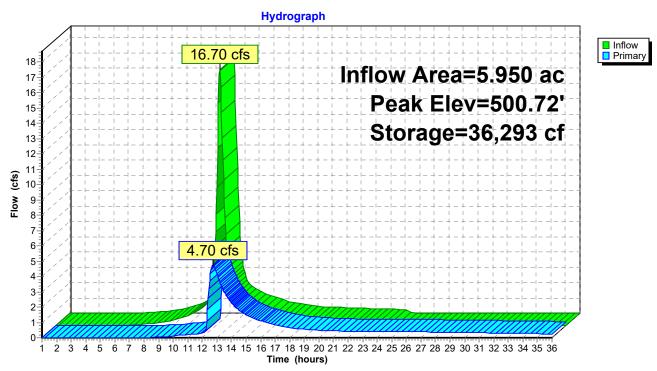
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 500.72' @ 12.72 hrs Surf.Area= 16,220 sf Storage= 36,293 cf

Plug-Flow detention time= 350.7 min calculated for 1.498 af (89% of inflow)

Center-of-Mass det. time= 299.1 min (1,112.1 - 813.0)

Volume	Inve	ert Avail.Sto	orage Storag	age Description	
#1	498.0	00' 58,9	00 cf Custo	om Stage Data (Prismatic)Listed below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)		
498.0	00	10,600	0	0	
500.0	00	14,600	25,200	25,200	
502.0	00	19,100	33,700	58,900	
Device	Routing	Invert	Outlet Devi	rices	
#1	Primary	498.00'	24.0" Rou	und Culvert L= 50.0' Ke= 0.500	
	•		Inlet / Outle	et Invert= 498.00' / 496.00' S= 0.0400 '/' Cc= 0.900	
			n= 0.012, F	Flow Area= 3.14 sf	
#2	Device 1	498.00'	3.5" Vert. Orifice/Grate C= 0.600		
#3	Device 1	499.90'	1.6' long S	Sharp-Crested Rectangular Weir 2 End Contraction(s)	
0.5' Crest Height					
#4 Device 1 501.75' 30.0" x 48.0" Horiz. Orifi		30.0" x 48.	.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads		

Primary OutFlow Max=4.69 cfs @ 12.72 hrs HW=500.72' TW=487.51' (Dynamic Tailwater)


1=Culvert (Passes 4.69 cfs of 19.83 cfs potential flow)

—2=Orifice/Grate (Orifice Controls 0.52 cfs @ 7.72 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 4.18 cfs @ 3.55 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PC2: POND C2

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC Page 252

Summary for Pond PC4: POND C4

Inflow Area = 7.400 ac, 22.70% Impervious, Inflow Depth = 3.12" for 10 year event

Inflow = 19.90 cfs @ 12.22 hrs, Volume= 1.921 af

Outflow = 8.69 cfs @ 12.56 hrs, Volume= 1.819 af, Atten= 56%, Lag= 20.8 min

Primary = 8.69 cfs @ 12.56 hrs, Volume= 1.819 af

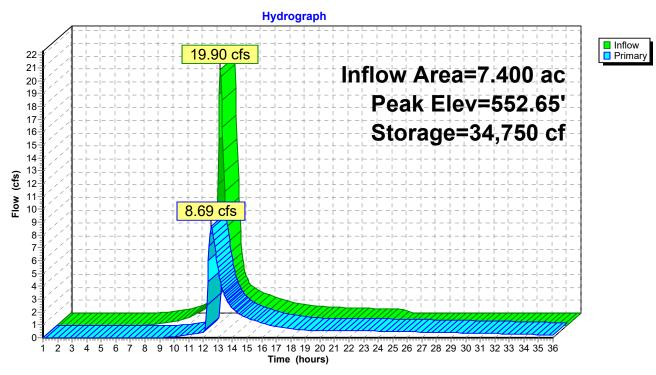
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 552.65' @ 12.56 hrs Surf.Area= 15,635 sf Storage= 34,750 cf

Plug-Flow detention time= 281.8 min calculated for 1.819 af (95% of inflow)

Center-of-Mass det. time= 252.9 min (1,073.9 - 821.0)

Volume	Inve	rt Avail.Sto	rage Storage	Description	
#1	550.0	0' 57,7	00 cf Custon	n Stage Data (Prismatic)Listed below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
550.0	00	10,700	0	0	
552.0	00	14,300	25,000	25,000	
554.0	00	18,400	32,700	57,700	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	550.00'	30.0" Round	d Culvert L= 40.0' Ke= 0.500	
	•		Inlet / Outlet	Invert= 550.00' / 547.50' S= 0.0625 '/' Cc= 0.900	
n= 0.012, Flow Area= 4.91 sf		ow Area= 4.91 sf			
#2	Device 1	550.00'	4.0" Vert. Orifice/Grate C= 0.600		
#3	Device 1	551.80'	i1.80' 3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s) 1.0' Crest Height		
#4 Device 1 553.75' 36.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to		'Horiz. Orifice/Grate C= 0.600 Limited to weir flow at lo	w heads		

Primary OutFlow Max=8.66 cfs @ 12.56 hrs HW=552.65' TW=546.28' (Dynamic Tailwater)


1=Culvert (Passes 8.66 cfs of 27.96 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.66 cfs @ 7.59 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 8.00 cfs @ 3.33 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PC4: POND C4

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 254

Summary for Pond PC6: POND C6

Inflow Area = 16.250 ac, 15.08% Impervious, Inflow Depth = 2.93" for 10 year event

Inflow = 43.40 cfs @ 12.19 hrs, Volume= 3.964 af

Outflow = 13.37 cfs @ 12.62 hrs, Volume= 3.859 af, Atten= 69%, Lag= 25.6 min

Primary = 13.37 cfs @ 12.62 hrs, Volume= 3.859 af

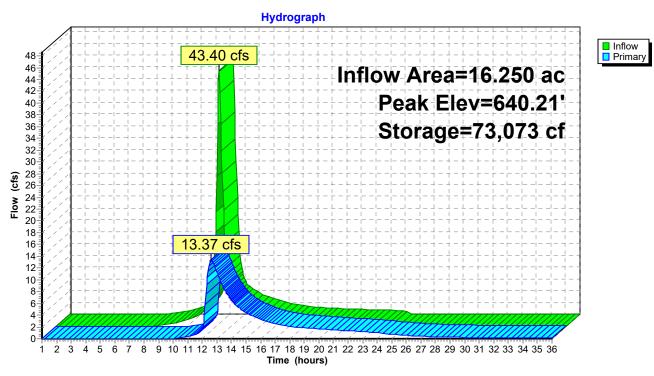
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 640.21' @ 12.62 hrs Surf.Area= 36,187 sf Storage= 73,073 cf

Plug-Flow detention time= 175.1 min calculated for 3.853 af (97% of inflow)

Center-of-Mass det. time= 160.5 min (985.2 - 824.8)

Volume	Inver	<u>t Avail.Sto</u>	<u>rage Storage</u>	Description	
#1	638.00)' 143,00	00 cf Custom	n Stage Data (P	rismatic)Listed below (Recalc)
Elevation	on S	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
638.0	00	30,000	0	0	
640.0	00	35,500	65,500	65,500	
642.0	00	42,000	77,500	143,000	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	638.00'	30.0" Round	Culvert X 2.00	
			L= 50.0' CP	P, square edge l	headwall, Ke= 0.500
			Inlet / Outlet I	nvert= 638.00' /	634.00' S= 0.0800 '/' Cc= 0.900
			n= 0.012, Flo	ow Area= 4.91 s	f
#2	Device 1	638.00'	10.0" Vert. Orifice/Grate C= 0.600		
#3 Device 1 639.00' 2.3' long Sharp-Crested Rect		ctangular Weir 2 End Contraction(s)			
1.0' Crest Height					
#4 Device 1 641.75' 30.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow		Grate C= 0.600 Limited to weir flow at low heads			

Primary OutFlow Max=13.35 cfs @ 12.62 hrs HW=640.21' TW=638.84' (Dynamic Tailwater)


1=Culvert (Passes 13.35 cfs of 46.47 cfs potential flow)

2=Orifice/Grate (Orifice Controls 3.07 cfs @ 5.63 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 10.28 cfs @ 4.13 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PC6: POND C6

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 256

Summary for Pond PC7: POND C7

Inflow Area = 19.700 ac, 20.30% Impervious, Inflow Depth = 3.21" for 10 year event

Inflow = 59.13 cfs @ 12.17 hrs, Volume= 5.272 af

Outflow = 19.39 cfs @ 12.57 hrs, Volume= 5.031 af, Atten= 67%, Lag= 23.7 min

Primary = 19.39 cfs @ 12.57 hrs, Volume= 5.031 af

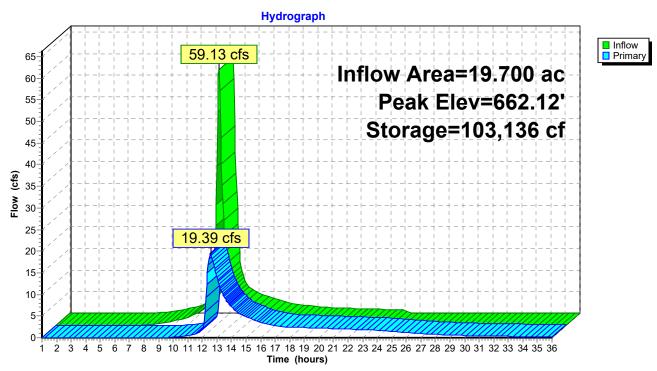
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 662.12' @ 12.57 hrs Surf.Area= 52,470 sf Storage= 103,136 cf

Plug-Flow detention time= 242.5 min calculated for 5.024 af (95% of inflow)

Center-of-Mass det. time= 217.9 min (1,032.9 - 815.0)

Volume	Inve	ert Avail.Sto	rage Storag	e Description		
#1	660.0	0' 209,0	00 cf Custo	m Stage Data (Pr	ismatic)Listed below (Recalc)	
Elevation		Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
660.0	00	45,000	0	0		
662.0	00	52,000	97,000	97,000		
664.0	00	60,000	112,000	209,000		
Device	Routing	Invert	Outlet Device	ces		
#1	Primary	660.00'	36.0" Rour	nd Culvert L= 60.	0' Ke= 0.500	
	,		Inlet / Outle	t Invert= 660.00' /	656.00' S= 0.0667 '/' Cc= 0.900	
			n= 0.012, F	low Area= 7.07 sf		
#2	Device 1	660.00'	10.0" Vert. Orifice/Grate C= 0.600			
#3	Device 1	661.30'	6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)			
		0.6' Crest H	•			
#4	Device 1	663.75'		•	Grate C= 0.600 Limited to weir flow at low heads	

Primary OutFlow Max=19.34 cfs @ 12.57 hrs HW=662.12' TW=660.88' (Dynamic Tailwater)


1=Culvert (Passes 19.34 cfs of 24.91 cfs potential flow)

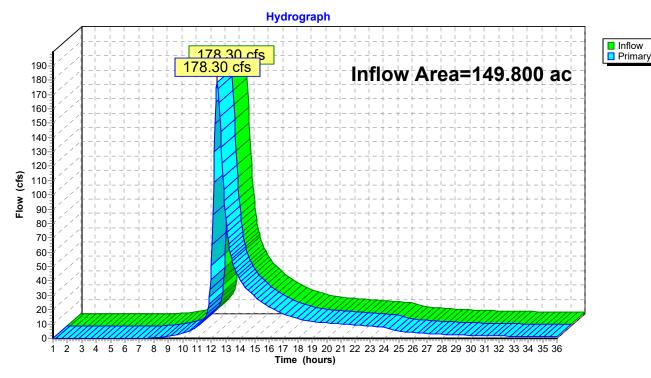
2=Orifice/Grate (Orifice Controls 2.93 cfs @ 5.36 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 16.41 cfs @ 3.45 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PC7: POND C7

Summary for Pond XP: EXISTING POND


Inflow Area = 149.800 ac, 14.03% Impervious, Inflow Depth > 2.63" for 10 year event

Inflow = 178.30 cfs @ 12.41 hrs, Volume= 32.846 af

Primary = 178.30 cfs @ 12.41 hrs, Volume= 32.846 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Pond XP: EXISTING POND

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 259

Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment A: BASIN A	Runoff Area=37.220 ac 2.79% Impervious Runoff Depth=2.97" Flow Length=2,020' Tc=29.1 min CN=71 Runoff=73.90 cfs 9.216 af
Subcatchment B1: BASIN B1	Runoff Area=62.900 ac 11.46% Impervious Runoff Depth=3.76" Flow Length=4,780' Tc=19.0 min CN=79 Runoff=190.31 cfs 19.709 af
Subcatchment B10: BASIN 10	Runoff Area=16.750 ac 15.52% Impervious Runoff Depth=4.28" Flow Length=1,710' Tc=21.5 min CN=84 Runoff=54.21 cfs 5.975 af
Subcatchment B11: BASIN B11	Runoff Area=11.550 ac 3.46% Impervious Runoff Depth=4.07" Flow Length=1,030' Tc=12.2 min CN=82 Runoff=44.43 cfs 3.917 af
Subcatchment B12: BASIN B12	Runoff Area=24.200 ac 20.87% Impervious Runoff Depth=3.36" Flow Length=1,280' Tc=15.1 min CN=75 Runoff=71.64 cfs 6.774 af
Subcatchment B13: BASIN B13	Runoff Area=23.350 ac 0.00% Impervious Runoff Depth=2.97" Flow Length=2,650' Tc=32.1 min CN=71 Runoff=44.34 cfs 5.782 af
Subcatchment B14: BASIN 14	Runoff Area=10.000 ac 13.00% Impervious Runoff Depth=4.39" Flow Length=1,345' Tc=18.7 min CN=85 Runoff=35.01 cfs 3.656 af
Subcatchment B15: BASIN B15	Runoff Area=6.050 ac 9.09% Impervious Runoff Depth=4.28" Flow Length=550' Tc=7.1 min CN=84 Runoff=28.40 cfs 2.158 af
Subcatchment B16: BASIN B16	Runoff Area=3.650 ac 0.00% Impervious Runoff Depth=3.97" Flow Length=630' Tc=12.5 min CN=81 Runoff=13.59 cfs 1.206 af
Subcatchment B2: BASIN B2	Runoff Area=6.100 ac 13.11% Impervious Runoff Depth=3.56" Flow Length=675' Tc=13.9 min CN=77 Runoff=19.68 cfs 1.809 af
Subcatchment B3: BASIN B3	Runoff Area=26.650 ac 15.57% Impervious Runoff Depth=3.76" Flow Length=1,596' Tc=19.6 min CN=79 Runoff=79.60 cfs 8.351 af
Subcatchment B4: BASIN B4	Runoff Area=10.200 ac 13.73% Impervious Runoff Depth=4.07" Flow Length=795' Tc=13.0 min CN=82 Runoff=38.16 cfs 3.459 af
Subcatchment B5: BASIN B5	Runoff Area=5.500 ac 38.00% Impervious Runoff Depth=4.71" Flow Length=537' Tc=10.6 min CN=88 Runoff=24.98 cfs 2.160 af
Subcatchment B6: BASIN B6	Runoff Area=8.000 ac 27.12% Impervious Runoff Depth=4.50" Flow Length=895' Tc=13.1 min CN=86 Runoff=32.52 cfs 2.997 af
Subcatchment B7: BASIN 7	Runoff Area=13.450 ac 27.88% Impervious Runoff Depth=3.97" Flow Length=1,580' Tc=16.8 min CN=81 Runoff=44.80 cfs 4.445 af
Subcatchment B8: BASIN B8	Runoff Area=11.900 ac 2.94% Impervious Runoff Depth=3.76" Flow Length=2,100' Tc=22.3 min CN=79 Runoff=33.69 cfs 3.729 af
Subcatchment B9: BASIN B9	Runoff Area=5.200 ac 25.96% Impervious Runoff Depth=4.60" Flow Length=1,275' Tc=18.4 min CN=87 Runoff=19.05 cfs 1.995 af
Subcatchment C1: BASIN C1	Runoff Area=9.550 ac 19.90% Impervious Runoff Depth=4.28" Flow Length=972' Tc=10.9 min CN=84 Runoff=39.83 cfs 3.407 af

Clovewood Post Developed2022 ABCD

Type III 24-hr 25 year Rainfall=6.09"

Prepared by Kirk Rother, PE. PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 260

Runoff Area=21.300 ac 16.90% Impervious Runoff Depth=4.39" Subcatchment C10: BASIN C10 Flow Length=2,285' Tc=15.0 min CN=85 Runoff=81.25 cfs 7.788 af Subcatchment C11: BASIN C11 Runoff Area=9.550 ac 0.00% Impervious Runoff Depth=3.86" Flow Length=1,075' Tc=18.6 min CN=80 Runoff=29.88 cfs 3.074 af Runoff Area=68.270 ac 0.00% Impervious Runoff Depth=3.56" Subcatchment C12: BASIN C12 Flow Length=3,260' Tc=19.0 min CN=77 Runoff=195.70 cfs 20.241 af Runoff Area=68.220 ac 0.00% Impervious Runoff Depth=3.66" Subcatchment C13: BASIN C13 Flow Length=3,910' Tc=20.4 min CN=78 Runoff=194.79 cfs 20.799 af Runoff Area=39.280 ac 0.00% Impervious Runoff Depth=3.56" Subcatchment C14: BASIN C12 Flow Length=3,650' Tc=12.4 min CN=77 Runoff=132.24 cfs 11.646 af Subcatchment C2: BASIN C2 Runoff Area=5.950 ac 32.77% Impervious Runoff Depth=4.60" Flow Length=1,030' Tc=17.3 min CN=87 Runoff=22.30 cfs 2.283 af Runoff Area=6.300 ac 0.00% Impervious Runoff Depth=3.86" Subcatchment C3: BASIN C3 Flow Length=905' Tc=19.4 min CN=80 Runoff=19.39 cfs 2.028 af Subcatchment C4: BASIN C4 Runoff Area=7.400 ac 22.70% Impervious Runoff Depth=4.28" Flow Length=920' Tc=15.8 min CN=84 Runoff=27.11 cfs 2.640 af Runoff Area=23.850 ac 0.00% Impervious Runoff Depth=2.78" Subcatchment C5: BASIN C5 Flow Length=1,840' Tc=18.8 min CN=69 Runoff=53.15 cfs 5.531 af Subcatchment C6: BASIN C6 Runoff Area=16.250 ac 15.08% Impervious Runoff Depth=4.07" Flow Length=1,470' Tc=13.6 min CN=82 Runoff=59.96 cfs 5.511 af Subcatchment C7: BASIN C7 Runoff Area=19.700 ac 20.30% Impervious Runoff Depth=4.39" Flow Length=1,860' Tc=12.6 min CN=85 Runoff=79.98 cfs 7.203 af Subcatchment C8: BASIN C8 Runoff Area=11.050 ac 4.25% Impervious Runoff Depth=1.98" Flow Length=730' Tc=16.5 min CN=60 Runoff=17.52 cfs 1.824 af Subcatchment C9: BASIN C9 Runoff Area=3.800 ac 0.00% Impervious Runoff Depth=2.07" Flow Length=1,030' Tc=11.0 min CN=61 Runoff=7.36 cfs 0.654 af Subcatchment D: BASIN D Runoff Area=2.200 ac 0.00% Impervious Runoff Depth=3.66" Flow Length=1,702' Tc=14.9 min CN=78 Runoff=7.12 cfs 0.671 af Inflow=556.12 cfs 85.264 af Reach AP2: ANALYSIS POINT 2 Outflow=556.12 cfs 85.264 af Inflow=730.86 cfs 93.861 af **Reach AP3: ANALYSIS POINT 3** Outflow=730.86 cfs 93.861 af Inflow=7.12 cfs 0.671 af Reach AP4: ANALYSIS POINT 4 Outflow=7.12 cfs 0.671 af Reach RB1: RB1 Avg. Flow Depth=2.65' Max Vel=15.35 fps Inflow=332.16 cfs 54.840 af

Avg. Flow Depth=1.38' Max Vel=7.51 fps Inflow=61.02 cfs 7.522 af Reach RB11: RB11 n=0.025 L=1,080.0' S=0.0194 '/' Capacity=575.53 cfs Outflow=60.68 cfs 7.520 af

n=0.025 L=1,055.0' S=0.0360 '/' Capacity=783.31 cfs Outflow=331.78 cfs 54.829 af

	,	,	,
Hvdr	CAD® 10.00-20	s/n 02530	© 2017 HvdroCAD Software Solutions LLC

Reach RB13: RB13	Avg. Flow Depth=1.54' Max Vel=10.47 fps Inflow=66.99 cfs 12.250 af n=0.025 L=335.0' S=0.0358 '/' Capacity=476.13 cfs Outflow=66.99 cfs 12.248 af
Reach RB14: RB14	Avg. Flow Depth=0.90' Max Vel=14.39 fps Inflow=35.01 cfs 3.656 af n=0.020 L=1,100.0' S=0.0864 '/' Capacity=182.82 cfs Outflow=34.92 cfs 3.656 af
Reach RB15: RB15	Avg. Flow Depth=1.55' Max Vel=4.54 fps Inflow=28.40 cfs 2.158 af n=0.030 L=600.0' S=0.0100 '/' Capacity=105.64 cfs Outflow=26.93 cfs 2.158 af
Reach RB16: RB16	Avg. Flow Depth=1.65' Max Vel=11.11 fps Inflow=72.68 cfs 13.455 af n=0.025 L=340.0' S=0.0382 '/' Capacity=247.88 cfs Outflow=72.67 cfs 13.454 af
Reach RB2: RB2	Avg. Flow Depth=0.34' Max Vel=5.68 fps Inflow=3.22 cfs 1.510 af n=0.025 L=460.0' S=0.0696 '/' Capacity=131.26 cfs Outflow=3.22 cfs 1.509 af
Reach RB3: RB3	Avg. Flow Depth=2.32' Max Vel=16.23 fps Inflow=286.24 cfs 46.635 af n=0.025 L=885.0' S=0.0475 '/' Capacity=899.13 cfs Outflow=286.21 cfs 46.627 af
Reach RB4: RB4	Avg. Flow Depth=1.47' Max Vel=6.19 fps Inflow=52.06 cfs 5.724 af n=0.030 L=340.0' S=0.0176 '/' Capacity=99.85 cfs Outflow=52.04 cfs 5.724 af
Reach RB6: RB6	Avg. Flow Depth=2.56' Max Vel=5.83 fps Inflow=199.86 cfs 33.308 af n=0.025 L=800.0' S=0.0050 '/' Capacity=516.81 cfs Outflow=198.93 cfs 33.294 af
Reach RB7: RB7	Avg. Flow Depth=2.19' Max Vel=8.52 fps Inflow=138.03 cfs 24.445 af n=0.025 L=285.0' S=0.0140 '/' Capacity=488.96 cfs Outflow=138.03 cfs 24.443 af
Reach RC1: RC1	Avg. Flow Depth=4.48' Max Vel=18.69 fps Inflow=704.84 cfs 90.456 af n=0.025 L=280.0' S=0.0321 '/' Capacity=566.54 cfs Outflow=705.14 cfs 90.454 af
Reach RC10: RC10	Avg. Flow Depth=0.69' Max Vel=4.65 fps Inflow=35.50 cfs 7.728 af n=0.030 L=600.0' S=0.0250 '/' Capacity=79.34 cfs Outflow=35.44 cfs 7.727 af
Reach RC11A: RC11-A	Avg. Flow Depth=3.81' Max Vel=21.48 fps Inflow=638.88 cfs 80.760 af n=0.025 L=380.0' S=0.0500 '/' Capacity=706.60 cfs Outflow=639.04 cfs 80.759 af
Reach RC11B: RC11-B	Avg. Flow Depth=1.80' Max Vel=21.82 fps Inflow=211.68 cfs 22.065 af n=0.025 L=660.0' S=0.1227 '/' Capacity=1,107.03 cfs Outflow=211.74 cfs 22.065 af
Reach RC11C: RC11-C	Avg. Flow Depth=3.49' Max Vel=16.36 fps Inflow=427.15 cfs 58.696 af n=0.025 L=125.0' S=0.0320 '/' Capacity=565.28 cfs Outflow=427.19 cfs 58.696 af
Reach RC12: RC12	Avg. Flow Depth=1.61' Max Vel=24.01 fps Inflow=195.70 cfs 20.241 af n=0.020 L=565.0' S=0.1097 '/' Capacity=1,308.49 cfs Outflow=195.73 cfs 20.241 af
Reach RC13: RC13	Avg. Flow Depth=2.04' Max Vel=17.36 fps Inflow=194.79 cfs 20.799 af n=0.025 L=530.0' S=0.0679 '/' Capacity=434.48 cfs Outflow=194.80 cfs 20.799 af
Reach RC14: RC14	Avg. Flow Depth=1.73' Max Vel=18.76 fps Inflow=132.24 cfs 11.646 af n=0.025 L=460.0' S=0.1043 '/' Capacity=409.49 cfs Outflow=131.41 cfs 11.646 af
Reach RC2: RC2	Avg. Flow Depth=3.74' Max Vel=23.08 fps Inflow=668.31 cfs 83.833 af n=0.025 L=510.0' S=0.0588 '/' Capacity=766.42 cfs Outflow=668.52 cfs 83.831 af
Reach RC3: RC3	Avg. Flow Depth=0.46' Max Vel=10.04 fps Inflow=15.73 cfs 2.521 af n=0.020 L=175.0' S=0.0914 '/' Capacity=590.61 cfs Outflow=15.72 cfs 2.521 af

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 262

Avg. Flow Depth=0.37' Max Vel=7.08 fps Inflow=15.73 cfs 2.522 af Reach RC4: RC4

n=0.030 L=230.0' S=0.1348 '/' Capacity=137.70 cfs Outflow=15.73 cfs 2.521 af

Reach RC5A: RC5-A Avg. Flow Depth=2.99' Max Vel=21.71 fps Inflow=375.44 cfs 53.168 af

n=0.025 L=800.0' S=0.0725 '/' Capacity=677.36 cfs Outflow=374.36 cfs 53.165 af

Avg. Flow Depth=2.71' Max Vel=22.13 fps Inflow=328.88 cfs 40.171 af Reach RC5B: RC5-B

n=0.025 L=655.0' S=0.0840 '/' Capacity=728.98 cfs Outflow=329.11 cfs 40.171 af

Avg. Flow Depth=2.73' Max Vel=17.67 fps Inflow=307.68 cfs 32.445 af Reach RC5C: RC5-C

n=0.025 L=180.0' S=0.0500 '/' Capacity=372.77 cfs Outflow=307.78 cfs 32.445 af

Avg. Flow Depth=1.09' Max Vel=12.98 fps Inflow=59.44 cfs 12.999 af Reach RC6: RC6 n=0.025 L=600.0' S=0.0800 '/' Capacity=893.79 cfs Outflow=59.41 cfs 12.997 af

Reach RC7: RC7 Avg. Flow Depth=1.14' Max Vel=8.34 fps Inflow=34.03 cfs 6.946 af n=0.025 L=400.0' S=0.0325 '/' Capacity=453.52 cfs Outflow=34.04 cfs 6.945 af

Avg. Flow Depth=1.21' Max Vel=10.33 fps Inflow=195.73 cfs 20.241 af Reach RC8: RC8 n=0.030 L=820.0' S=0.0585 '/' Capacity=576.22 cfs Outflow=194.60 cfs 20.241 af

Avg. Flow Depth=1.09' Max Vel=8.34 fps Inflow=37.72 cfs 7.599 af Reach RC9: RC9

n=0.025 L=270.0' S=0.0333 '/' Capacity=576.94 cfs Outflow=37.76 cfs 7.599 af

Peak Elev=587.63' Inflow=66.99 cfs 12.250 af Pond B13P: ARCH CULV

120.0" x 48.0", R=96.0" Arch Culvert n=0.012 L=85.0' S=0.0588 '/' Outflow=66.99 cfs 12.250 af

Pond B16P: ARCH CULV Peak Elev=570.72' Inflow=72.68 cfs 13.455 af

120.0" x 48.0", R=96.0" Arch Culvert n=0.012 L=65.0' S=0.0308 '/' Outflow=72.68 cfs 13.455 af

Pond B4P: 36" HDPE Peak Elev=556.84' Inflow=52.06 cfs 5.724 af

36.0" Round Culvert n=0.012 L=68.0' S=0.0100 '/' Outflow=52.06 cfs 5.724 af

Peak Elev=513.18' Inflow=668.31 cfs 83.833 af **Pond C11P: ARCH CULV**

216.0" x 72.0", R=156.0" Arch Culvert n=0.020 L=60.0' S=0.0300 '/' Outflow=668.31 cfs 83.833 af

Pond C12P: (2) 54" HDPE Peak Elev=731.38' Inflow=195.70 cfs 20.241 af

54.0" Round Culvert x 2.00 n=0.012 L=75.0' S=0.0700 '/' Outflow=195.70 cfs 20.241 af

Pond C13P: ARCH CULV Peak Elev=699.46' Inflow=194.79 cfs 20.799 af

120.0" x 60.0", R=60.0" Arch Culvert n=0.025 L=60.0' S=0.1000'/ Outflow=194.79 cfs 20.799 af

Peak Elev=705.34' Inflow=132.24 cfs 11.646 af Pond C14P: (2) 48" HDPE

48.0" Round Culvert x 2.00 n=0.012 L=60.0' S=0.0333 '/' Outflow=132.24 cfs 11.646 af

Pond C2P: 48" HDPE Peak Elev=488.76' Inflow=38.73 cfs 6.625 af

48.0" Round Culvert n=0.012 L=206.0' S=0.0100 '/' Outflow=38.73 cfs 6.625 af

Peak Elev=539.56' Inflow=427.15 cfs 58.696 af

Peak Elev=501.40' Inflow=31.96 cfs 4.549 af Pond C3P: 36" HDPE 36.0" Round Culvert n=0.012 L=250.0' S=0.0479 '/' Outflow=31.96 cfs 4.549 af

Pond C5P: (2) 60" CULV 60.0" Round Culvert x 2.00 n=0.012 L=62.0' S=0.0113 '/' Outflow=427.15 cfs 58.696 af

Peak Elev=615.26' Inflow=211.68 cfs 22.065 af Pond C8P: ARCH CULV

144.0" x 48.0", R=96.0" Arch Culvert n=0.012 L=50.0' S=0.0800 '/' Outflow=211.68 cfs 22.065 af

Primary=286.24 cfs 46.635 af

Prepared by Kirk Rother, PE, PLLC

HvdroCAD® 10 00-20 s/n 02530 © 2017 HvdroCAD Software Solutions LLC

HydroCAD® 10.00-20	S/N 02530 @ 2017	Hydrocad Sollware Solutions LLC	

Page 263

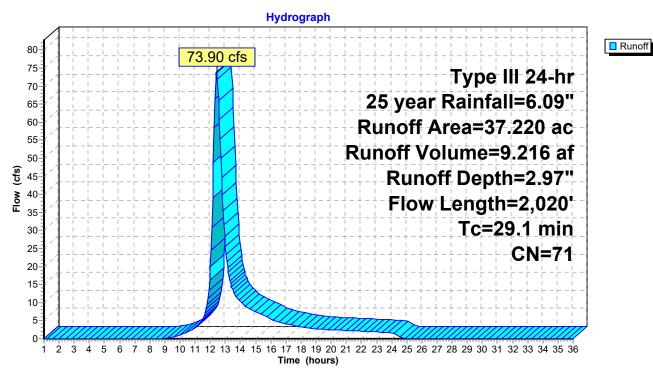
Pond C9P: 48" HDPE	Peak Elev=650.27' Inflow=37.72 cfs 7.599 af 48.0" Round Culvert n=0.012 L=55.0' S=0.0182'/' Outflow=37.72 cfs 7.599 af
Pond PB11: POND B11	Peak Elev=581.13' Storage=67,188 cf Inflow=75.06 cfs 7.574 af Outflow=61.02 cfs 7.522 af
Pond PB12: POND B12	Peak Elev=598.40' Storage=120,890 cf Inflow=71.64 cfs 6.774 af Outflow=24.45 cfs 6.468 af
Pond PB2: POND B2	Peak Elev=506.52' Storage=40,068 cf Inflow=19.68 cfs 1.809 af Outflow=3.22 cfs 1.510 af
Pond PB3: POND B3	Peak Elev=523.85' Storage=124,075 cf Inflow=79.60 cfs 8.351 af Outflow=52.19 cfs 8.212 af
Pond PB4: POND B4	Peak Elev=561.24' Storage=58,512 cf Inflow=38.16 cfs 3.459 af Outflow=17.31 cfs 3.422 af
Pond PB5: POND B5	Peak Elev=565.52' Storage=33,280 cf Inflow=24.98 cfs 2.160 af Outflow=14.70 cfs 2.037 af
Pond PB6: POND B6	Peak Elev=659.07' Storage=53,175 cf Inflow=32.52 cfs 2.997 af Outflow=15.84 cfs 2.890 af
Pond PB7: POND B7	Peak Elev=562.77' Storage=97,152 cf Inflow=44.80 cfs 4.445 af Outflow=11.08 cfs 3.472 af
Pond PC10: POND C10	Peak Elev=674.92' Storage=126,523 cf Inflow=81.25 cfs 7.788 af Outflow=35.50 cfs 7.728 af
Pond PC2: POND C2	Peak Elev=501.20' Storage=44,394 cf Inflow=22.30 cfs 2.283 af Outflow=9.15 cfs 2.076 af
Pond PC4: POND C4	Peak Elev=553.08' Storage=41,621 cf Inflow=27.11 cfs 2.640 af Outflow=15.73 cfs 2.522 af
Pond PC6: POND C6	Peak Elev=640.82' Storage=95,519 cf Inflow=59.96 cfs 5.511 af Outflow=22.29 cfs 5.400 af
Pond PC7: POND C7	Peak Elev=662.56' Storage=126,885 cf Inflow=79.98 cfs 7.203 af Outflow=34.03 cfs 6.946 af
Pond XP: EXISTING POND	Inflow=286.24 cfs 46.635 af

Total Runoff Area = 595.340 ac Runoff Volume = 182.637 af Average Runoff Depth = 3.68" 91.56% Pervious = 545.080 ac 8.44% Impervious = 50.260 ac

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 264


Summary for Subcatchment A: BASIN A

Runoff = 73.90 cfs @ 12.41 hrs, Volume= 9.216 af, Depth= 2.97"

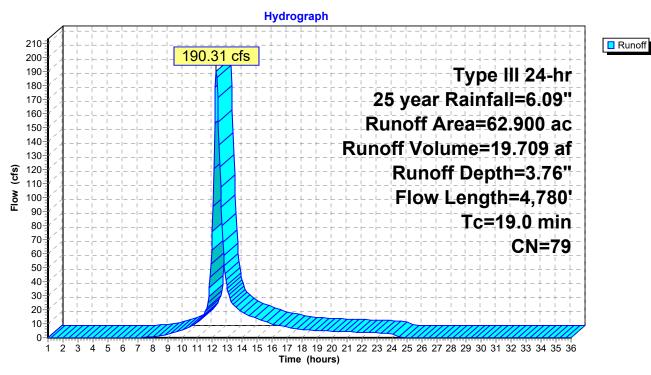
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area ((ac) C	N D	escription		
*	7.3	350	39 W	etlands/		
*	1.0	040	98 In	npervious Su	ırfaces	
	1.0	000	30 >	75% Grass o	cover, Good	, HSG D
	0.3			oods, Good	, HSG A	
				oods, Good		
				oods, Good		
	5.9			oods, Good		
				rush, Good,		
				rush, Good,		
				rush, Good,		
				rush, Good,		
*				irt roads, HS		
*				irt roads, HS		
*				irt roads, HS		
_				irt roads, HS		
	37.2			eighted Ave	•	
	36.		-	7.21% Pervi		
	1.0	040		79% Imperv	ious Area	
	Тс	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)	(ft/	ft) (ft/sec)	(cfs)	·
	20.5	100	0.020	0.08		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	5.1	690	0.020	00 2.28		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	2.7	690	0.070	00 4.26		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	8.0	540	0.040	00 10.91	152.70	Parabolic Channel,
_						W=7.00' D=3.00' Area=14.0 sf Perim=9.6' n= 0.035
	29.1	2,020	Total			

Subcatchment A: BASIN A

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 266


Summary for Subcatchment B1: BASIN B1

Runoff = 190.31 cfs @ 12.26 hrs, Volume= 19.709 af, Depth= 3.76"

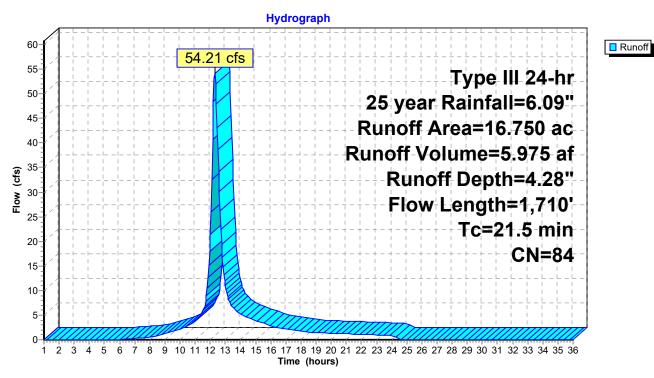
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac)	CN	Desc	ription						
*	3.	820	98	WAT	ER SURF	ACE					
*	11.	670	89	WET	LANDS						
*	1.	550	35	OLD	COURSE	:, A					
*		500	90		ROAD						
		220	77	Woo	ds, Good,	HSG D					
*	3.	000	85	LOT	S, D						
*		400	98		PPING CI						
		000	80		>75% Grass cover, Good, HSG D						
		950	78			grazed, HS					
		000	30			grazed, HS	G A				
		800	30		ds, Good,	HSG A					
*		140	98		ing Road						
<u>~</u>		850	98			ent Facility					
		900	79		hted Aver						
		690			4% Pervio						
	7.	210		11.40	6% Imper	ious Area					
	- -	141-	. ,	21	\	0:	Description				
		Length		Slope		Capacity	Description				
_	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	Ob (File				
	13.2	100	0.	0600	0.13		Sheet Flow,				
	4.0	070		0450	2.42		Woods: Light underbrush n= 0.400 P2= 3.50"				
	1.3	270	0.	0450	3.42		Shallow Concentrated Flow,				
	2.3	1,665	. ^	0140	12.21	488.35	Unpaved Kv= 16.1 fps Parabolic Channel,				
	2.3	1,000) U.	0140	12.21	400.33	W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025				
	2.2	2,745		0400	20.64	825.46	Parabolic Channel,				
	۷.۷	2,740	<i>)</i> 0.	0400	20.04	023.40	W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025				
_	10.0	4 700) T				VV-13.00 D-4.00 Alea-40.0 SI Felilli-17.3 11-0.023				
	19.0	4,780) 10	otal							

Subcatchment B1: BASIN B1

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 268

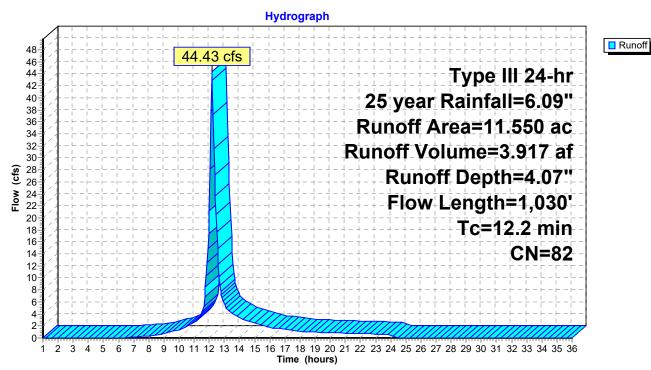

Summary for Subcatchment B10: BASIN 10

Runoff = 54.21 cfs @ 12.29 hrs, Volume= 5.975 af, Depth= 4.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac) (CN	Desc	cription				
*	6.	250	85	LOT	S, D				
*	2.	100	98	ROADS, WALKS					
*	0.	500	98	BUIL	DING, PA	RKING			
	2.	350	77	Woo	ds, Good,	HSG D			
	3.	870	78	Mea	dow, non-	grazed, HS	G D		
	1.	680	80	>75%	% Grass co	over, Good,	, HSG D		
	16.	750	84	Weig	hted Aver	age			
	14.	150		84.4	8% Pervio	us Area			
	2.	600		15.5	2% Imperv	ious Area			
	Тс	Length	ı SI	ope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	18.0	100	0.0	100	0.09		Sheet Flow,		
							Grass: Dense n= 0.240 P2= 3.50"		
	1.4	350	0.0	650	4.10		Shallow Concentrated Flow,		
							Unpaved Kv= 16.1 fps		
	0.2	30	0.0	250	3.21		Shallow Concentrated Flow,		
							Paved Kv= 20.3 fps		
	1.5	890	0.0	250	10.18	17.99	Pipe Channel,		
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'		
							n= 0.012		
	0.4	340	0.0	400	14.86	99.05	Parabolic Channel,		
							W=5.00' D=2.00' Area=6.7 sf Perim=6.7' n= 0.020		
	21.5	1,710	Tot	tal					

Subcatchment B10: BASIN 10


Summary for Subcatchment B11: BASIN B11

Runoff = 44.43 cfs @ 12.17 hrs, Volume= 3.917 af, Depth= 4.07"

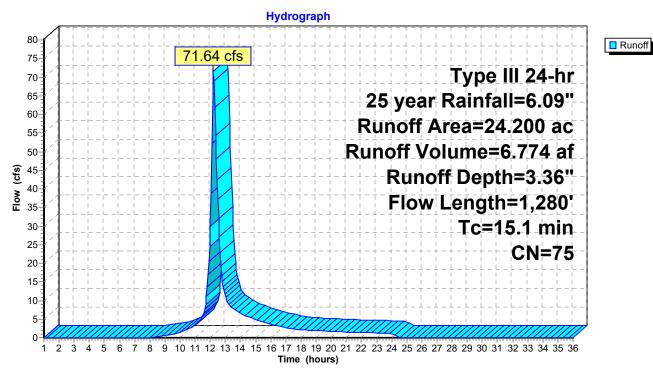
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac)	CN	Desc	ription		
*	0.	400	98	PON	D		
*	5.	350	85	LOT	S, D		
	2.	800	80	>75%	√Grass co	over, Good,	HSG D
	3.	000	77	Woo	ds, Good,	HSG D	
	11.	550	82	Weig	hted Aver	age	
	11.	150		96.5	, 4% Pervio	us Area	
	0.	400		3.46	% Impervi	ous Area	
	Tc	Length	1	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	11.8	100) (0.0800	0.14		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	0.4	930	0	0.0864	38.09	304.76	Parabolic Channel,
							W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.012
	12 2	1 030) T	- Total	-	-	

Subcatchment B11: BASIN B11

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 271

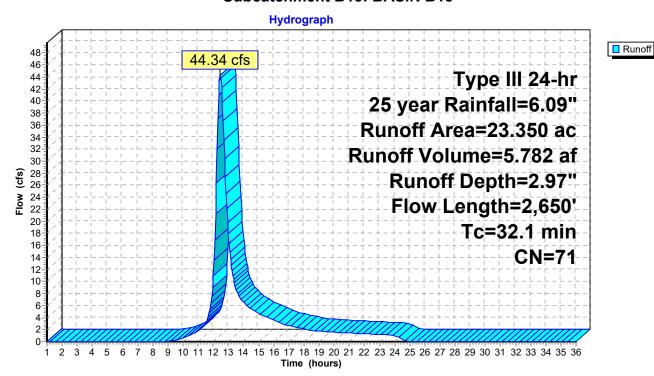

Summary for Subcatchment B12: BASIN B12

Runoff = 71.64 cfs @ 12.21 hrs, Volume= 6.774 af, Depth= 3.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac) C	N Des	cription							
*	1.	000	98 PON	ND							
*	3.	050 9	98 ROA	ADS, WALI	KS						
*	3.	000 6	0 LOT	S, A							
	1.	070 3	39 >75	% Grass co	over, Good,	, HSG A					
*	3.	650 8	35 LOT	LOTS, D							
*	1.	000	98 BUII	LDING, PA	RKING						
	5.	850 8	30 >75	>75% Grass cover, Good, HSG D							
				ds, Good,							
					grazed, HS	G A					
*	0.	100 8	36 Well	Acess Ro	ad						
				ghted Aver							
		150		79.13% Pervious Area							
	5.	050	20.8	7% Imper	/ious Area						
	-		01		0 "						
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	13.2	100	0.0600	0.13		Sheet Flow,					
	0.7	400	0.0005	4.00		Woods: Light underbrush n= 0.400 P2= 3.50"					
	0.7	160	0.0625	4.03		Shallow Concentrated Flow,					
	0.0	CF	0.0000	2.52		Unpaved Kv= 16.1 fps					
	0.3	65	0.0300	3.52		Shallow Concentrated Flow,					
	0.9	890	0.0700	17.04	30.11	Paved Kv= 20.3 fps Pipe Channel,					
	0.9	090	0.0700	17.04	30.11	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'					
						n= 0.012					
	0.0	65	0.1200	24.02	128.11	Parabolic Channel,					
	0.0	03	0.1200	27.02	120.11	W=4.00' D=2.00' Area=5.3 sf Perim=5.9' n= 0.020					
_	15.1	1,280	Total			77 1.00 B 2.00 7400 0.001 FORM 0.0 11 0.020					
	10.1	1,200	ı Ulai								

Subcatchment B12: BASIN B12


Summary for Subcatchment B13: BASIN B13

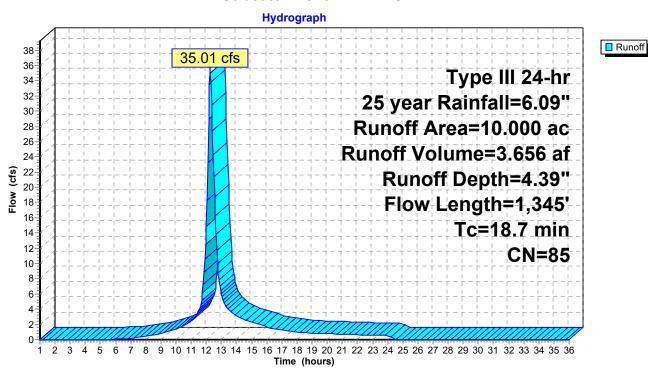
Runoff = 44.34 cfs @ 12.46 hrs, Volume= 5.782 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac)	CN	Desc	ription							
*	2.	300	60	LOT	S, A							
*	4.	000	85	LOT	LOTS, D							
*	1.	420	89	WET	LANDS							
	0.	900	39	>75%	√ Grass co	over, Good,	, HSG A					
	1.	450	80	>75%	√ Grass co √	over, Good,	, HSG D					
	10.	830	77	Woo	ds, Good,	HSG D						
	2.	450	30	Mea	dow, non-g	grazed, HS	G A					
	23.	350	71	Weig	hted Aver	age						
	23.	350		100.0	00% Pervi	ous Area						
	Тс	Length	า	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	20.5	100) (.0200	0.08		Sheet Flow,					
							Woods: Light underbrush n= 0.400 P2= 3.50"					
	11.2	2,020) (0.0350	3.01		Shallow Concentrated Flow,					
							Unpaved Kv= 16.1 fps					
	0.4	530) (.0750	24.88	298.60	Parabolic Channel,					
_							W=6.00' D=3.00' Area=12.0 sf Perim=8.9' n= 0.020					
	32.1	2,650) T	otal								

Subcatchment B13: BASIN B13

Summary for Subcatchment B14: BASIN 14


Runoff = 35.01 cfs @ 12.25 hrs, Volume= 3.656 af, Depth= 4.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

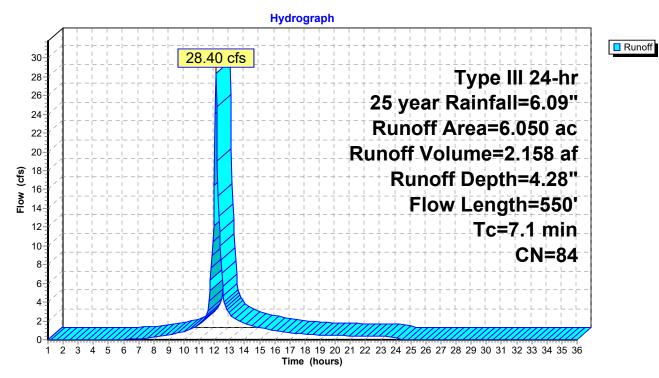
	Area	(ac) C	N Des	cription							
*	6.	250	35 LOT	S, D							
*				AĎS, WALI	KS						
				>75% Grass cover, Good, HSG D							
				Woods, Good, HSG D							
-				ghted Aver							
		700 °	,	911eu Avei 10% Pervio	0						
	-			•							
	١.	300	13.0	0% Imper	nous Area						
	т.	1	01	\	0	Description					
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	15.6	100	0.0400	0.11		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 3.50"					
	2.4	700	0.0900	4.83		Shallow Concentrated Flow,					
						Unpaved Kv= 16.1 fps					
	0.3	70	0.0400	4.06		Shallow Concentrated Flow,					
						Paved Kv= 20.3 fps					
	0.4	475	0.0760	21.51	67.56	Pipe Channel,					
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'					
						n= 0.012					
_											

18.7 1,345 Total

Subcatchment B14: BASIN 14

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 275

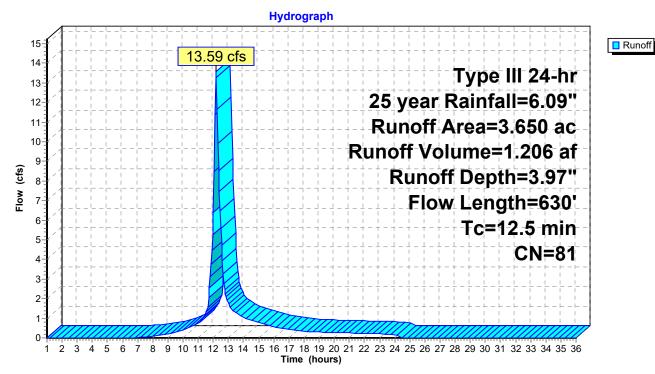

Summary for Subcatchment B15: BASIN B15

Runoff = 28.40 cfs @ 12.10 hrs, Volume= 2.158 af, Depth= 4.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

_	Area	(ac)	CN	Desc	cription						
*	3.	050	85	LOT	S, D						
*						K S					
*	0.	150	98	BUILDING							
		000	80	>75%	6 Grass co	over, Good,	HSG D				
		000	77		ds, Good,						
		450	78			grazed, HS	GD				
_		050	84		hted Aver						
		500	0-		1% Pervio						
		550			% Impervi						
	0.	550		3.03	70 IIIIpei vii	ous Alea					
	Тс	Length	ı S	Slope	Velocity	Capacity	Description				
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	· ·				
	6.0	100	0.0	0600	0.28		Sheet Flow,				
							Grass: Short n= 0.150 P2= 3.50"				
	0.5	140	0.0	0800	4.55		Shallow Concentrated Flow,				
							Unpaved Kv= 16.1 fps				
	0.1	40	0.0	0250	10.18	17.99	Pipe Channel,				
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
							n= 0.012				
	0.2	80	0.3	3000	8.82		Shallow Concentrated Flow,				
							Unpaved Kv= 16.1 fps				
	0.3	190	0.0	0350	12.05	21.29	Pipe Channel,				
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
							n= 0.012				
	7.1	550) To	otal							

Subcatchment B15: BASIN B15


Summary for Subcatchment B16: BASIN B16

Runoff = 13.59 cfs @ 12.17 hrs, Volume= 1.206 af, Depth= 3.97"

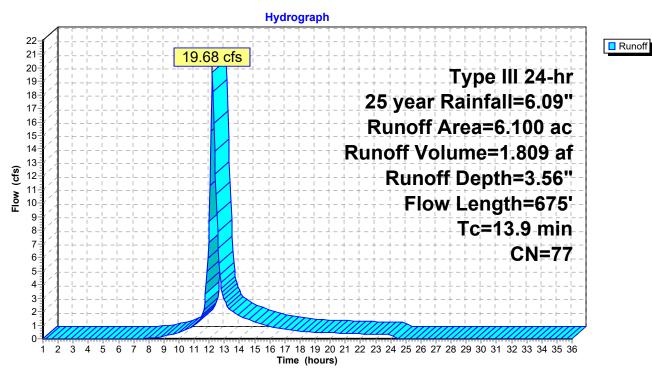
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac)	CN	Desc	ription		
*	1.	950	85	LOTS	S, D		
	0.	200	80	>75%	√Grass co	over, Good,	HSG D
		350	77		ds. Good.		
	0.	150	78	Mead	dow, non-	grazed, HS	GD
	3.	650	81	Weig	hted Aver	age	
		650			00% Pervi		
	Tc	Length	1	Slope	Velocity	Capacity	Description
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	'
	10.8	100	0	.1000	0.15	, ,	Sheet Flow,
					0.10		Woods: Light underbrush n= 0.400 P2= 3.50"
	1.7	530	0 (.1100	5.34		Shallow Concentrated Flow,
	•••	000			3.01		Unpayed Ky= 16.1 fps
_	12 5	630) T	otal			

Subcatchment B16: BASIN B16

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 278


Summary for Subcatchment B2: BASIN B2

Runoff = 19.68 cfs @ 12.19 hrs, Volume= 1.809 af, Depth= 3.56"

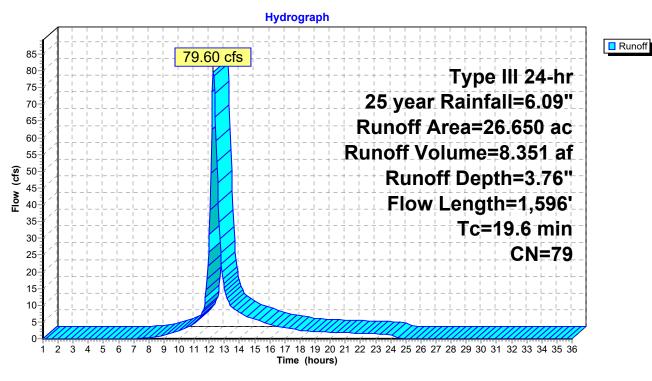
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac) (ON E)escri	ption						
*	0.	500	98 F	ROADS, WALKS							
	0.	550	30 V	Voods	s, Good,	HSG A					
	0.750 80 >75% Grass cover, Good, HSG D										
*	2.	900	85 L	OTS,	D						
*	0.	300	98 F	ond							
*	0.	200	30 L	OTS,	Α						
	0.	200	30 N	/leado	w, non-g	grazed, HS	G A				
	0.	700	78 N	/leadc	ow, non-g	grazed, HS	G D				
	6.	100	77 V	Veigh	ted Aver	age					
	5.	300			% Pervio						
	0.	800	1	3.119	% Imperv	rious Area					
	Tc	Length	Slo	pe \	√elocity	Capacity	Description				
	(min)	(feet)	(ft	/ft)	(ft/sec)	(cfs)					
	12.4	100	0.07	00	0.13		Sheet Flow,				
							Woods: Light underbrush n= 0.400 P2= 3.50"				
	0.5	200	0.15	00	6.24		Shallow Concentrated Flow,				
							Unpaved Kv= 16.1 fps				
	0.1	45	0.50	00	14.35		Shallow Concentrated Flow,				
							Paved Kv= 20.3 fps				
	8.0	190	0.06	00	3.94		Shallow Concentrated Flow,				
							Unpaved Kv= 16.1 fps				
	0.1	140	0.08	69	18.98	33.55	Pipe Channel,				
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
							n= 0.012				
	13.9	675	Tota	l							

Subcatchment B2: BASIN B2

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 280

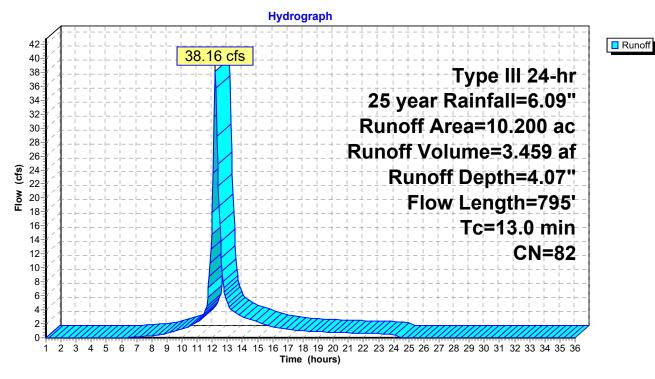

Summary for Subcatchment B3: BASIN B3

Runoff = 79.60 cfs @ 12.27 hrs, Volume= 8.351 af, Depth= 3.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac)	CN	Desc	cription						
*	0.	600	98	PON	ID						
*	0.	350	30	Mea	dow, non-	grazed, HS	G A				
*	3.	550	98	ROA	DS, WAL	KS					
	3.	000	80	>75%	% Grass co	over, Good,	HSG D				
	2.	400	77	Woo	ds, Good,	HSG D					
*	10.	650	85	LOT							
		000	78			grazed, HS	G D				
		300	30	Woods, Good, HSG A							
*		350	60	LOT							
		450	39								
		650	79		hted Aver						
		500			3% Pervio						
		150				/ious Area					
	•	.00		.0.0	. , opo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	Тс	Length	ո	Slope	Velocity	Capacity	Description				
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)					
_	17.5	100		.0300	0.10	(=== /	Sheet Flow,				
				.0000	0.10		Woods: Light underbrush n= 0.400 P2= 3.50"				
	0.6	100	0 (.0300	2.79		Shallow Concentrated Flow,				
	0.0			.0000	20		Unpaved Kv= 16.1 fps				
	0.1	36	3 0	.0200	9.11	16.09	Pipe Channel,				
	0			.0200	0	10.00	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
							n= 0.012				
	0.3	100	0 (.1000	5.09		Shallow Concentrated Flow,				
	0.0	100		. 1000	0.00		Unpaved Kv= 16.1 fps				
	0.4	310	0	.0427	13.31	23.51	Pipe Channel,				
	0.1	0.0		.0 .2.	10.01	20.01	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
							n= 0.012				
	0.2	230	n n	.0550	15.40	164.31	Parabolic Channel,				
	0.2	200		.0000	10.40	104.01	W=8.00' D=2.00' Area=10.7 sf Perim=9.2' n= 0.025				
	0.4	520	n n	.0830	22.47	70.61	Pipe Channel,				
	0.4	020		.0000	22.77	70.01	24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
							n= 0.012				
	0.1	200) n	.1000	27.22	653.23	Parabolic Channel,				
	0.1	200	, 0.	. 1000	۷۱.۷۷	000.20	W=12.00' D=3.00' Area=24.0 sf Perim=13.8' n= 0.025				
_	19.6	1 500	· T	otal			12.00 D-0.00 AICG-24.0 31 I GIIIII-10.0 II- 0.020				
	19.0	1,596	יו כ	บเสเ							

Subcatchment B3: BASIN B3

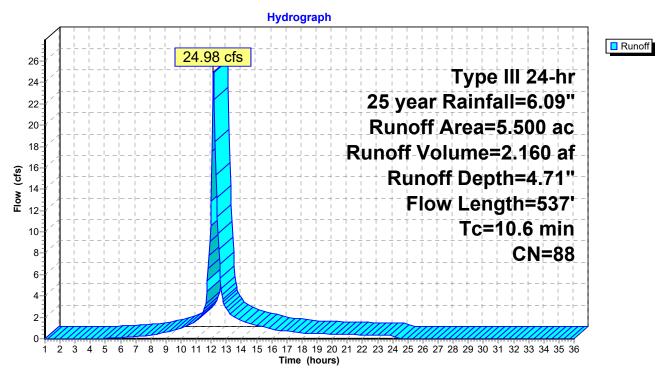

Page 282

Summary for Subcatchment B4: BASIN B4

Runoff = 38.16 cfs @ 12.18 hrs, Volume= 3.459 af, Depth= 4.07"

	Area	(ac)	CN	Desc	ription		
*	0.	350	98	PON	D		
*	0.	350	98	ROA	DS, WALK	(S	
*	2.	100	85				
*	0.	500	98	BUIL	DINGS		
*	0.	200	98	PAR	KING		
	1.	700	80	>75%	6 Grass co	over, Good,	HSG D
	4.	050	77		ds, Good,		
	0.	950	78	Mead	dow, non-g	grazed, HS	G D
	10.	200	82	Weig	hted Aver	age	
	8.	800			7% Pervio		
	1.400 13.73% Impervious Area					ious Area	
					·		
	Tc	Length	1	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	11.8	100) (0.080.0	0.14		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	0.4	180) (0.2000	7.20		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.5	220) (0.0150	7.62	60.95	Parabolic Channel,
							W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025
	0.3	295	5 (0.0700	17.04	30.11	Pipe Channel,
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_							n= 0.012
	13.0	795	5	Total	·	·	

Subcatchment B4: BASIN B4

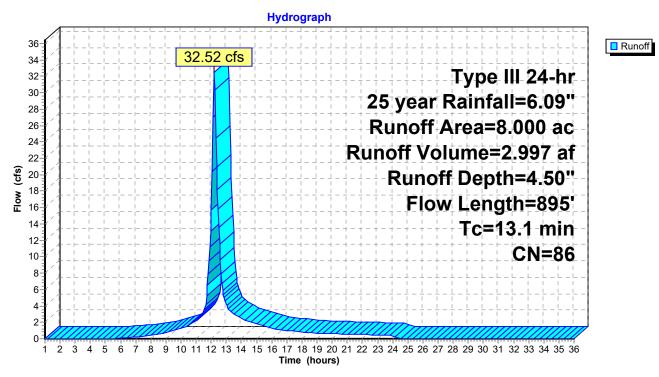

Page 284

Summary for Subcatchment B5: BASIN B5

Runoff = 24.98 cfs @ 12.15 hrs, Volume= 2.160 af, Depth= 4.71"

	Area ((ac) (ON D	escription		
*	0.3	340	98 R	DADS, WAL	KS	
*	0.	150	98 P	DND		
*	1.0	600	98 P.	ARKING		
*	1.8	800	85 L	DTS, D		
	0.	500	80 >	'5% Grass c	over, Good	, HSG D
	0.8	810	77 W	oods, Good,	HSG D	
_	0.3	300	78 M	eadow, non-	grazed, HS	G D
	5.	500	88 W	eighted Ave	rage	
	3.410 62.00% Pervious Area				ous Area	
	2.	090	38	3.00% Imper	vious Area	
	Tc	Length			Capacity	Description
_	(min)	(feet)	(ft/	t) (ft/sec)	(cfs)	
	10.0	100	0.120	0.17		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.2	90	0.180	0 6.83		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	60	0.020	0 9.11	16.09	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.012
	0.3	287	0.050	0 17.44	54.80	Pipe Channel,
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
_						n= 0.012
	10.6	537	Total			

Subcatchment B5: BASIN B5

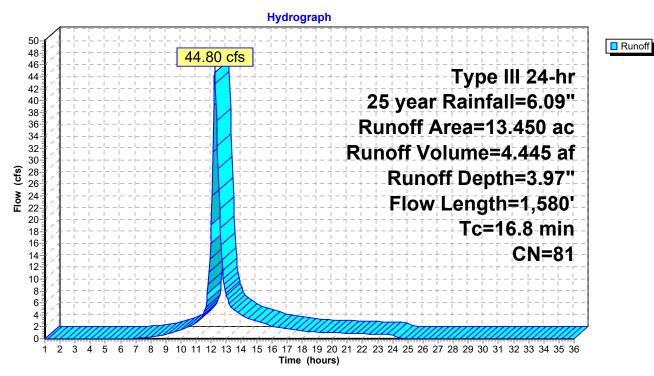

Page 286

Summary for Subcatchment B6: BASIN B6

Runoff = 32.52 cfs @ 12.18 hrs, Volume= 2.997 af, Depth= 4.50"

	Area	(ac) (N Des	cription		
*	0.	850	98 ROA	DS, WLAI	KS	
*	0.	420	98 PON	ID		
*	2.	600	85 LOT	S, D		
*	0.	900	98 PAR	KING		
	1.	250	80 >75°	% Grass co	over, Good	, HSG D
	1.	300	77 Woo	ds, Good,	HSG D	
	0.	680	78 Mea	dow, non-	grazed, HS	G D
	8.	000	86 Wei	ghted Aver	age	
	5.	830	72.8	8% Pervio	us Area	
	2.170 27.12% Impervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.8	100	0.1000	0.15		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.9	300	0.1200	5.58		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	8.0	120	0.0150	2.49		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.6	375	0.0300	11.15	19.71	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_						n= 0.012
	13.1	895	Total			

Subcatchment B6: BASIN B6


Page 288

Summary for Subcatchment B7: BASIN 7

Runoff = 44.80 cfs @ 12.23 hrs, Volume= 4.445 af, Depth= 3.97"

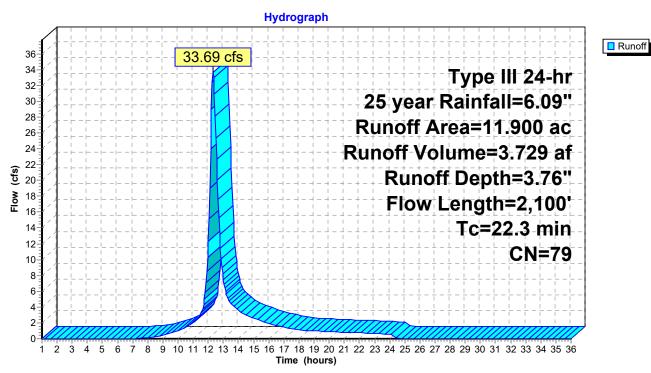
_	Area	(ac) (CN	Desc	cription		
*	3.	050	98	ROA	DS, WAL	<	
*	4.	150	85	LOT	S, D		
*			98	PON	_		
*			60	LOT	,		
			39			over, Good,	
			80			over, Good,	HSG D
			77		ds, Good,		
_			78	Mea	dow, non-զ	grazed, HS	G D
			81		ghted Aver		
		700			2% Pervio		
	3.	750		27.8	8% Imperv	ious Area	
	- -	141-	0		\/-I!4.	0:	December
	Tc	Length		lope	Velocity	Capacity	Description
_	(min)	(feet)		ft/ft)	(ft/sec)	(cfs)	Ob (Fl.
	14.2	100	0.0	500	0.12		Sheet Flow,
	0.6	230	Λ 1	700	6.64		Woods: Light underbrush n= 0.400 P2= 3.50" Shallow Concentrated Flow,
	0.0	230	0.1	700	0.04		Unpaved Kv= 16.1 fps
	0.5	120	0.0	400	4.06		Shallow Concentrated Flow,
	0.5	120	0.0	7400	4.00		Paved Kv= 20.3 fps
	0.6	545	0.0	0650	16.42	29.01	Pipe Channel,
	0.0	0.10	0.0	,000	10.12	20.01	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.012
	0.9	585	0.0	215	11.44	35.94	Pipe Channel,
							24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
							n= 0.012
	16.8	1,580	To	tal			

Subcatchment B7: BASIN 7

Clovewood Post Developed2022 ABCD

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

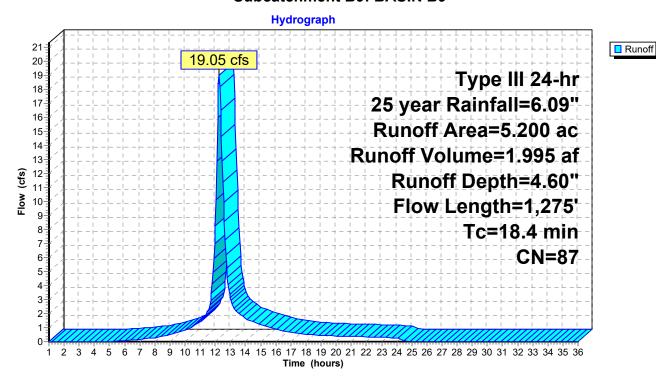

Page 290

Summary for Subcatchment B8: BASIN B8

Runoff = 33.69 cfs @ 12.31 hrs, Volume= 3.729 af, Depth= 3.76"

_	Area	(ac)	CN	Desc	cription						
*	0.	200	90	DIRT	ROAD, H	ISG D					
*	0.	350	98	ROA	D						
	3.	500	77	Woo	ds, Good,	HSG D					
		500	80		>75% Grass cover, Good, HSG D						
	5.	100	78	Mea	dow, non-დ	grazed, HS	G D				
*	0.	250	85	Lots,	D						
	11.	900	79	Weig	hted Aver	age					
		550		97.0	6% Pervio	us Area					
	0.350 2.94% Impervious Area										
	Tc	Length		Slope	Velocity		Description				
_	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)					
	15.6	100	0.0	0400	0.11		Sheet Flow,				
			_				Woods: Light underbrush n= 0.400 P2= 3.50"				
	5.1	915	0.0	0350	3.01		Shallow Concentrated Flow,				
	4.5	0.50			40.77	00.00	Unpaved Kv= 16.1 fps				
	1.5	950	0.0	0300	10.77	86.20	Parabolic Channel,				
	0.4	405		0540	00.00	404.04	W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025				
	0.1	135	0.0	0519	23.29	164.61	Pipe Channel,				
							36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'				
_	00.0	0.400					n= 0.012				
	22.3	2,100	l C	otal							

Subcatchment B8: BASIN B8

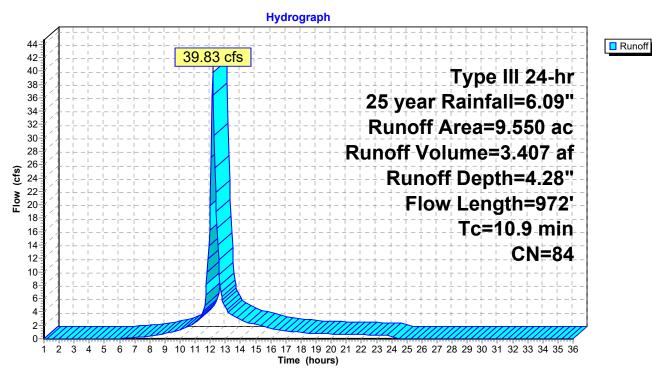

Summary for Subcatchment B9: BASIN B9

Runoff = 19.05 cfs @ 12.25 hrs, Volume= 1.995 af, Depth= 4.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac) C	N Des	cription		
*	2	750	35 LO	ΓS, D		
*				ADS, WALI	KS	
				,		HCC D
_					over, Good,	, ทอษ ม
	5.	200		ghted Aver		
	3.	850	74.0	04% Pervio	us Area	
	1.	350	25.9	96% Imperv	vious Area	
				•		
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)		(cfs)	2 dod i piloti
_			_ , _ ,		(010)	Oh a at Flass
	15.6	100	0.0400	0.11		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	1.7	435	0.0700	4.26		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.3	90	0.0600	4.97		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.8	650	0.0415	13.12	23.18	Pipe Channel,
	0.0	000	0.0413	10.12	20.10	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_						n= 0.012
	18.4	1,275	Total			

Subcatchment B9: BASIN B9

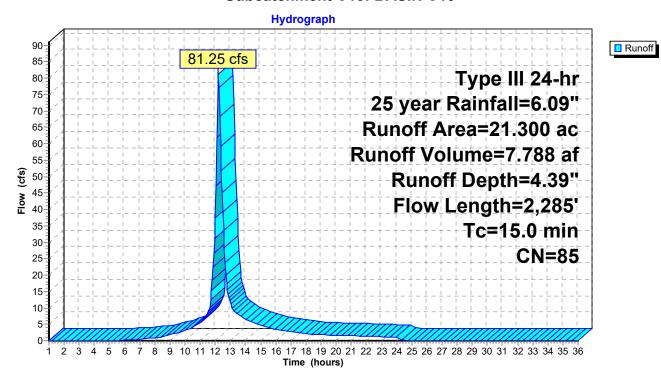

Summary for Subcatchment C1: BASIN C1

Runoff = 39.83 cfs @ 12.15 hrs, Volume= 3.407 af, Depth= 4.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac) (CN De	scription		
*	1.	900	98 R	DADS, WAL	KS, POND	
	3.	450	80 >7	5% Grass c	over, Good	, HSG D
	2.	200	77 W	oods, Good,	, HSG D	
*	2.	000	85 LC	TS, D		
	9.	550	84 W	eighted Ave	rage	
	7.	650	80	.10% Pervio	ous Area	
	1.	900	19	.90% Imper	vious Area	
	Тс	Length	Slop		Capacity	Description
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	6.0	100	0.060	0 0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	4.7	780	0.030	0 2.79		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.2	92	0.010	0 6.44	11.38	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.012
	10.9	972	Total			

Subcatchment C1: BASIN C1

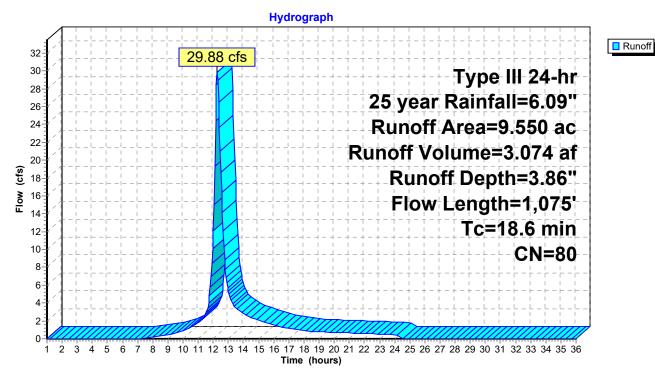

Page 294

Summary for Subcatchment C10: BASIN C10

Runoff = 81.25 cfs @ 12.20 hrs, Volume= 7.788 af, Depth= 4.39"

	Area	(ac)	CN	Desc	cription					
*	9.	600	85	LOT	S, D					
*	2.750 98		98	ROA	ROADS, WALKS					
	3.	300	80	>75%	% Grass co	over, Good,	HSG D			
*	0.	850	98	PON						
	3.	350	77	Woo	ds, Good,	HSG D				
	1.4	450	78	Mea	dow, non-	grazed, HS	GD			
		300	85		hted Aver					
		700			0% Pervio	•				
		600			•	ious Area				
	0.	000		. 0.0	o 70 mmpon	104071104				
	Tc	Length	า :	Slope	Velocity	Capacity	Description			
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	'			
	12.4	100	0	.0700	0.13	, ,	Sheet Flow,			
							Woods: Light underbrush n= 0.400 P2= 3.50"			
	1.1	490	0	.2000	7.20		Shallow Concentrated Flow,			
							Unpaved Kv= 16.1 fps			
	0.7	195	5 0	.0500	4.54		Shallow Concentrated Flow,			
							Paved Kv= 20.3 fps			
	0.2	790	0	.6700	52.71	93.15	Pipe Channel,			
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'			
							n= 0.012			
	0.6	710	0	.0730	21.08	66.22	Pipe Channel,			
							24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'			
							n= 0.012			
	15.0	2,285	5 T	otal						

Subcatchment C10: BASIN C10


Summary for Subcatchment C11: BASIN C11

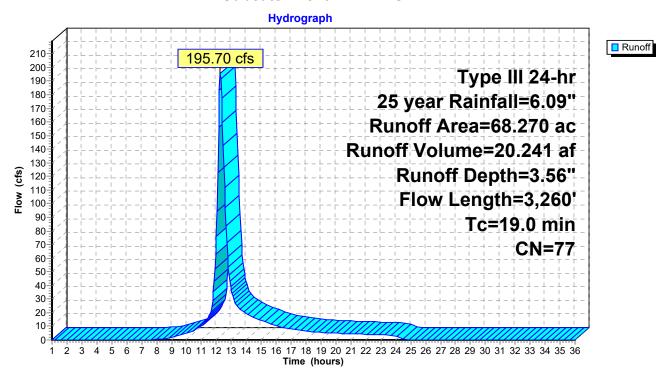
Runoff = 29.88 cfs @ 12.26 hrs, Volume= 3.074 af, Depth= 3.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac) (N Des	cription		
*		• •	85 LO	 ГЅ, D		
				,	over, Good,	HSG D
				ods, Good,		, 1100 B
	-				grazed, HS	G D
_					·	<u> </u>
				ghted Aver .00% Pervi		
	9.	550	100	.00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
_	17.5	100		0.10	(013)	Sheet Flow,
	17.5	100	0.0300	0.10		·
	0.7	215	0.2500	0.05		Woods: Light underbrush n= 0.400 P2= 3.50"
	0.7	315	0.2500	8.05		Shallow Concentrated Flow,
	0.4	000	0.4007	04.50	4 400 04	Unpaved Kv= 16.1 fps
	0.1	280	0.1227	34.59	1,106.91	Parabolic Channel,
						W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.025
	0.3	380	0.0500	22.08	706.60	Parabolic Channel,
_						W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.025
	18.6	1,075	Total			

Subcatchment C11: BASIN C11

Page 297

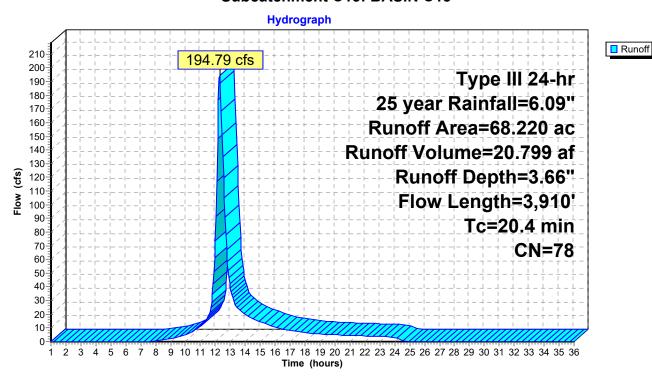

Summary for Subcatchment C12: BASIN C12

Runoff = 195.70 cfs @ 12.26 hrs, Volume= 20.241 af, Depth= 3.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

_	Area	(ac) C	N Des	cription		
	67.	000	77 Woo	ds, Good,	HSG D	
*	0.	3 006	30 Law	n, Good, H	ISG D	
	0.	670 7	'8 Mea	dow, non-	grazed, HS	G D
	68.270 77 Weighted Average					
	68.	270	100.	00% Pervi	ous Area	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•
	10.8	100	0.1000	0.15		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.5	360	0.5900	12.37		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	7.7	2,800	0.1400	6.02		Shallow Concentrated Flow,
		•				Unpaved Kv= 16.1 fps
	19.0	3,260	Total		-	

Subcatchment C12: BASIN C12

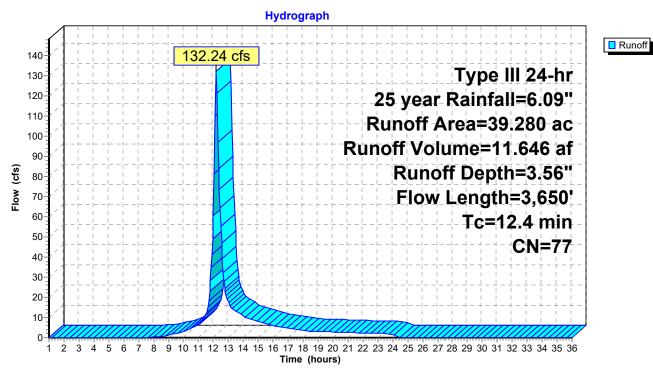

Summary for Subcatchment C13: BASIN C13

Runoff = 194.79 cfs @ 12.28 hrs, Volume= 20.799 af, Depth= 3.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac) (N D	escription		
*		` '				
				ETLANDS		
	61.	320	77 V	/oods, Good	, HSG D	
*	1.	150	85 L	OTS, D		
*	0.	750	96 V	/ell access R	load	
	_			75% Grass o	over, Good	, HSG D
	68	220	78 V	/eighted Ave	rane	
		220		00.00% Perv		
	00.	220		00.00 % Ferv	ious Area	
	_					
	Tc	Length	Slo			Description
	(min)	(feet)	(ft/	ft) (ft/sec)	(cfs)	
	15.6	100	0.040	00 0.11	,	Sheet Flow,
			0.0			Woods: Light underbrush n= 0.400 P2= 3.50"
	16	000	0.25	0.50		
	1.6	900	0.350	00 9.52		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	1.5	610	0.020	00 6.83	91.11	Parabolic Channel,
						W=10.00' D=2.00' Area=13.3 sf Perim=11.0' n= 0.035
	1.7	2,300	0.140	00 22.28	445.55	Parabolic Channel.
		_,	··	- -		W=10.00' D=3.00' Area=20.0 sf Perim=12.0' n= 0.035
_	00.4	0.040	—			11 10.00 D 0.00 71100 20.0 31 1 CHIH 12.0 H 0.000
	20.4	3.910	Total			

Subcatchment C13: BASIN C13

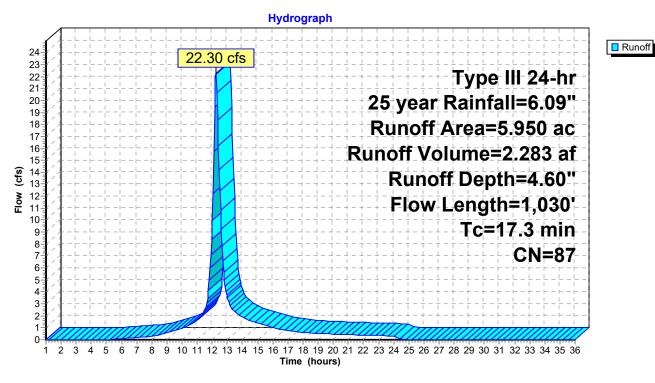

Summary for Subcatchment C14: BASIN C12

Runoff = 132.24 cfs @ 12.17 hrs, Volume= 11.646 af, Depth= 3.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac) C	N Desc	cription		
*	0.	780 8	39 WE1	LANDS		
	38.	500	77 Woo	ds, Good,	HSG D	
	39.280 7 39.280		,	ghted Aver 00% Pervi	•	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	8.2	100	0.2000	0.20		Sheet Flow,
	3.0	1,460	0.2500	8.05		Woods: Light underbrush n= 0.400 P2= 3.50" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	1.1	1,800	0.1500	27.32	874.19	Parabolic Channel,
						W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.035
	0.0	50	0.0200	20.32	399.01	Pipe Channel,
	0.1	240	0.0800	27.93	893.79	60.0" Round Area= 19.6 sf Perim= 15.7' r= 1.25' n= 0.012 Parabolic Channel,
_	12 4	3 650	Total			W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.025

Subcatchment C14: BASIN C12

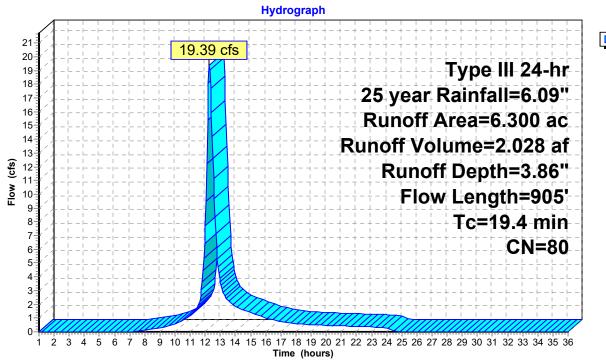

Page 300

Summary for Subcatchment C2: BASIN C2

Runoff = 22.30 cfs @ 12.23 hrs, Volume= 2.283 af, Depth= 4.60"

	Area	(ac) (CN De	scription		
*	0.	250	98 PC	ND		
*	1.	700	98 RC	ADS, WAL	KS	
*	1.	700		TS, D		
	0.	500			over, Good,	, HSG D
			77 Wo	ods, Good,	HSG D	
	1.	.000	78 Me	adow, non-	grazed, HS	G D
	5.	950	87 We	ighted Ave	rage	
		.000	67.	23% Pervio	us Area	
	1.	950	32.	77% Imper	vious Area	
	_		0.1			
	Tc	Length			Capacity	Description
	(min)	(feet)	,		(cfs)	
	15.6	100	0.0400	0.11		Sheet Flow,
	0.4	400	0.440	0.00		Woods: Light underbrush n= 0.400 P2= 3.50"
	0.4	160	0.1400	6.02		Shallow Concentrated Flow,
	0.1	60	0.4500	10.00		Unpaved Kv= 16.1 fps
	0.1	60	0.4500	10.80		Shallow Concentrated Flow,
	0.4	135	0.1000	5.09		Unpaved Kv= 16.1 fps Shallow Concentrated Flow,
	0.4	133	0.1000	3.09		Unpaved Kv= 16.1 fps
	0.2	70	0.0600	4.97		Shallow Concentrated Flow,
	0.2	, ,	0.0000	4.07		Paved Kv= 20.3 fps
	0.6	505	0.0330	14.17	44.52	Pipe Channel,
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
						n= 0.012
	17.3	1,030	Total			

Subcatchment C2: BASIN C2


Summary for Subcatchment C3: BASIN C3

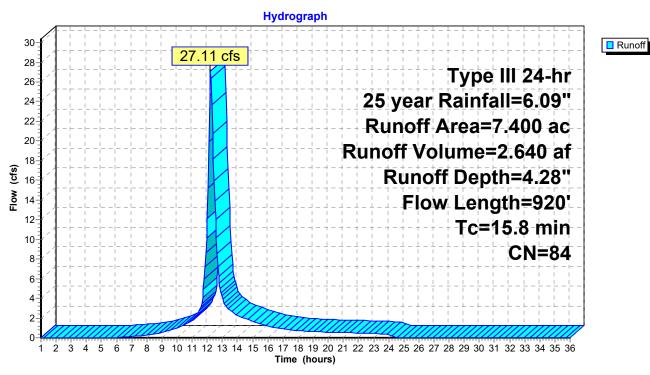
Runoff = 19.39 cfs @ 12.27 hrs, Volume= 2.028 af, Depth= 3.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac)	CN	Desc	ription		
*	0.	380	89	WET	LANDS		
* 1.500 85 LOTS, D							
	0.	350	78	Mead	dow, non-g	grazed, HS	G D
	4.	070	77	Woo	ds, Good,	HSG D	
	6.	300	80	Weig	hted Aver	age	
	6.	300		100.0	00% Pervi	ous Area	
	Тс	Length	S	lope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	17.5	100	0.0	300	0.10		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	1.8	630	0.1	300	5.80		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.1	175	0.0	900	23.44	468.78	Parabolic Channel,
							W=12.00' D=2.50' Area=20.0 sf Perim=13.3' n= 0.025
	19.4	905	To	tal			

Subcatchment C3: BASIN C3

Runoff

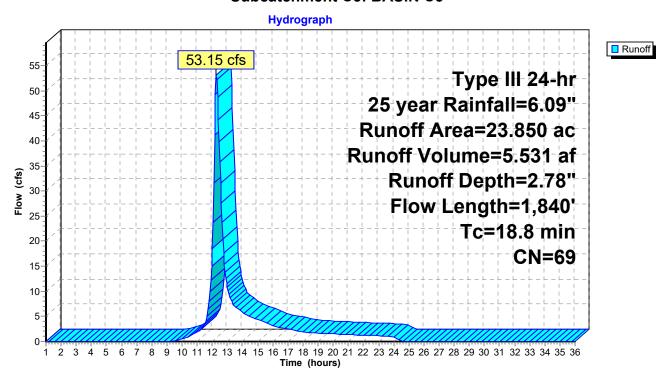

Page 303

Summary for Subcatchment C4: BASIN C4

Runoff = 27.11 cfs @ 12.21 hrs, Volume= 2.640 af, Depth= 4.28"

	Area (ac) (CN	Desc	cription					
*	1.4	430	98	ROA	DS/ WAL	(S				
*	3.	100	85	LOT	LOTS, D					
*	0.2	250	98	PON	ID					
	0.4	400	78	Mea	dow, non-g	grazed, HS	G D			
*	0.	580	60	LOT	S, A					
	1.2	280	77	Woo	ds, Good,	HSG D				
	0.3	360	80			over, Good,	, HSG D			
	7.4	400	84	Weio	hted Aver	age				
		720			0% Pervio					
		680		22.7	0% Imperv	ious Area				
	Tc	Length		Slope	Velocity	Capacity	Description			
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	·			
	14.2	100	0.	0500	0.12		Sheet Flow,			
							Woods: Light underbrush n= 0.400 P2= 3.50"			
	0.5	220	0.	1800	6.83		Shallow Concentrated Flow,			
							Unpaved Kv= 16.1 fps			
	0.7	140	0.	0300	3.52		Shallow Concentrated Flow,			
							Paved Kv= 20.3 fps			
	0.3	340	0.	0650	16.42	29.01	Pipe Channel,			
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'			
							n= 0.012			
	0.1	120	0.	2000	24.81	132.31	Parabolic Channel,			
							W=4.00' D=2.00' Area=5.3 sf Perim=5.9' n= 0.025			
	15.8	920	To	otal						

Subcatchment C4: BASIN C4

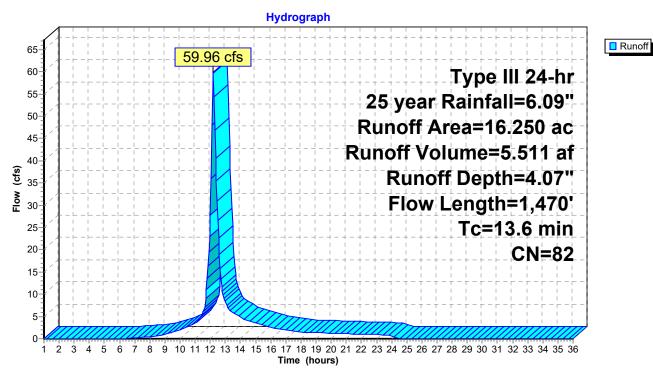

Summary for Subcatchment C5: BASIN C5

Runoff = 53.15 cfs @ 12.27 hrs, Volume= 5.531 af, Depth= 2.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

_	Area	(ac)	CN	Desc	cription		
	10.	250	77	Woo	ds, Good,	HSG D	
*	3.	700	85	LOT	S, D		
	1.	100	80	>75%	√ Grass co √	over, Good,	HSG D
	1.	000	39	>75%	√ Grass co	over, Good,	HSG A
*	1.	250	60	LOT	S, A		
	3.	950	30	Woo	ds, Good,	HSG A	
*	0.	700	96	Well	Access R	oads	
*	0.	420	89	Wetl	ands		
1.480 78 Meadow, non-grazed, HSG D						G D	
	23.	850	69		hted Aver		
	23.	850		100.	00% Pervi	ous Area	
	Тс	Length		Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.6	100) (0.0400	0.11		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	2.3	580) (0.0700	4.26		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.9	1,160) (0.0750	22.54	721.17	Parabolic Channel,
_							W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.030
	18.8	1 840) Т	Total			

Subcatchment C5: BASIN C5

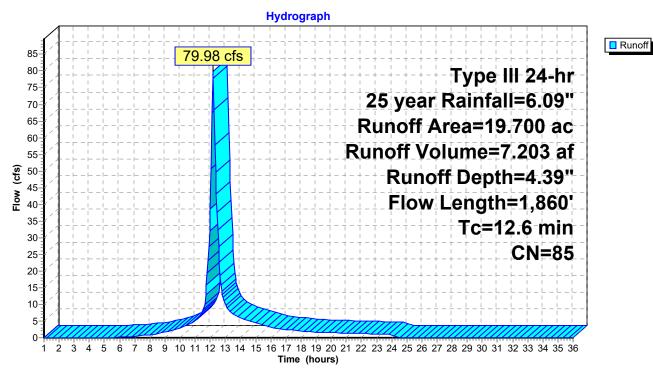

Page 306

Summary for Subcatchment C6: BASIN C6

Runoff = 59.96 cfs @ 12.19 hrs, Volume= 5.511 af, Depth= 4.07"

	Area	(ac) (N Des	cription						
*	0.	650	98 POI	1D						
*	0.	100	60 LOT	S, A						
*	1.	800		AĎS, WALI	KS					
*				LOTS, D						
				>75% Grass cover, Good, HSG A						
	0.				over, Good					
				ds, Good,		,				
				ods, Good,						
					grazed, HS	G A				
					grazed, HS					
	16.	250		ghted Aver						
	13.	800	84.9	2% Pervio	us Area					
	2.	450	15.0	15.08% Impervious Area						
				•						
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·				
	11.8	100	0.0800	0.14		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.50"				
	0.4	170	0.1600	6.44		Shallow Concentrated Flow,				
						Unpaved Kv= 16.1 fps				
	0.3	235	0.0400	12.88	22.76	Pipe Channel,				
					_	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
						n= 0.012				
	1.0	830	0.0300	13.51	42.45	Pipe Channel,				
			0.000			24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
						n= 0.012				
	0.1	135	0.1400	23.28	186.21	Parabolic Channel,				
	0. 1	.50	3.1.130	20.20	.00.21	W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025				
_	13.6	1,470	Total							
	10.0	1,470	iotai							

Subcatchment C6: BASIN C6

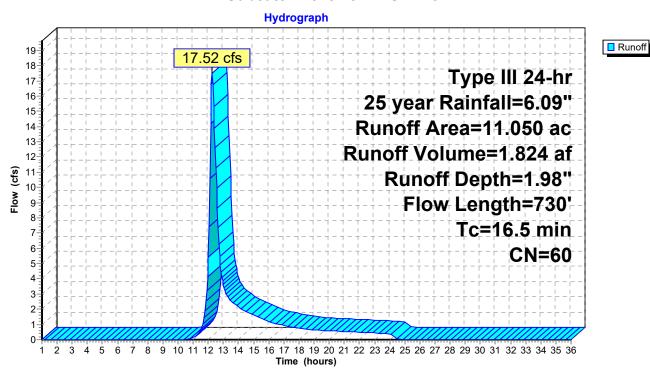

Page 308

Summary for Subcatchment C7: BASIN C7

Runoff = 79.98 cfs @ 12.17 hrs, Volume= 7.203 af, Depth= 4.39"

	Area	(ac)	CN	Desc	cription		
*	2.	500	98	ROA	DS / WAL	KS	
*	0.	500	98	BLD	_		
*		450	85	LOT	•		
*		000	98	PON	_		
		400	39			over, Good,	
		750	80			over, Good,	HSG D
		000	77		ds, Good,		
_		100	78			grazed, HS	G D
		700	85		hted Aver		
		700			0% Pervio		
	4.	000		20.3	0% Imperv	vious Area	
	То	Longth		lono	Volonity	Canacity	Description
	Tc (min)	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_					, ,	(CIS)	Chaot Claur
	10.5	100	0.0	0150	0.16		Sheet Flow, Grass: Short n= 0.150 P2= 3.50"
	0.5	150	n 0 -	1000	5.09		Shallow Concentrated Flow,
	0.0	100	0.	1000	3.03		Unpaved Kv= 16.1 fps
	1.0	900	0.0	0600	15.77	27.87	Pipe Channel,
		000	0		10.11	21.01	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.012
	0.5	630	0.0	0600	19.11	60.03	Pipe Channel,
							24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
							n= 0.012
	0.1	80	0.2	2000	24.81	132.31	Parabolic Channel,
							W=4.00' D=2.00' Area=5.3 sf Perim=5.9' n= 0.025
	12.6	1,860	To	tal			

Subcatchment C7: BASIN C7

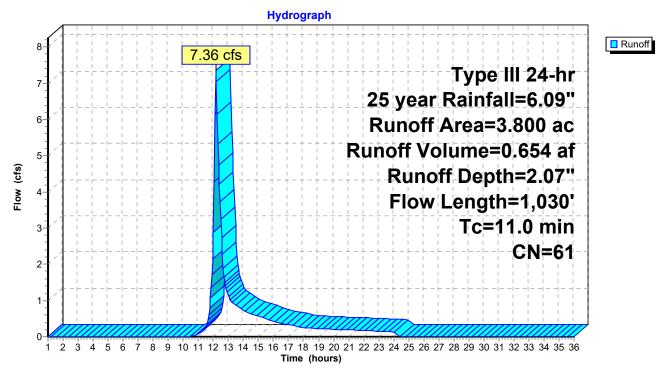

Summary for Subcatchment C8: BASIN C8

Runoff = 17.52 cfs @ 12.25 hrs, Volume= 1.824 af, Depth= 1.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

_	Area	(ac)	CN	Des	cription		
*	0.	710	89	Wetl	ands		
*	0.	470	98	Impe	ervious Su	rfaces	
	3.	390	77	Woo	ds, Good,	HSG D	
*	1.	030	79	Old	Golf Cours	e, HSG D	
*	1.	900	35	Old	Golf Cours	e, HSG A	
	0.	770	78	Mea	dow, non-	grazed, HS	G D
*	2.	780	30	Woo	ds, Good,	HSG A	
	11.	050	60	Weig	ghted Aver	age	
	10.	580		95.7	5% Pervio	us Area	
	0.	470		4.25	% Impervi	ous Area	
	Тс	Length	1	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.6	100	0 (.0400	0.11		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	0.6	130	0 (.0500	3.60		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.3	500	0 (.0585	25.56	2,555.82	Parabolic Channel,
_							W=30.00' D=5.00' Area=100.0 sf Perim=32.1' n= 0.030
	16.5	730) T	otal			

Subcatchment C8: BASIN C8

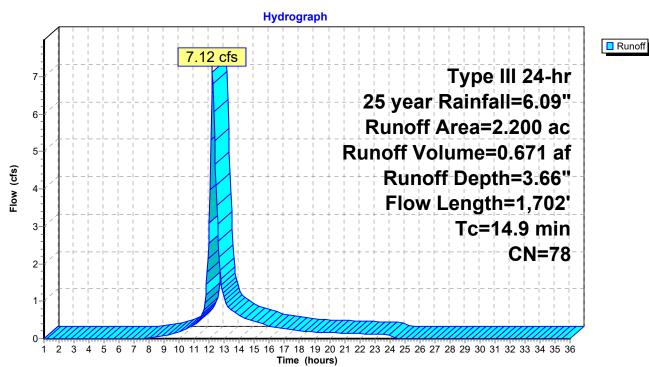

Summary for Subcatchment C9: BASIN C9

Runoff = 7.36 cfs @ 12.17 hrs, Volume= 0.654 af, Depth= 2.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac) C	N Des	cription		
	1.	000	30 Woo	ds, Good,	HSG A	
	0.	350	39 >75°	% Grass c	over, Good	, HSG A
*	0.	500	60 LOT			
*	1.	000	35 LOT	S, D		
	0.	950		ds, Good,	HSG D	
	3.	800	61 Wei	hted Aver	age	
		800		00% Pervi		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	9.4	100	0.1400	0.18	· · ·	Sheet Flow,
	• • •			• • • • • • • • • • • • • • • • • • • •		Woods: Light underbrush n= 0.400 P2= 3.50"
	0.7	200	0.1000	5.09		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.9	730	0.0325	14.17	377.93	Parabolic Channel,
						W=10.00' D=4.00' Area=26.7 sf Perim=13.3' n= 0.030
	11.0	1,030	Total			

Subcatchment C9: BASIN C9


Summary for Subcatchment D: BASIN D

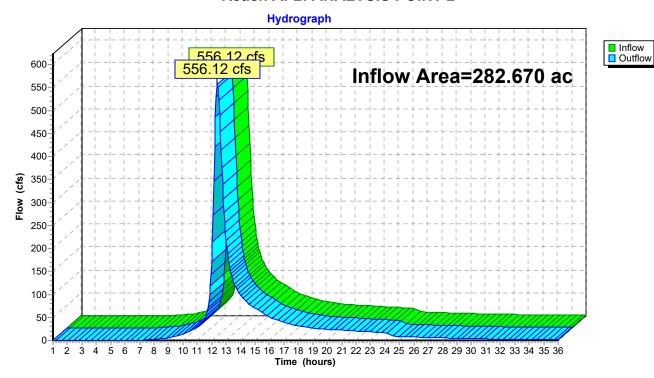
Runoff = 7.12 cfs @ 12.21 hrs, Volume= 0.671 af, Depth= 3.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

Area	(ac) C	N Desc	cription							
0.	0.850 78 Meadow, non-grazed, HSG D									
_	0.900 77 Woods, Good, HSG D									
0.	0.450 80 >75% Grass cover, Good, HSG D									
	2.200 78 Weighted Average									
2.	200	100.	00% Pervi	ous Area						
_		O.	\	0 ''						
Tc	Length	Slope	Velocity		Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
13.2	100	0.0600	0.13		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 3.50"					
0.2	90	0.2500	8.05		Shallow Concentrated Flow,					
					Unpaved Kv= 16.1 fps					
8.0	900	0.1000	19.67	157.38	Parabolic Channel,					
					W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025					
0.1	72	0.0200	14.46	102.19	Pipe Channel,					
					36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'					
					n= 0.012					
0.6	540	0.0600	14.56	97.05	Parabolic Channel,					
					W=5.00' D=2.00' Area=6.7 sf Perim=6.7' n= 0.025					
14.9	1,702	Total	_							

Subcatchment D: BASIN D

Summary for Reach AP2: ANALYSIS POINT 2


Inflow Area = 282.670 ac, 12.10% Impervious, Inflow Depth > 3.62" for 25 year event

Inflow = 556.12 cfs @ 12.39 hrs, Volume= 85.264 af

Outflow = 556.12 cfs @ 12.39 hrs, Volume= 85.264 af, Atten= 0%, Lag= 0.0 min

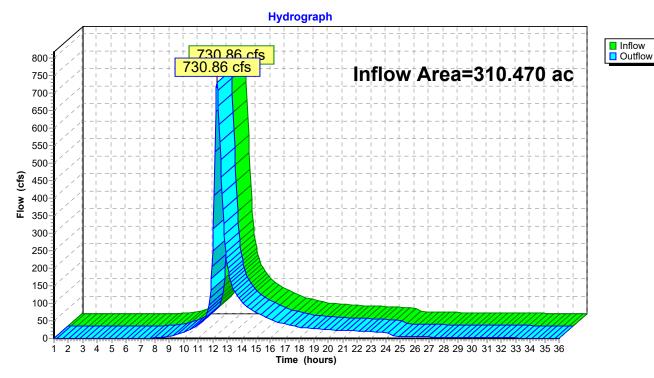
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP2: ANALYSIS POINT 2

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 314

Summary for Reach AP3: ANALYSIS POINT 3


Inflow Area = 310.470 ac, 5.17% Impervious, Inflow Depth > 3.63" for 25 year event

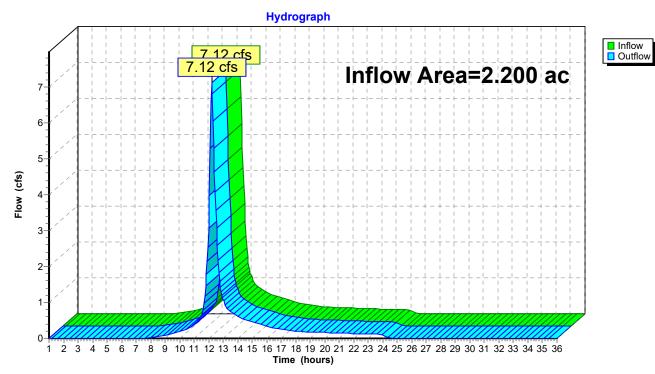
Inflow = 730.86 cfs @ 12.29 hrs, Volume= 93.861 af

Outflow = 730.86 cfs @ 12.29 hrs, Volume= 93.861 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP3: ANALYSIS POINT 3

Summary for Reach AP4: ANALYSIS POINT 4


2.200 ac, 0.00% Impervious, Inflow Depth = 3.66" for 25 year event Inflow Area =

7.12 cfs @ 12.21 hrs, Volume= 7.12 cfs @ 12.21 hrs, Volume= Inflow 0.671 af

Outflow 0.671 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP4: ANALYSIS POINT 4

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 316

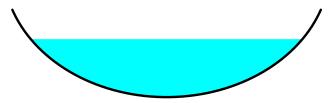
Summary for Reach RB1: RB1

Inflow Area = 176.450 ac, 14.26% Impervious, Inflow Depth > 3.73" for 25 year event

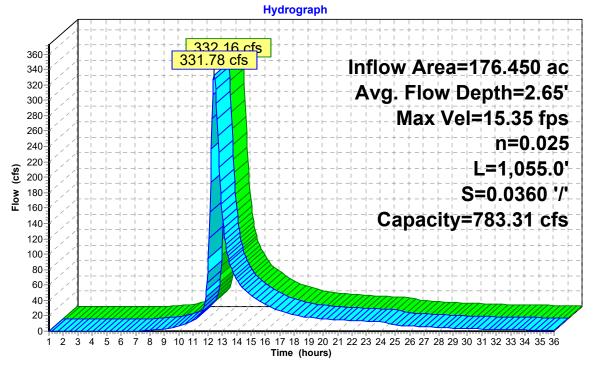
Inflow = 332.16 cfs @ 12.44 hrs, Volume= 54.840 af

Outflow = 331.78 cfs @ 12.45 hrs, Volume= 54.829 af, Atten= 0%, Lag= 0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 15.35 fps, Min. Travel Time= 1.1 min Avg. Velocity = 5.34 fps, Avg. Travel Time= 3.3 min

Peak Storage= 22,801 cf @ 12.45 hrs Average Depth at Peak Storage= 2.65'


Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 783.31 cfs

15.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 1,055.0' Slope= 0.0360 '/'

Inlet Invert= 504.00', Outlet Invert= 466.00'

Reach RB1: RB1

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 317

Summary for Reach RB11: RB11

Inflow Area = 21.550 ac, 7.89% Impervious, Inflow Depth > 4.19" for 25 year event

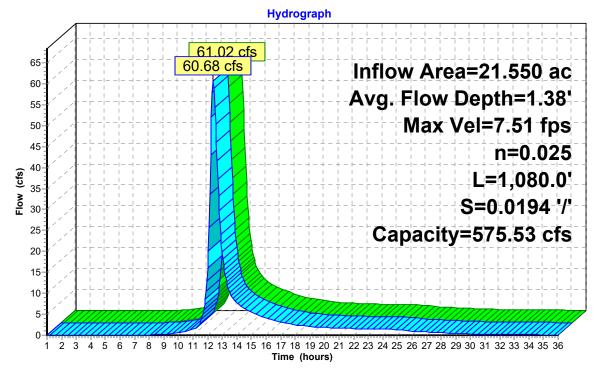
Inflow = 61.02 cfs @ 12.34 hrs, Volume= 7.522 af

Outflow = 60.68 cfs @ 12.37 hrs, Volume= 7.520 af, Atten= 1%, Lag= 1.8 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 7.51 fps, Min. Travel Time= 2.4 min Avg. Velocity = 2.31 fps, Avg. Travel Time= 7.8 min

Peak Storage= 8,716 cf @ 12.37 hrs Average Depth at Peak Storage= 1.38'


Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 575.53 cfs

15.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 1,080.0' Slope= 0.0194 '/'

Inlet Invert= 575.00', Outlet Invert= 554.00'

Reach RB11: RB11

Page 318

Summary for Reach RB13: RB13

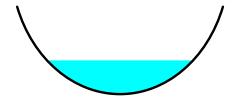
Inflow Area = 47.550 ac, 10.62% Impervious, Inflow Depth > 3.09" for 25 year event

Inflow = 66.99 cfs @ 12.50 hrs, Volume= 12.250 af

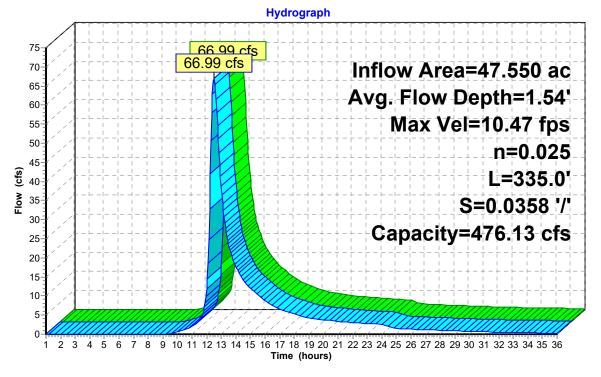
Outflow = 66.99 cfs @ 12.51 hrs, Volume= 12.248 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 10.47 fps, Min. Travel Time= 0.5 min Avg. Velocity = 4.05 fps, Avg. Travel Time= 1.4 min


Peak Storage= 2,143 cf @ 12.51 hrs Average Depth at Peak Storage= 1.54'

Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 476.13 cfs


10.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 335.0' Slope= 0.0358 '/'

Inlet Invert= 581.00', Outlet Invert= 569.00'

Reach RB13: RB13

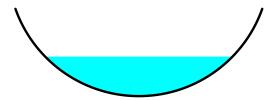
Page 319

Summary for Reach RB14: RB14

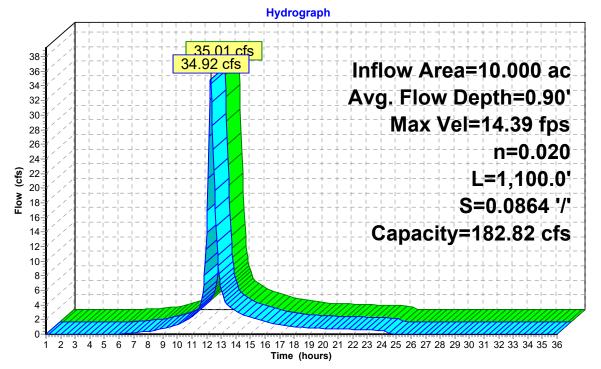
Inflow Area = 10.000 ac, 13.00% Impervious, Inflow Depth = 4.39" for 25 year event

Inflow = 35.01 cfs @ 12.25 hrs, Volume= 3.656 af

Outflow = 34.92 cfs @ 12.27 hrs, Volume= 3.656 af, Atten= 0%, Lag= 0.9 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 14.39 fps, Min. Travel Time= 1.3 min Avg. Velocity = 5.06 fps, Avg. Travel Time= 3.6 min


Peak Storage= 2,665 cf @ 12.27 hrs Average Depth at Peak Storage= 0.90'

Bank-Full Depth= 2.00' Flow Area= 8.0 sf, Capacity= 182.82 cfs

6.00' x 2.00' deep Parabolic Channel, n= 0.020 Length= 1,100.0' Slope= 0.0864 '/' Inlet Invert= 681.00', Outlet Invert= 586.00'

Reach RB14: RB14

Page 320

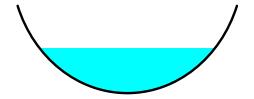
Summary for Reach RB15: RB15

Inflow Area = 6.050 ac, 9.09% Impervious, Inflow Depth = 4.28" for 25 year event

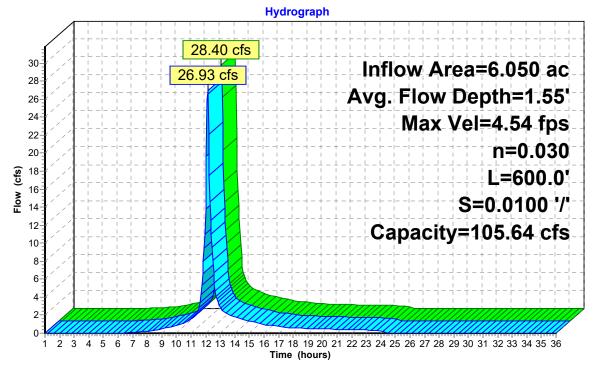
Inflow = 28.40 cfs @ 12.10 hrs, Volume= 2.158 af

Outflow = 26.93 cfs @ 12.13 hrs, Volume= 2.158 af, Atten= 5%, Lag= 1.8 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 4.54 fps, Min. Travel Time= 2.2 min Avg. Velocity = 1.43 fps, Avg. Travel Time= 7.0 min

Peak Storage= 3,550 cf @ 12.13 hrs Average Depth at Peak Storage= 1.55'


Bank-Full Depth= 3.00' Flow Area= 16.0 sf, Capacity= 105.64 cfs

8.00' x 3.00' deep Parabolic Channel, n= 0.030 Earth, grassed & winding Length= 600.0' Slope= 0.0100 '/'

Inlet Invert= 552.00', Outlet Invert= 546.00'

Reach RB15: RB15

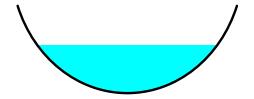
Page 321

Summary for Reach RB16: RB16

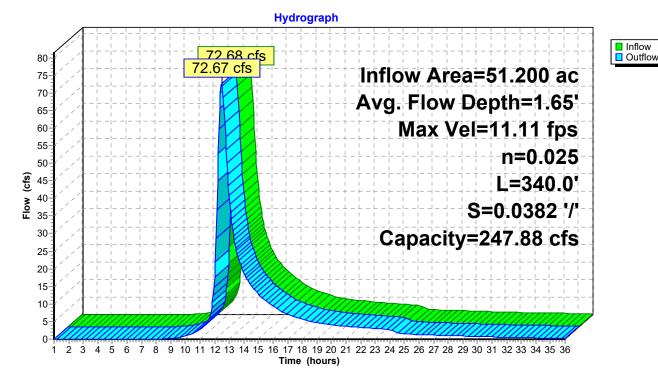
Inflow Area = 51.200 ac, 9.86% Impervious, Inflow Depth > 3.15" for 25 year event

Inflow = 72.68 cfs @ 12.48 hrs, Volume= 13.455 af

Outflow = 72.67 cfs @ 12.49 hrs, Volume= 13.454 af, Atten= 0%, Lag= 0.4 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 11.11 fps, Min. Travel Time= 0.5 min Avg. Velocity = 4.12 fps, Avg. Travel Time= 1.4 min


Peak Storage= 2,224 cf @ 12.49 hrs Average Depth at Peak Storage= 1.65'

Bank-Full Depth= 3.00' Flow Area= 16.0 sf, Capacity= 247.88 cfs

8.00' x 3.00' deep Parabolic Channel, n= 0.025 Length= 340.0' Slope= 0.0382 '/' Inlet Invert= 567.00', Outlet Invert= 554.00'

Reach RB16: RB16

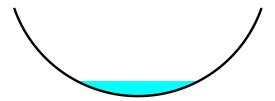
Page 322

Summary for Reach RB2: RB2

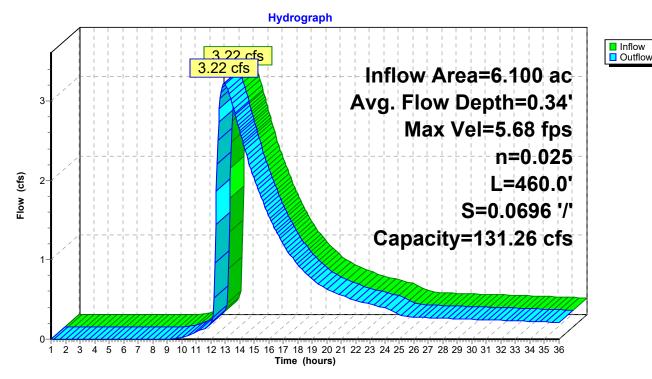
Inflow Area = 6.100 ac, 13.11% Impervious, Inflow Depth > 2.97" for 25 year event

Inflow = 3.22 cfs @ 12.90 hrs, Volume= 1.510 af

Outflow = 3.22 cfs @ 12.91 hrs, Volume= 1.509 af, Atten= 0%, Lag= 1.0 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.68 fps, Min. Travel Time= 1.4 min Avg. Velocity = 3.11 fps, Avg. Travel Time= 2.5 min


Peak Storage= 261 cf @ 12.91 hrs Average Depth at Peak Storage= 0.34'

Bank-Full Depth= 2.00' Flow Area= 8.0 sf, Capacity= 131.26 cfs

6.00' x 2.00' deep Parabolic Channel, n= 0.025 Length= 460.0' Slope= 0.0696 '/' Inlet Invert= 500.00', Outlet Invert= 468.00'

Reach RB2: RB2

Page 323

Summary for Reach RB3: RB3

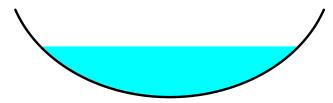
Inflow Area = 149.800 ac, 14.03% Impervious, Inflow Depth > 3.74" for 25 year event

Inflow = 286.24 cfs @ 12.39 hrs, Volume= 46.635 af

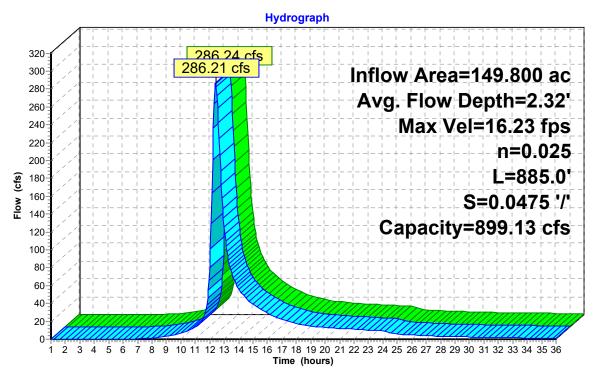
Outflow = 286.21 cfs @ 12.40 hrs, Volume= 46.627 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 16.23 fps, Min. Travel Time= 0.9 min Avg. Velocity = 5.56 fps, Avg. Travel Time= 2.7 min


Peak Storage= 15,607 cf @ 12.40 hrs Average Depth at Peak Storage= 2.32'

Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 899.13 cfs


15.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 885.0' Slope= 0.0475 '/'

Inlet Invert= 546.00', Outlet Invert= 504.00'

Reach RB3: RB3

Page 324

Summary for Reach RB4: RB4

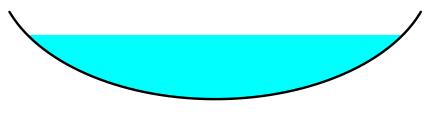
Inflow Area = 17.100 ac, 9.94% Impervious, Inflow Depth = 4.02" for 25 year event

Inflow = 52.06 cfs @ 12.28 hrs, Volume= 5.724 af

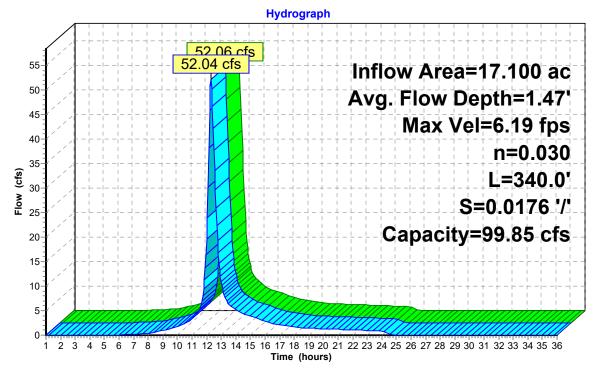
Outflow = 52.04 cfs @ 12.29 hrs, Volume= 5.724 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.19 fps, Min. Travel Time= 0.9 min Avg. Velocity = 2.07 fps, Avg. Travel Time= 2.7 min


Peak Storage= 2,857 cf @ 12.29 hrs Average Depth at Peak Storage= 1.47'

Bank-Full Depth= 2.00' Flow Area= 13.3 sf, Capacity= 99.85 cfs


10.00' x 2.00' deep Parabolic Channel, n= 0.030

Length= 340.0' Slope= 0.0176 '/'

Inlet Invert= 552.00', Outlet Invert= 546.00'

Reach RB4: RB4

Page 325

Inflow
Outflow

Summary for Reach RB6: RB6

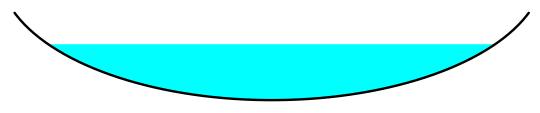
Inflow Area = 110.950 ac, 13.76% Impervious, Inflow Depth > 3.60" for 25 year event

Inflow = 199.86 cfs @ 12.40 hrs, Volume= 33.308 af

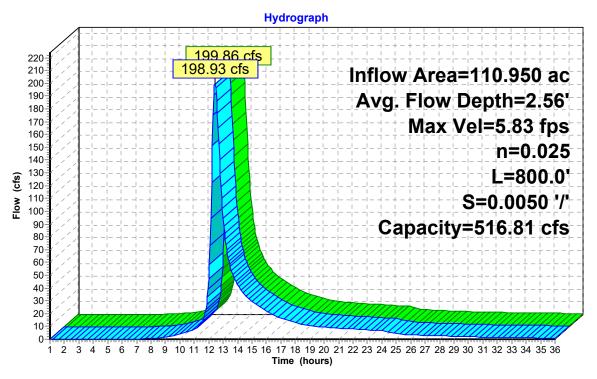
Outflow = 198.93 cfs @ 12.43 hrs, Volume= 33.294 af, Atten= 0%, Lag= 1.7 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.83 fps, Min. Travel Time= 2.3 min Avg. Velocity = 2.02 fps, Avg. Travel Time= 6.6 min


Peak Storage= 27,268 cf @ 12.43 hrs Average Depth at Peak Storage= 2.56'

Bank-Full Depth= 4.00' Flow Area= 66.7 sf, Capacity= 516.81 cfs


25.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 800.0' Slope= 0.0050 '/'

Inlet Invert= 550.00', Outlet Invert= 546.00'

Reach RB6: RB6

Page 326

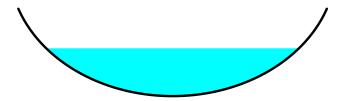
Inflow
Outflow

Summary for Reach RB7: RB7

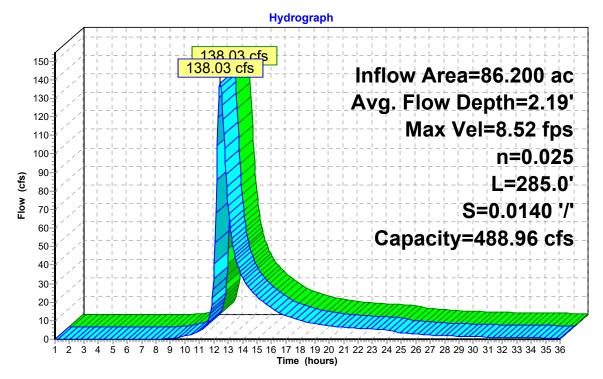
Inflow Area = 86.200 ac, 12.18% Impervious, Inflow Depth > 3.40" for 25 year event

Inflow = 138.03 cfs @ 12.44 hrs, Volume= 24.445 af

Outflow = 138.03 cfs @ 12.45 hrs, Volume= 24.443 af, Atten= 0%, Lag= 0.4 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 8.52 fps, Min. Travel Time= 0.6 min Avg. Velocity = 3.03 fps, Avg. Travel Time= 1.6 min


Peak Storage= 4,615 cf @ 12.45 hrs Average Depth at Peak Storage= 2.19'

Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 488.96 cfs

15.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 285.0' Slope= 0.0140 '/' Inlet Invert= 554.00', Outlet Invert= 550.00'

Reach RB7: RB7

Page 327

Inflow
Outflow

Summary for Reach RC1: RC1

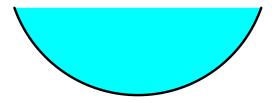
Inflow Area = 300.920 ac, 4.70% Impervious, Inflow Depth > 3.61" for 25 year event

Inflow = 704.84 cfs @ 12.30 hrs, Volume= 90.456 af

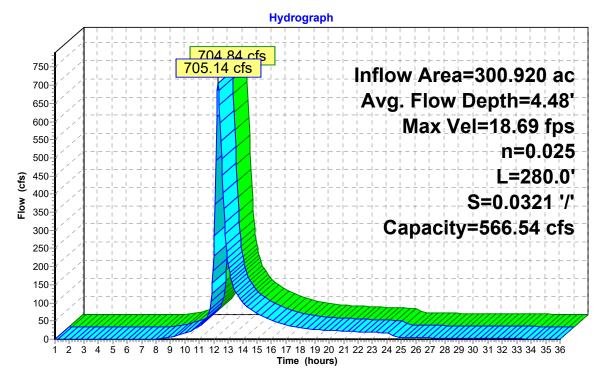
Outflow = 705.14 cfs @ 12.30 hrs, Volume= 90.454 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 18.69 fps, Min. Travel Time= 0.2 min Avg. Velocity = 5.92 fps, Avg. Travel Time= 0.8 min


Peak Storage= 10,565 cf @ 12.30 hrs Average Depth at Peak Storage= 4.48'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 566.54 cfs


12.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 280.0' Slope= 0.0321 '/'

Inlet Invert= 483.00', Outlet Invert= 474.00'

Reach RC1: RC1

Page 328

Inflow
Outflow

Summary for Reach RC10: RC10

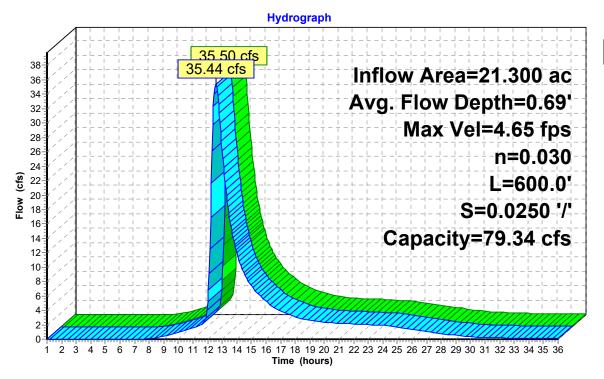
Inflow Area = 21.300 ac, 16.90% Impervious, Inflow Depth > 4.35" for 25 year event

Inflow = 35.50 cfs @ 12.53 hrs, Volume= 7.728 af

Outflow = 35.44 cfs @ 12.56 hrs, Volume= 7.727 af, Atten= 0%, Lag= 1.6 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.65 fps, Min. Travel Time= 2.2 min Avg. Velocity = 1.72 fps, Avg. Travel Time= 5.8 min


Peak Storage= 4,575 cf @ 12.56 hrs Average Depth at Peak Storage= 0.69'

Bank-Full Depth= 1.00' Flow Area= 13.3 sf, Capacity= 79.34 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.030 Length= 600.0' Slope= 0.0250 '/' Inlet Invert= 660.00', Outlet Invert= 645.00'

Reach RC10: RC10

Page 329

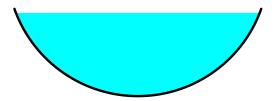
Summary for Reach RC11A: RC11-A

Inflow Area = 271.720 ac, 3.87% Impervious, Inflow Depth > 3.57" for 25 year event

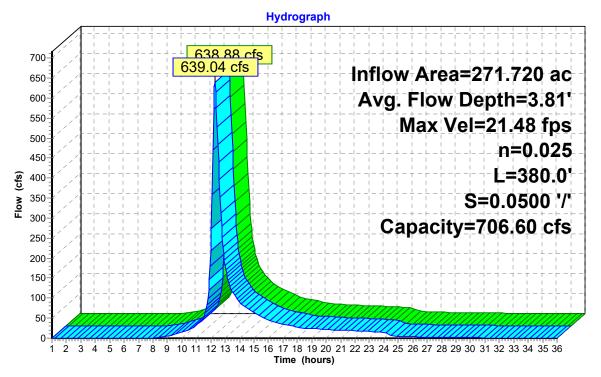
Inflow = 638.88 cfs @ 12.29 hrs, Volume= 80.760 af

Outflow = 639.04 cfs @ 12.29 hrs, Volume= 80.759 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 21.48 fps, Min. Travel Time= 0.3 min Avg. Velocity = 6.70 fps, Avg. Travel Time= 0.9 min

Peak Storage= 11,300 cf @ 12.29 hrs Average Depth at Peak Storage= 3.81'


Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 706.60 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 380.0' Slope= 0.0500'/'

Inlet Invert= 527.00', Outlet Invert= 508.00'

Reach RC11A: RC11-A

Page 330

Inflow
Outflow

Summary for Reach RC11B: RC11-B

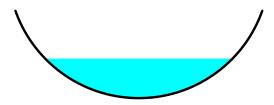
Inflow Area = 79.320 ac, 0.59% Impervious, Inflow Depth = 3.34" for 25 year event

Inflow = 211.68 cfs @ 12.28 hrs, Volume= 22.065 af

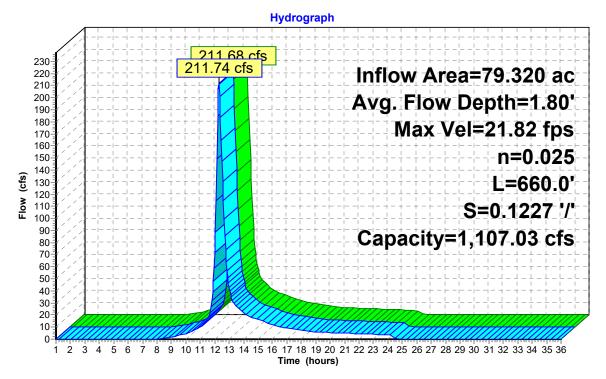
Outflow = 211.74 cfs @ 12.29 hrs, Volume= 22.065 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 21.82 fps, Min. Travel Time= 0.5 min Avg. Velocity = 7.71 fps, Avg. Travel Time= 1.4 min


Peak Storage= 6,401 cf @ 12.29 hrs Average Depth at Peak Storage= 1.80'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 1,107.03 cfs


12.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 660.0' Slope= 0.1227 '/'

Inlet Invert= 608.00', Outlet Invert= 527.00'

Reach RC11B: RC11-B

Page 331

Inflow
Outflow

Summary for Reach RC11C: RC11-C

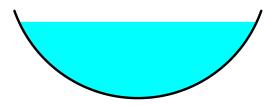
Inflow Area = 192.400 ac, 5.22% Impervious, Inflow Depth > 3.66" for 25 year event

Inflow = 427.15 cfs @ 12.28 hrs, Volume= 58.696 af

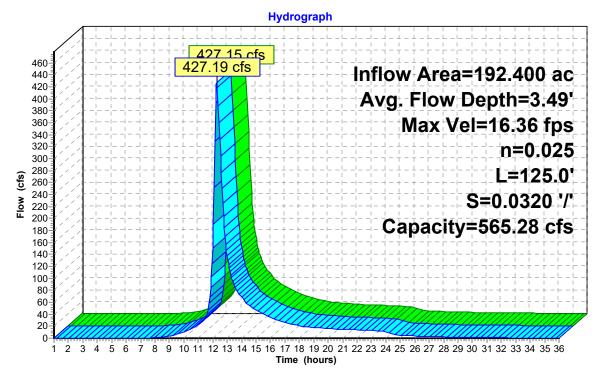
Outflow = 427.19 cfs @ 12.28 hrs, Volume= 58.696 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 16.36 fps, Min. Travel Time= 0.1 min Avg. Velocity = 5.31 fps, Avg. Travel Time= 0.4 min


Peak Storage= 3,262 cf @ 12.28 hrs Average Depth at Peak Storage= 3.49'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 565.28 cfs


12.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 125.0' Slope= 0.0320 '/'

Inlet Invert= 531.00', Outlet Invert= 527.00'

Reach RC11C: RC11-C

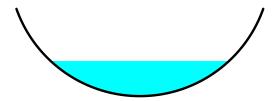
Page 332

Summary for Reach RC12: RC12

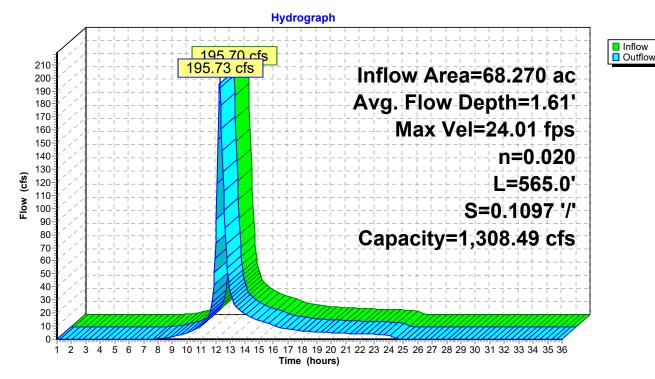
Inflow Area = 68.270 ac, 0.00% Impervious, Inflow Depth = 3.56" for 25 year event

Inflow = 195.70 cfs @ 12.26 hrs, Volume= 20.241 af

Outflow = 195.73 cfs @ 12.27 hrs, Volume= 20.241 af, Atten= 0%, Lag= 0.3 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 24.01 fps, Min. Travel Time= 0.4 min Avg. Velocity = 9.00 fps, Avg. Travel Time= 1.0 min


Peak Storage= 4,599 cf @ 12.27 hrs Average Depth at Peak Storage= 1.61'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 1,308.49 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.020 Length= 565.0' Slope= 0.1097 '/' Inlet Invert= 722.00', Outlet Invert= 660.00'

Reach RC12: RC12

Page 333

Inflow
Outflow

Summary for Reach RC13: RC13

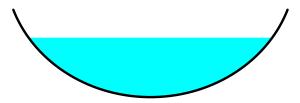
Inflow Area = 68.220 ac, 0.00% Impervious, Inflow Depth = 3.66" for 25 year event

Inflow = 194.79 cfs @ 12.28 hrs, Volume= 20.799 af

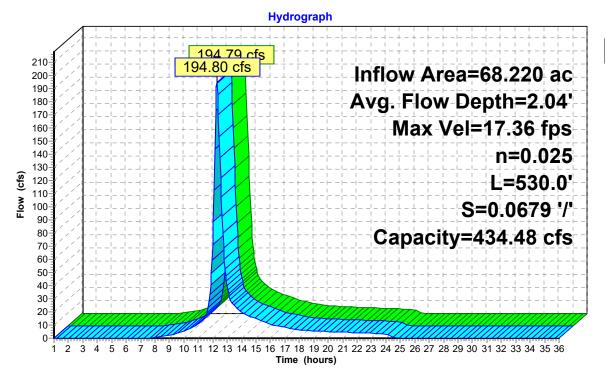
Outflow = 194.80 cfs @ 12.29 hrs, Volume= 20.799 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 17.36 fps, Min. Travel Time= 0.5 min Avg. Velocity = 6.47 fps, Avg. Travel Time= 1.4 min


Peak Storage= 5,943 cf @ 12.29 hrs Average Depth at Peak Storage= 2.04'

Bank-Full Depth= 3.00' Flow Area= 20.0 sf, Capacity= 434.48 cfs


10.00' x 3.00' deep Parabolic Channel, n=0.025

Length= 530.0' Slope= 0.0679 '/'

Inlet Invert= 690.00', Outlet Invert= 654.00'

Reach RC13: RC13

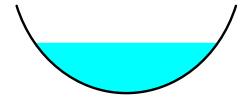
Page 334

Summary for Reach RC14: RC14

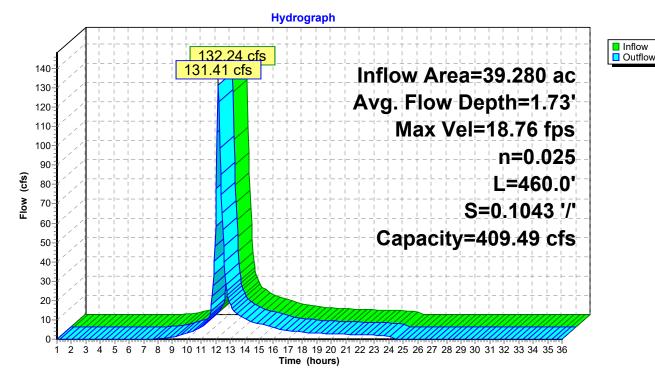
Inflow Area = 39.280 ac, 0.00% Impervious, Inflow Depth = 3.56" for 25 year event

Inflow = 132.24 cfs @ 12.17 hrs, Volume= 11.646 af

Outflow = 131.41 cfs @ 12.18 hrs, Volume= 11.646 af, Atten= 1%, Lag= 0.4 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 18.76 fps, Min. Travel Time= 0.4 min Avg. Velocity = 6.90 fps, Avg. Travel Time= 1.1 min


Peak Storage= 3,213 cf @ 12.18 hrs Average Depth at Peak Storage= 1.73'

Bank-Full Depth= 3.00' Flow Area= 16.0 sf, Capacity= 409.49 cfs

8.00' x 3.00' deep Parabolic Channel, n= 0.025 Length= 460.0' Slope= 0.1043 '/' Inlet Invert= 702.00', Outlet Invert= 654.00'

Reach RC14: RC14

Page 335

Inflow
Outflow

Summary for Reach RC2: RC2

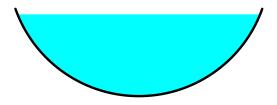
Inflow Area = 281.270 ac, 3.74% Impervious, Inflow Depth > 3.58" for 25 year event

Inflow = 668.31 cfs @ 12.29 hrs, Volume= 83.833 af

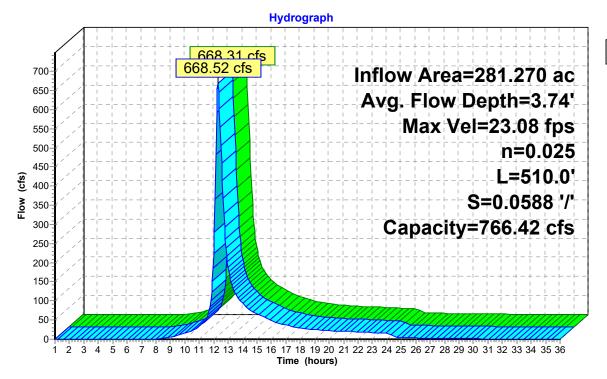
Outflow = 668.52 cfs @ 12.29 hrs, Volume= 83.831 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 23.08 fps, Min. Travel Time= 0.4 min Avg. Velocity = 7.19 fps, Avg. Travel Time= 1.2 min


Peak Storage= 14,771 cf @ 12.29 hrs Average Depth at Peak Storage= 3.74'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 766.42 cfs


12.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 510.0' Slope= 0.0588 '/'

Inlet Invert= 504.00', Outlet Invert= 474.00'

Reach RC2: RC2

Page 336

Summary for Reach RC3: RC3

Inflow Area = 7.400 ac, 22.70% Impervious, Inflow Depth > 4.09" for 25 year event

Inflow = 15.73 cfs @ 12.46 hrs, Volume= 2.521 af

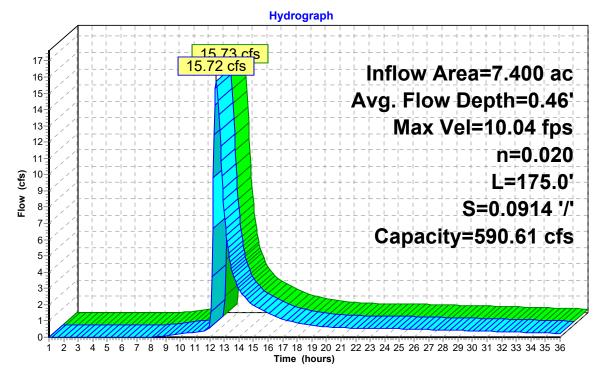
Outflow = 15.72 cfs @ 12.47 hrs, Volume= 2.521 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 10.04 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.69 fps, Avg. Travel Time= 0.8 min

Peak Storage= 274 cf @ 12.47 hrs Average Depth at Peak Storage= 0.46'

Bank-Full Depth= 2.50' Flow Area= 20.0 sf, Capacity= 590.61 cfs


12.00' x 2.50' deep Parabolic Channel, n= 0.020

Length= 175.0' Slope= 0.0914 '/'

Inlet Invert= 514.00', Outlet Invert= 498.00'

Reach RC3: RC3

Page 337

Summary for Reach RC4: RC4

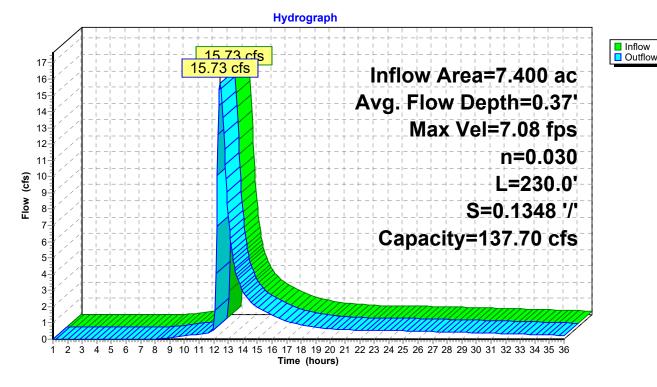
Inflow Area = 7.400 ac, 22.70% Impervious, Inflow Depth > 4.09" for 25 year event

Inflow = 15.73 cfs @ 12.46 hrs, Volume= 2.522 af

Outflow = 15.73 cfs @ 12.46 hrs, Volume= 2.521 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 7.08 fps, Min. Travel Time= 0.5 min Avg. Velocity = 2.56 fps, Avg. Travel Time= 1.5 min


Peak Storage= 510 cf @ 12.46 hrs Average Depth at Peak Storage= 0.37'

Bank-Full Depth= 1.00' Flow Area= 10.0 sf, Capacity= 137.70 cfs

15.00' x 1.00' deep Parabolic Channel, n= 0.030 Length= 230.0' Slope= 0.1348 '/' Inlet Invert= 546.00', Outlet Invert= 515.00'

‡

Reach RC4: RC4

Page 338

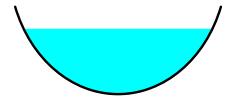
Summary for Reach RC5A: RC5-A

Inflow Area = 168.550 ac, 5.96% Impervious, Inflow Depth > 3.79" for 25 year event

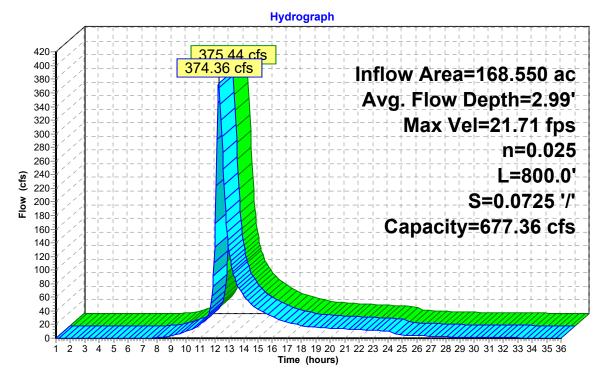
Inflow = 375.44 cfs @ 12.27 hrs, Volume= 53.168 af

Outflow = 374.36 cfs @ 12.28 hrs, Volume= 53.165 af, Atten= 0%, Lag= 0.6 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 21.71 fps, Min. Travel Time= 0.6 min Avg. Velocity = 7.27 fps, Avg. Travel Time= 1.8 min

Peak Storage= 13,790 cf @ 12.28 hrs Average Depth at Peak Storage= 2.99'


Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 677.36 cfs

 $10.00' \times 4.00'$ deep Parabolic Channel, n= 0.025 Length= 800.0' Slope= 0.0725'

Inlet Invert= 590.00', Outlet Invert= 532.00'

Reach RC5A: RC5-A

Page 339

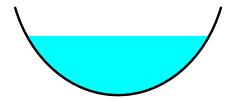
Inflow
Outflow

Summary for Reach RC5B: RC5-B

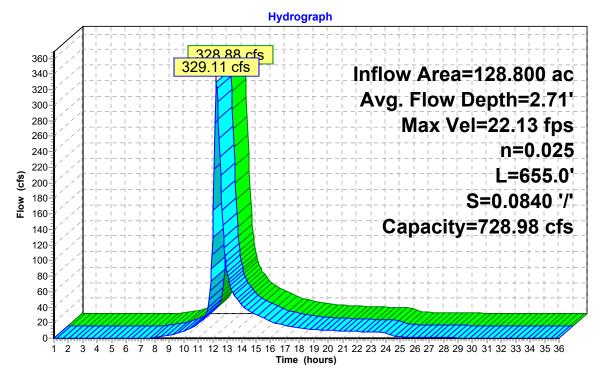
Inflow Area = 128.800 ac, 2.80% Impervious, Inflow Depth > 3.74" for 25 year event

Inflow = 328.88 cfs @ 12.25 hrs, Volume= 40.171 af

Outflow = 329.11 cfs @ 12.26 hrs, Volume= 40.171 af, Atten= 0%, Lag= 0.4 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 22.13 fps, Min. Travel Time= 0.5 min Avg. Velocity = 6.66 fps, Avg. Travel Time= 1.6 min


Peak Storage= 9,739 cf @ 12.26 hrs Average Depth at Peak Storage= 2.71'

Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 728.98 cfs

10.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 655.0' Slope= 0.0840 '/' Inlet Invert= 645.00', Outlet Invert= 590.00'

Reach RC5B: RC5-B

Page 340

Summary for Reach RC5C: RC5-C

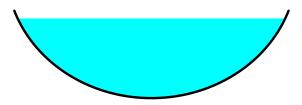
Inflow Area = 107.500 ac, 0.00% Impervious, Inflow Depth = 3.62" for 25 year event

Inflow = 307.68 cfs @ 12.23 hrs, Volume= 32.445 af

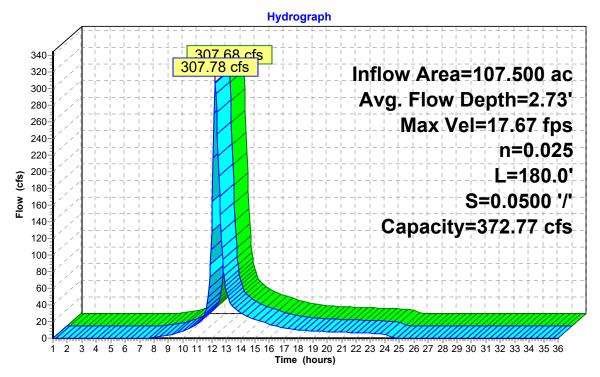
Outflow = 307.78 cfs @ 12.24 hrs, Volume= 32.445 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 17.67 fps, Min. Travel Time= 0.2 min Avg. Velocity = 6.57 fps, Avg. Travel Time= 0.5 min


Peak Storage= 3,133 cf @ 12.24 hrs Average Depth at Peak Storage= 2.73'

Bank-Full Depth= 3.00' Flow Area= 20.0 sf, Capacity= 372.77 cfs


10.00' x 3.00' deep Parabolic Channel, n= 0.025

Length= 180.0' Slope= 0.0500 '/'

Inlet Invert= 654.00', Outlet Invert= 645.00'

Reach RC5C: RC5-C

Page 341

Summary for Reach RC6: RC6

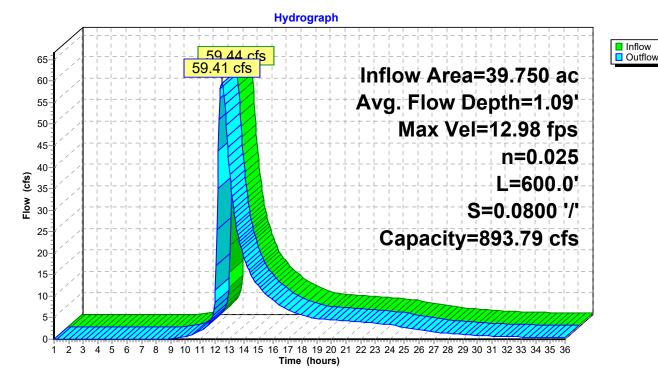
Inflow Area = 39.750 ac, 16.23% Impervious, Inflow Depth > 3.92" for 25 year event

Inflow = 59.44 cfs @ 12.49 hrs, Volume= 12.999 af

Outflow = 59.41 cfs @ 12.50 hrs, Volume= 12.997 af, Atten= 0%, Lag= 0.5 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 12.98 fps, Min. Travel Time= 0.8 min Avg. Velocity = 5.11 fps, Avg. Travel Time= 2.0 min


Peak Storage= 2,747 cf @ 12.50 hrs Average Depth at Peak Storage= 1.09'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 893.79 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 600.0' Slope= 0.0800 '/' Inlet Invert= 638.00', Outlet Invert= 590.00'

Reach RC6: RC6

Page 342

Summary for Reach RC7: RC7

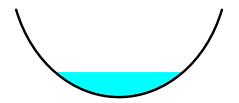
Inflow Area = 19.700 ac, 20.30% Impervious, Inflow Depth > 4.23" for 25 year event

Inflow = 34.03 cfs @ 12.48 hrs, Volume= 6.946 af

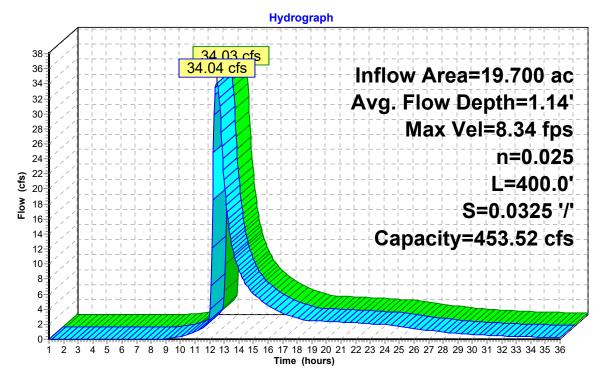
Outflow = 34.04 cfs @ 12.49 hrs, Volume= 6.945 af, Atten= 0%, Lag= 0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 8.34 fps, Min. Travel Time= 0.8 min Avg. Velocity = 3.28 fps, Avg. Travel Time= 2.0 min


Peak Storage= 1,632 cf @ 12.49 hrs Average Depth at Peak Storage= 1.14'

Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 453.52 cfs


10.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 400.0' Slope= 0.0325 '/'

Inlet Invert= 660.00', Outlet Invert= 647.00'

Reach RC7: RC7

Page 343

Summary for Reach RC8: RC8

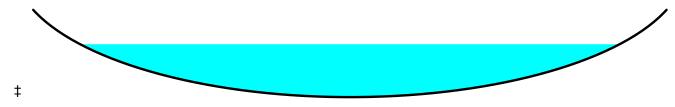
Inflow Area = 68.270 ac, 0.00% Impervious, Inflow Depth = 3.56" for 25 year event

Inflow = 195.73 cfs @ 12.27 hrs, Volume= 20.241 af

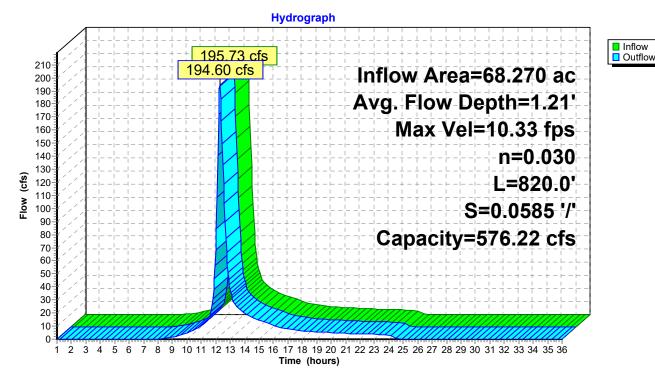
Outflow = 194.60 cfs @ 12.28 hrs, Volume= 20.241 af, Atten= 1%, Lag= 1.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 10.33 fps, Min. Travel Time= 1.3 min Avg. Velocity = 3.46 fps, Avg. Travel Time= 3.9 min


Peak Storage= 15,437 cf @ 12.28 hrs Average Depth at Peak Storage= 1.21'

Bank-Full Depth= 2.00' Flow Area= 40.0 sf, Capacity= 576.22 cfs


30.00' x 2.00' deep Parabolic Channel, n= 0.030

Length= 820.0' Slope= 0.0585 '/'

Inlet Invert= 660.00', Outlet Invert= 612.00'

Reach RC8: RC8

Page 344

Inflow
Outflow

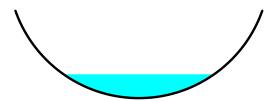
Summary for Reach RC9: RC9

Inflow Area = 23.500 ac, 17.02% Impervious, Inflow Depth > 3.88" for 25 year event

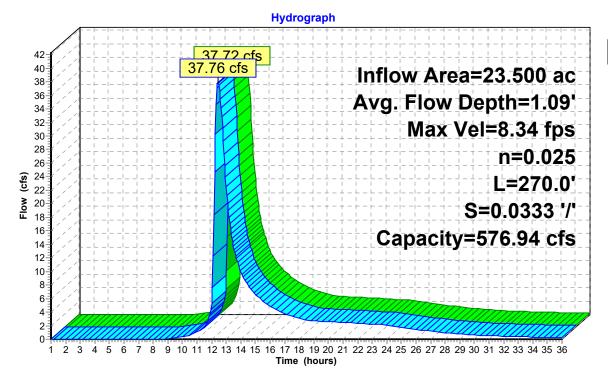
Inflow = 37.72 cfs @ 12.42 hrs, Volume= 7.599 af

Outflow = 37.76 cfs @ 12.42 hrs, Volume= 7.599 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 8.34 fps, Min. Travel Time= 0.5 min Avg. Velocity = 3.22 fps, Avg. Travel Time= 1.4 min

Peak Storage= 1,223 cf @ 12.42 hrs Average Depth at Peak Storage= 1.09'


Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 576.94 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 270.0' Slope= 0.0333 '/'

Inlet Invert= 647.00', Outlet Invert= 638.00'

Reach RC9: RC9

Page 345

Summary for Pond B13P: ARCH CULV

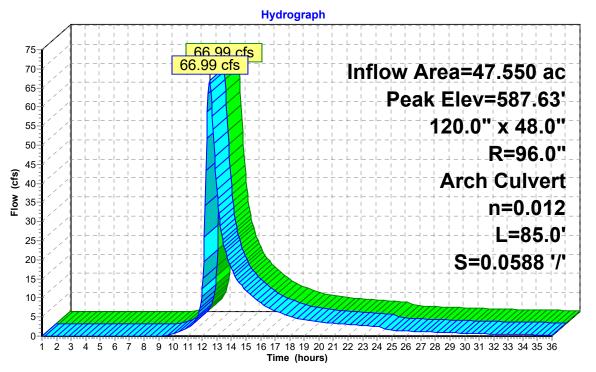
Inflow Area = 47.550 ac, 10.62% Impervious, Inflow Depth > 3.09" for 25 year event

Inflow = 66.99 cfs @ 12.50 hrs, Volume= 12.250 af

Outflow = 66.99 cfs @ 12.50 hrs, Volume= 12.250 af, Atten= 0%, Lag= 0.0 min

Primary = 66.99 cfs @ 12.50 hrs, Volume= 12.250 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 587.63' @ 12.50 hrs

Flood Elev= 610.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	586.00'	120.0" W x 48.0" H, R=96.0" Arch Culvert
			L= 85.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 586.00' / 581.00' S= 0.0588 '/' Cc= 0.900
			n= 0.012, Flow Area= 34.43 sf

Primary OutFlow Max=66.98 cfs @ 12.50 hrs HW=587.63' TW=582.54' (Dynamic Tailwater) 1=Culvert (Inlet Controls 66.98 cfs @ 4.10 fps)

Pond B13P: ARCH CULV

Page 346

Summary for Pond B16P: ARCH CULV

Inflow Area = 51.200 ac, 9.86% Impervious, Inflow Depth > 3.15" for 25 year event

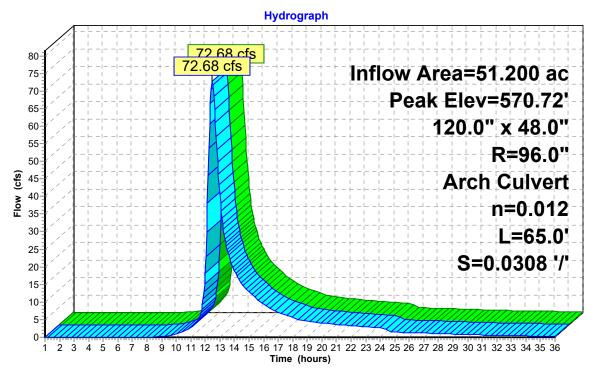
Inflow = 72.68 cfs @ 12.48 hrs, Volume= 13.455 af

Outflow = 72.68 cfs @ 12.48 hrs, Volume= 13.455 af, Atten= 0%, Lag= 0.0 min

Primary = 72.68 cfs @ 12.48 hrs, Volume= 13.455 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 570.72' @ 12.48 hrs


Flood Elev= 578.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	569.00'	120.0" W x 48.0" H, R=96.0" Arch Culvert L= 65.0' Ke= 0.500 Inlet / Outlet Invert= 569.00' / 567.00' S= 0.0308 '/' Cc= 0.900 n= 0.012, Flow Area= 34.43 sf

Primary OutFlow Max=72.48 cfs @ 12.48 hrs HW=570.72' TW=568.65' (Dynamic Tailwater)

1=Culvert (Inlet Controls 72.48 cfs @ 4.21 fps)

Pond B16P: ARCH CULV

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

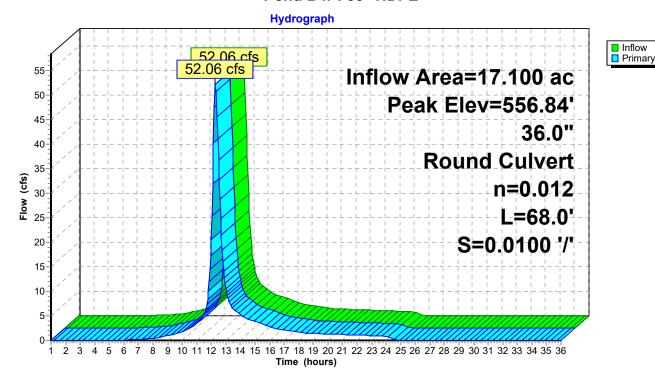
Page 347

Summary for Pond B4P: 36" HDPE

Inflow Area = 17.100 ac, 9.94% Impervious, Inflow Depth = 4.02" for 25 year event

Inflow = 52.06 cfs @ 12.28 hrs, Volume= 5.724 af

Outflow = 52.06 cfs @ 12.28 hrs, Volume= 5.724 af, Atten= 0%, Lag= 0.0 min


Primary = 52.06 cfs @ 12.28 hrs, Volume= 5.724 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 556.84' @ 12.28 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	553.00'	36.0" Round Culvert L= 68.0' Ke= 0.500 Inlet / Outlet Invert= 553.00' / 552.32' S= 0.0100 '/' Cc= 0.900
			n= 0 012 Flow Area= 7 07 sf

Primary OutFlow Max=51.74 cfs @ 12.28 hrs HW=556.81' TW=553.46' (Dynamic Tailwater) 1=Culvert (Inlet Controls 51.74 cfs @ 7.32 fps)

Pond B4P: 36" HDPE

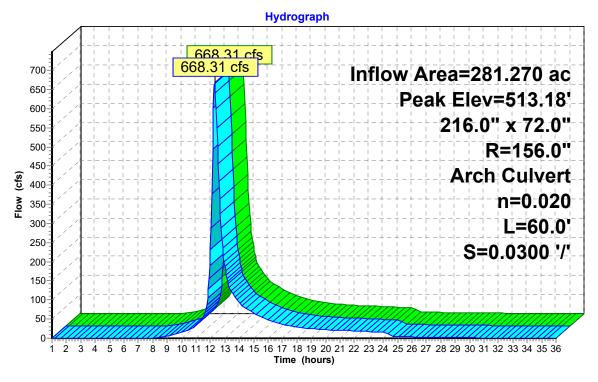
Page 348

Summary for Pond C11P: ARCH CULV

Inflow Area = 281.270 ac, 3.74% Impervious, Inflow Depth > 3.58" for 25 year event

Inflow = 668.31 cfs @ 12.29 hrs, Volume= 83.833 af

Outflow = 668.31 cfs @ 12.29 hrs, Volume= 83.833 af, Atten= 0%, Lag= 0.0 min


Primary = 668.31 cfs @ 12.29 hrs, Volume= 83.833 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 513.18' @ 12.29 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	507.80'	216.0" W x 72.0" H, R=156.0" Arch Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 507.80' / 506.00' S= 0.0300 '/' Cc= 0.900
			n= 0.020, Flow Area= 87.66 sf

Primary OutFlow Max=665.12 cfs @ 12.29 hrs HW=513.16' TW=507.73' (Dynamic Tailwater) 1=Culvert (Inlet Controls 665.12 cfs @ 7.90 fps)

Pond C11P: ARCH CULV

Page 349

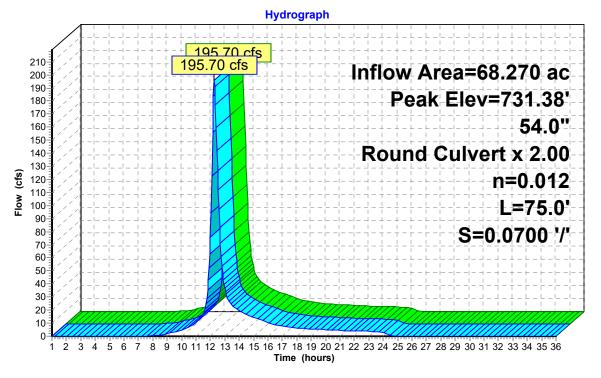
Inflow
□ Primary

Summary for Pond C12P: (2) 54" HDPE

Inflow Area = 68.270 ac, 0.00% Impervious, Inflow Depth = 3.56" for 25 year event

Inflow = 195.70 cfs @ 12.26 hrs, Volume= 20.241 af

Outflow = 195.70 cfs @ 12.26 hrs, Volume= 20.241 af, Atten= 0%, Lag= 0.0 min


Primary = 195.70 cfs @ 12.26 hrs, Volume= 20.241 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 731.38' @ 12.26 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	727.50'	54.0" Round Culvert X 2.00
			L= 75.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 727.50' / 722.25' S= 0.0700 '/' Cc= 0.900
			n= 0.012, Flow Area= 15.90 sf

Primary OutFlow Max=194.23 cfs @ 12.26 hrs HW=731.36' TW=723.60' (Dynamic Tailwater) 1=Culvert (Inlet Controls 194.23 cfs @ 6.69 fps)

Pond C12P: (2) 54" HDPE

Page 350

Inflow

Primary

Summary for Pond C13P: ARCH CULV

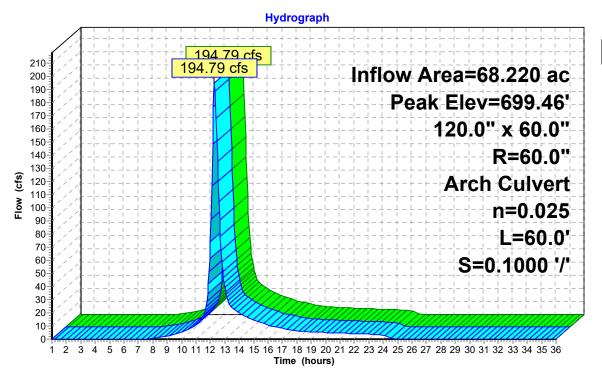
Inflow Area = 68.220 ac, 0.00% Impervious, Inflow Depth = 3.66" for 25 year event

Inflow = 194.79 cfs @ 12.28 hrs, Volume= 20.799 af

Outflow = 194.79 cfs @ 12.28 hrs, Volume= 20.799 af, Atten= 0%, Lag= 0.0 min

Primary = 194.79 cfs @ 12.28 hrs, Volume= 20.799 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 699.46' @ 12.28 hrs

Flood Elev= 712.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	696.00'	120.0" W x 60.0" H, R=60.0" Arch Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 696.00' / 690.00' S= 0.1000 '/' Cc= 0.900
			n= 0.025 Flow Area= 39.27 sf

Primary OutFlow Max=193.47 cfs @ 12.28 hrs HW=699.45' TW=692.03' (Dynamic Tailwater) 1=Culvert (Inlet Controls 193.47 cfs @ 6.14 fps)

Pond C13P: ARCH CULV

Page 351

Inflow

Primary

Summary for Pond C14P: (2) 48" HDPE

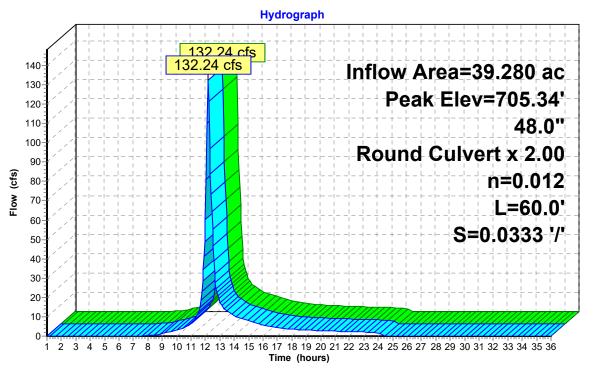
Inflow Area = 39.280 ac, 0.00% Impervious, Inflow Depth = 3.56" for 25 year event

Inflow = 132.24 cfs @ 12.17 hrs, Volume= 11.646 af

Outflow = 132.24 cfs @ 12.17 hrs, Volume= 11.646 af, Atten= 0%, Lag= 0.0 min

Primary = 132.24 cfs @ 12.17 hrs, Volume= 11.646 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 705.34' @ 12.19 hrs

Flood Elev= 712.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	702.00'	48.0" Round Culvert X 2.00
	_		L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 702.00' / 700.00' S= 0.0333 '/' Cc= 0.900
			n= 0.012, Flow Area= 12.57 sf

Primary OutFlow Max=126.28 cfs @ 12.17 hrs HW=705.30' TW=703.71' (Dynamic Tailwater) 1=Culvert (Outlet Controls 126.28 cfs @ 7.73 fps)

Pond C14P: (2) 48" HDPE

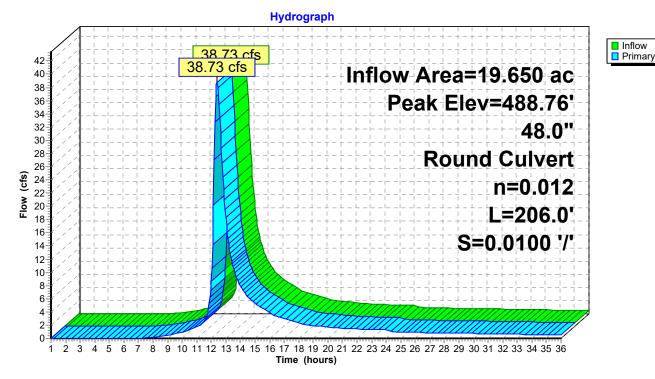
Page 352

Summary for Pond C2P: 48" HDPE

Inflow Area = 19.650 ac, 18.47% Impervious, Inflow Depth > 4.05" for 25 year event

Inflow = 38.73 cfs @ 12.39 hrs, Volume= 6.625 af

Outflow = 38.73 cfs @ 12.39 hrs, Volume= 6.625 af, Atten= 0%, Lag= 0.0 min


Primary = 38.73 cfs @ 12.39 hrs, Volume= 6.625 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 488.76' @ 12.36 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	486.02'	48.0" Round Culvert L= 206.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 486.02' / 483.97' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Flow Area= 12.57 sf

Primary OutFlow Max=40.53 cfs @ 12.39 hrs HW=488.74' TW=487.29' (Dynamic Tailwater) 1=Culvert (Outlet Controls 40.53 cfs @ 6.29 fps)

Pond C2P: 48" HDPE

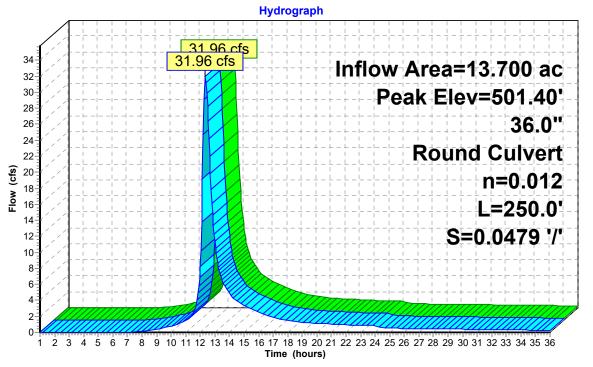
Page 353

Summary for Pond C3P: 36" HDPE

Inflow Area = 13.700 ac, 12.26% Impervious, Inflow Depth > 3.98" for 25 year event

Inflow = 31.96 cfs @ 12.34 hrs, Volume= 4.549 af

Outflow = 31.96 cfs @ 12.34 hrs, Volume= 4.549 af, Atten= 0%, Lag= 0.0 min


Primary = 31.96 cfs @ 12.34 hrs, Volume= 4.549 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 501.40' @ 12.34 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	499.00'	36.0" Round Culvert L= 250.0' Ke= 0.500
			Inlet / Outlet Invert= 499.00' / 487.02' S= 0.0479 '/' Cc= 0.900
			n= 0.012, Flow Area= 7.07 sf

Primary OutFlow Max=31.90 cfs @ 12.34 hrs HW=501.40' TW=488.75' (Dynamic Tailwater) 1=Culvert (Inlet Controls 31.90 cfs @ 5.27 fps)

Pond C3P: 36" HDPE

Page 354

Inflow

Primary

Summary for Pond C5P: (2) 60" CULV

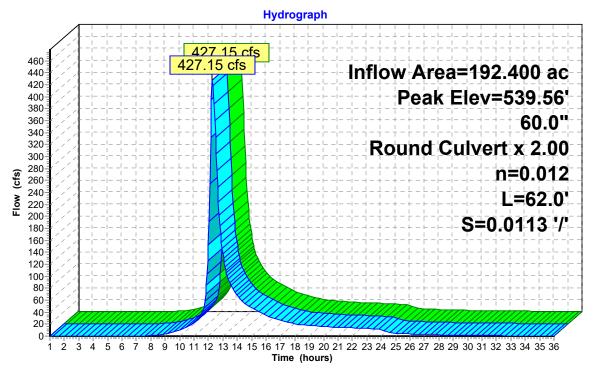
Inflow Area = 192.400 ac, 5.22% Impervious, Inflow Depth > 3.66" for 25 year event

Inflow = 427.15 cfs @ 12.28 hrs, Volume= 58.696 af

Outflow = 427.15 cfs @ 12.28 hrs, Volume= 58.696 af, Atten= 0%, Lag= 0.0 min

Primary = 427.15 cfs @ 12.28 hrs, Volume= 58.696 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 539.56' @ 12.29 hrs

Flood Elev= 551.00'

Device	Routing	Invert	Outlet Devices			
#1	Primary	531.70'	60.0" Round Culvert X 2.00			
	-		L= 62.0' CPP, square edge headwall, Ke= 0.500			
			Inlet / Outlet Invert= 531.70' / 531.00' S= 0.0113 '/' Cc= 0.900			
			n= 0.012, Flow Area= 19.63 sf			

Primary OutFlow Max=422.97 cfs @ 12.28 hrs HW=539.49' TW=534.48' (Dynamic Tailwater) 1=Culvert (Inlet Controls 422.97 cfs @ 10.77 fps)

Pond C5P: (2) 60" CULV

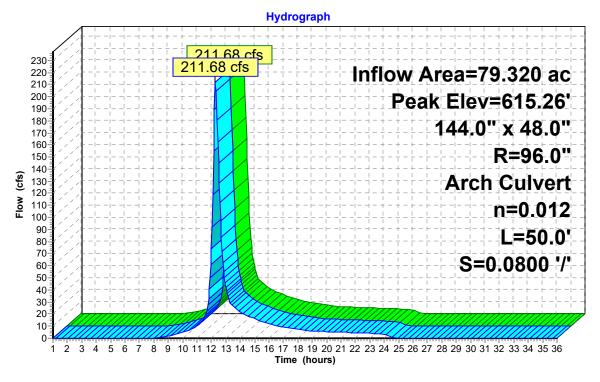
Page 355

Summary for Pond C8P: ARCH CULV

Inflow Area = 79.320 ac, 0.59% Impervious, Inflow Depth = 3.34" for 25 year event

Inflow = 211.68 cfs @ 12.28 hrs, Volume= 22.065 af

Outflow = 211.68 cfs @ 12.28 hrs, Volume= 22.065 af, Atten= 0%, Lag= 0.0 min


Primary = 211.68 cfs @ 12.28 hrs, Volume= 22.065 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 615.26' @ 12.28 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	612.00'	144.0" W x 48.0" H, R=96.0" Arch Culvert
	-		L= 50.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 612.00' / 608.00' S= 0.0800 '/' Cc= 0.900
			n= 0.012, Flow Area= 38.02 sf

Primary OutFlow Max=210.10 cfs @ 12.28 hrs HW=615.24' TW=609.80' (Dynamic Tailwater) 1=Culvert (Inlet Controls 210.10 cfs @ 6.08 fps)

Pond C8P: ARCH CULV

Page 356

InflowPrimary

Summary for Pond C9P: 48" HDPE

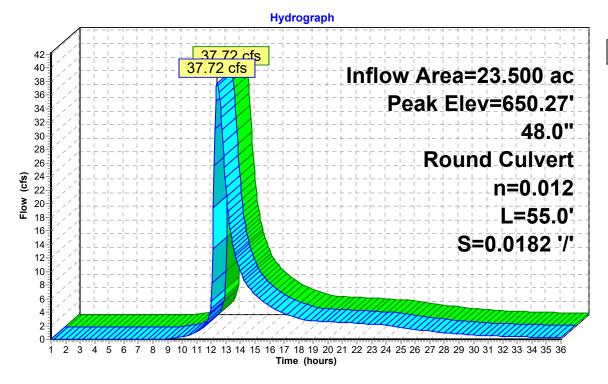
Inflow Area = 23.500 ac, 17.02% Impervious, Inflow Depth > 3.88" for 25 year event

Inflow = 37.72 cfs @ 12.42 hrs, Volume= 7.599 af

Outflow = 37.72 cfs @ 12.42 hrs, Volume= 7.599 af, Atten= 0%, Lag= 0.0 min

Primary = 37.72 cfs @ 12.42 hrs, Volume= 7.599 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 650.27' @ 12.42 hrs

Flood Elev= 712.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	648.00'	48.0" Round Culvert L= 55.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 648.00' / 647.00' S= 0.0182 '/' Cc= 0.900 n= 0.012, Flow Area= 12.57 sf

Primary OutFlow Max=37.67 cfs @ 12.42 hrs HW=650.27' TW=648.09' (Dynamic Tailwater) 1=Culvert (Inlet Controls 37.67 cfs @ 5.13 fps)

Pond C9P: 48" HDPE

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 357

Summary for Pond PB11: POND B11

Inflow Area = 21.550 ac, 7.89% Impervious, Inflow Depth = 4.22" for 25 year event

Inflow = 75.06 cfs @ 12.20 hrs, Volume= 7.574 af

Outflow = 61.02 cfs @ 12.34 hrs, Volume= 7.522 af, Atten= 19%, Lag= 8.1 min

Primary = 61.02 cfs @ 12.34 hrs, Volume= 7.522 af

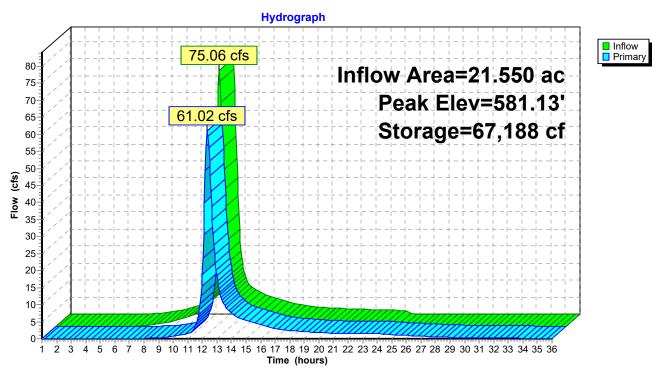
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 581.13' @ 12.34 hrs Surf.Area= 26,883 sf Storage= 67,188 cf

Plug-Flow detention time= 87.4 min calculated for 7.522 af (99% of inflow)

Center-of-Mass det. time= 83.1 min (897.3 - 814.2)

Volume	Inver	t Avail.Sto	age Storage	escription	
#1	578.00	91,99	00 cf Custom	Stage Data (Prismatic)Liste	ed below (Recalc)
	_				
Elevation	on S	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
578.0	00	16,290	0	0	
580.0	00	22,850	39,140	39,140	
582.0	00	30,000	52,850	91,990	
Device	Routing	Invert	Outlet Devices		
#1	Primary	576.00'	36.0" Round	Culvert X 2.00	
	•		L= 100.0' CP	P, square edge headwall, K	e= 0.500
			Inlet / Outlet Ir	vert= 576.00' / 572.00' S=	0.0400 '/' Cc= 0.900
			n= 0.012. Flo	Area= 7.07 sf	
#2	Device 1	581.75'	30.0" x 48.0"	loriz. Orifice/Grate C= 0.6	600 Limited to weir flow at low heads
#3	Device 1	579.30'	4.9' long Shar	o-Crested Rectangular We	eir 2 End Contraction(s)
			0.5' Crest Heigh	nt	()
#4	Device 1	578.00'	,	o-Crested Rectangular We	eir 2 End Contraction(s)
			0.5' Crest Heigh	nt	

Primary OutFlow Max=60.82 cfs @ 12.34 hrs HW=581.12' TW=576.37' (Dynamic Tailwater)


1=Culvert (Passes 60.82 cfs of 129.59 cfs potential flow)

-2=Orifice/Grate (Controls 0.00 cfs)

-3=Sharp-Crested Rectangular Weir (Weir Controls 52.85 cfs @ 6.39 fps)

-4=Sharp-Crested Rectangular Weir (Weir Controls 7.97 cfs @ 10.20 fps)

Pond PB11: POND B11

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 359

Summary for Pond PB12: POND B12

Inflow Area = 24.200 ac, 20.87% Impervious, Inflow Depth = 3.36" for 25 year event

Inflow = 71.64 cfs @ 12.21 hrs, Volume= 6.774 af

Outflow = 24.45 cfs @ 12.63 hrs, Volume= 6.468 af, Atten= 66%, Lag= 25.3 min

Primary = 24.45 cfs @ 12.63 hrs, Volume= 6.468 af

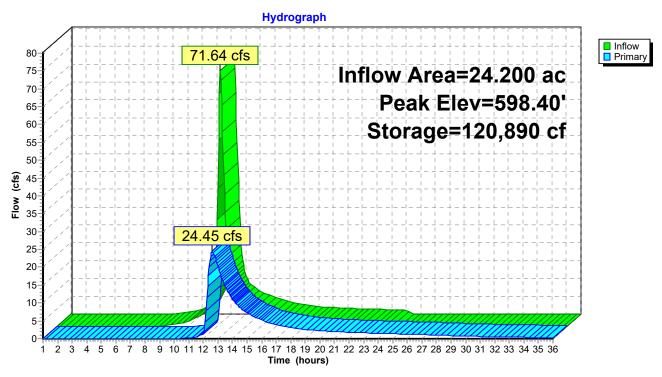
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 598.40' @ 12.63 hrs Surf.Area= 55,969 sf Storage= 120,890 cf

Plug-Flow detention time= 201.2 min calculated for 6.458 af (95% of inflow)

Center-of-Mass det. time= 177.2 min (1,011.4 - 834.2)

Volume	Inve	ert Avail.Sto	rage Stor	age Description			
#1	596.0	0' 216,6	00 cf Cus	tom Stage Data (P	rismatic)Listed below (Recalc)		
Elevation		Surf.Area	Inc.Stor				
(fee	et)	(sq-ft)	(cubic-feet	t) (cubic-feet)			
596.0	00	44,900		0 0			
598.0	00	54,100	99,00	0 99,000			
600.0	00	63,500	117,60	0 216,600			
Device	Routing	Invert	Outlet De	vices			
#1	Primary	596.00'	36.0" Ro	und Culvert X 2.00	L= 40.0' Ke= 0.500		
	,		Inlet / Out	tlet Invert= 596.00' /	595.00' S= 0.0250 '/' Cc= 0.900		
			n= 0.012,	Flow Area= 7.07 s	f		
#2	Device 1	596.00'	0' 8.5" Vert. Orifice/Grate C= 0.600		0.600		
#3	Device 1	597.00'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)				
			2.1' Crest	•	• ()		
#4	Device 1	599.75'		48.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads			

Primary OutFlow Max=24.42 cfs @ 12.63 hrs HW=598.40' TW=587.55' (Dynamic Tailwater)


1=Culvert (Passes 24.42 cfs of 63.81 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 2.71 cfs @ 6.88 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 21.71 cfs @ 4.18 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PB12: POND B12

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 361

Summary for Pond PB2: POND B2

Inflow Area = 6.100 ac, 13.11% Impervious, Inflow Depth = 3.56" for 25 year event

Inflow = 19.68 cfs @ 12.19 hrs, Volume= 1.809 af

Outflow = 3.22 cfs @ 12.90 hrs, Volume= 1.510 af, Atten= 84%, Lag= 42.1 min

Primary = 3.22 cfs @ 12.90 hrs, Volume= 1.510 af

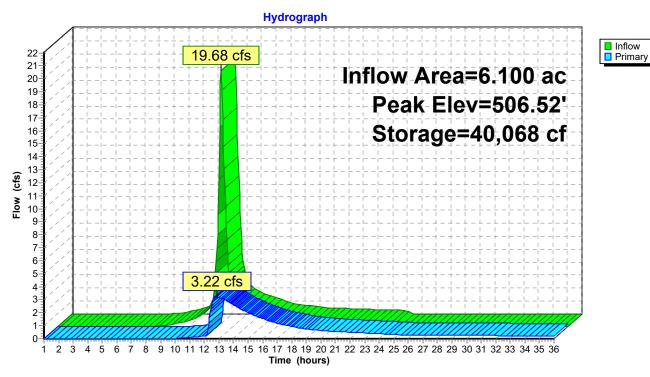
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 506.52' @ 12.90 hrs Surf.Area= 18,804 sf Storage= 40,068 cf

Plug-Flow detention time= 333.3 min calculated for 1.510 af (84% of inflow)

Center-of-Mass det. time= 264.5 min (1,092.8 - 828.3)

Volume	Inve	ert Avail.Sto	orage Storage	Description	
#1	504.0	0' 70,6	00 cf Custor	n Stage Data (Prism	aatic)Listed below (Recalc)
Elevation		Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
504.0	00	13,100	0	0	
506.0	00	17,500	30,600	30,600	
508.0	00	22,500	40,000	70,600	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	504.00'	30.0" Roun	d Culvert L= 40.0'	Ke= 0.500
	•		Inlet / Outlet	Invert= 504.00' / 498	.00' S= 0.1500 '/' Cc= 0.900
			n= 0.012, FI	ow Area= 4.91 sf	
#2	Device 1	504.00'	00' 3.0" Vert. Orifice/Grate C= 0.600		00
#3	Device 1	505.50'	1.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
			2.0' Crest He	ight	- ()
#4	Device 1	507.50'	30.0" x 48.0	' Horiz. Orifice/Grate	e C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=3.22 cfs @ 12.90 hrs HW=506.52' TW=500.34' (Dynamic Tailwater)


1=Culvert (Passes 3.22 cfs of 26.65 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.37 cfs @ 7.45 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 2.85 cfs @ 3.51 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PB2: POND B2

Invert

Volume

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 363

Summary for Pond PB3: POND B3

Inflow Area = 26.650 ac, 15.57% Impervious, Inflow Depth = 3.76" for 25 year event

Inflow = 79.60 cfs @ 12.27 hrs, Volume= 8.351 af

Outflow = 52.19 cfs @ 12.51 hrs, Volume= 8.212 af, Atten= 34%, Lag= 14.5 min

Primary = 52.19 cfs @ 12.51 hrs, Volume= 8.212 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 523.85' @ 12.51 hrs Surf.Area= 38,402 sf Storage= 124,075 cf

Avail Storage Description

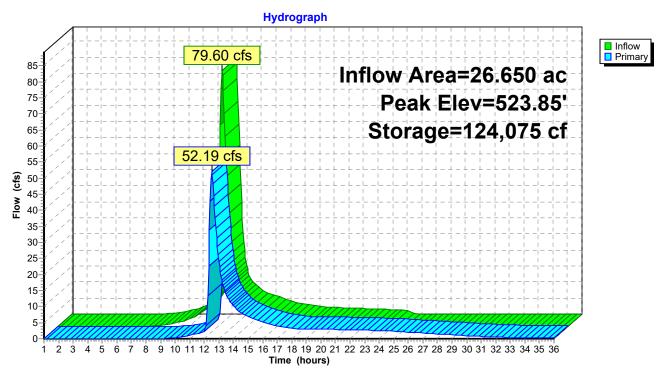
Plug-Flow detention time= 188.1 min calculated for 8.212 af (98% of inflow)

Center-of-Mass det. time= 178.2 min (1,006.8 - 828.7)

VOIGITIE	IIIVEI	Avaii.0toi	age Glorage L	Description	
#1	520.00	170,60	0 cf Custom	Stage Data (Prismatic)Listed below (Recalc)	
Elevatio	-	urf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
520.0	00	26,300	0	0	
522.0	00	32,400	58,700	58,700	
524.0	00	38,900	71,300	130,000	
525.0	00	42,300	40,600	170,600	
Device	Routing	Invert	Outlet Devices	3	
#1	Primary	518.00'	30.0" Round	Culvert X 2.00 L= 70.0' Ke= 0.500	
	•		Inlet / Outlet In	nvert= 518.00' / 514.00' S= 0.0571 '/' Cc= 0.900	
			n= 0.012, Flov	w Area= 4.91 sf	
#2	Device 1	520.00'	9.0" Vert. Orif	fice/Grate C= 0.600	
#3	Device 1	522.40'	4.9' long Shar	rp-Crested Rectangular Weir 2 End Contraction(s)	
			0.5' Crest Heig	ght	
#4	Device 1	523.75'	30.0" x 48.0" Horiz. Orifice/Grate X 2.00 C= 0.600		
				r flow at low heads	
#5	Device 1	523.25'	6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)0.5' Crest Height		

Primary OutFlow Max=51.90 cfs @ 12.51 hrs HW=523.84' TW=506.63' (Dynamic Tailwater)

1=Culvert (Passes 51.90 cfs of 101.32 cfs potential flow)


-2=Orifice/Grate (Orifice Controls 3.96 cfs @ 8.97 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 35.41 cfs @ 5.32 fps)

-4=Orifice/Grate (Weir Controls 2.45 cfs @ 1.00 fps)

-5=Sharp-Crested Rectangular Weir (Weir Controls 10.08 cfs @ 2.89 fps)

Pond PB3: POND B3

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 365

Summary for Pond PB4: POND B4

Inflow Area = 10.200 ac, 13.73% Impervious, Inflow Depth = 4.07" for 25 year event

Inflow = 38.16 cfs @ 12.18 hrs, Volume= 3.459 af

Outflow = 17.31 cfs @ 12.48 hrs, Volume= 3.422 af, Atten= 55%, Lag= 18.2 min

Primary = 17.31 cfs @ 12.48 hrs, Volume= 3.422 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 561.24' @ 12.48 hrs Surf.Area= 22,103 sf Storage= 58,512 cf

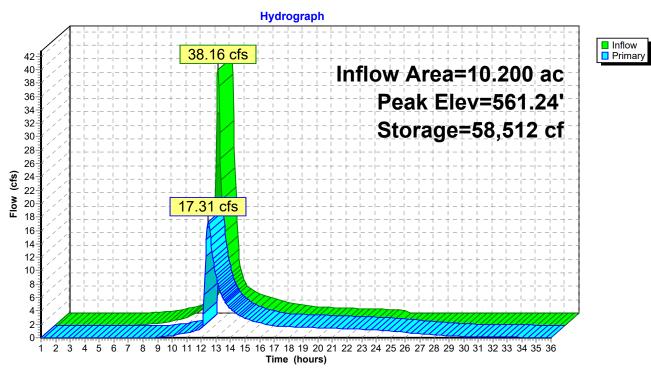
Plug-Flow detention time= 181.5 min calculated for 3.417 af (99% of inflow)

Center-of-Mass det. time= 175.7 min (990.6 - 814.8)

Volume	Inver	t Avail.Stor	age Storage l	Description	
#1	558.00	' 76,00	0 cf Custom	Stage Data (Prismatic)Listed below (Recalc)	
Elevation	on S	surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
558.0	00	14,000	0	0	
560.0	00	19,000	33,000	33,000	
562.0	00	24,000	43,000	76,000	
Device	Routing	Invert	Outlet Devices	S	_
#1	Primary	558.00'	36.0" Round	I Culvert L= 50.0' Ke= 0.500	
	•		Inlet / Outlet In	nvert= 558.00' / 554.00' S= 0.0800 '/' Cc= 0.900	
			n= 0.012, Flov	ow Area= 7.07 sf	
#2	Device 1	558.00'	7.0" Vert. Orif	ifice/Grate C= 0.600	
#3	Device 1	560.00'	2.5' long Shar	arp-Crested Rectangular Weir 2 End Contraction(s)	
			0.5' Crest Heigh	ight	
#4	Device 1	561.50'	30.0" x 48.0"	Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	3
#5	Device 1	561.00'	4.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)0.5' Crest Height		

Primary OutFlow Max=17.25 cfs @ 12.48 hrs HW=561.24' TW=0.00' (Dynamic Tailwater)

1=Culvert (Passes 17.25 cfs of 44.88 cfs potential flow)


-2=Orifice/Grate (Orifice Controls 2.21 cfs @ 8.27 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 13.24 cfs @ 4.74 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

-5=Sharp-Crested Rectangular Weir (Weir Controls 1.80 cfs @ 1.69 fps)

Pond PB4: POND B4

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 367

Summary for Pond PB5: POND B5

Inflow Area = 5.500 ac, 38.00% Impervious, Inflow Depth = 4.71" for 25 year event

Inflow = 24.98 cfs @ 12.15 hrs, Volume= 2.160 af

Outflow = 14.70 cfs @ 12.32 hrs, Volume= 2.037 af, Atten= 41%, Lag= 10.3 min

Primary = 14.70 cfs @ 12.32 hrs, Volume= 2.037 af

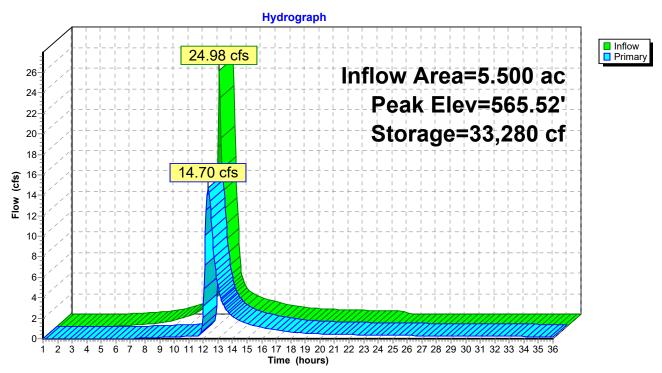
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 565.52' @ 12.32 hrs Surf.Area= 12,604 sf Storage= 33,280 cf

Plug-Flow detention time= 206.6 min calculated for 2.037 af (94% of inflow)

Center-of-Mass det. time= 175.3 min (970.6 - 795.2)

Volume	Inv	ert Avail.St	orage	Storage	Description		
#1	562.0	00' 39,6	600 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)	
Elevation		Surf.Area		Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic	:-feet)	(cubic-feet)		
562.0	00	6,500		0	0		
564.0	00	9,800	1	6,300	16,300		
566.0	00	13,500	2	3,300	39,600		
Device	Routing	Invert	Outle	et Device	S		
#1	Primary	562.00	30.0	' Round	Culvert L= 75	.0' Ke= 0.500	
			Inlet	/ Outlet I	nvert= 562.00' /	558.00' S= 0.0533 '/' Cc= 0.900	
			n= 0.	.012, Flo	ow Area= 4.91 st	f	
#2	Device 1	562.00	3.0" Vert. Orifice/Grate C= 0.600			0.600	
#3	Device 1	564.00	' 2.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)			ctangular Weir 2 End Contraction(s)	
			0.5' (Crest Hei	ght		
#4	Device 1	565.50	36.0	36.0" x 54.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads			

Primary OutFlow Max=14.62 cfs @ 12.32 hrs HW=565.51' TW=0.00' (Dynamic Tailwater)


1=Culvert (Passes 14.62 cfs of 35.54 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.43 cfs @ 8.86 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 14.12 cfs @ 5.51 fps)

-4=Orifice/Grate (Weir Controls 0.06 cfs @ 0.34 fps)

Pond PB5: POND B5

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 369

Summary for Pond PB6: POND B6

Inflow Area = 8.000 ac, 27.12% Impervious, Inflow Depth = 4.50" for 25 year event

Inflow = 32.52 cfs @ 12.18 hrs, Volume= 2.997 af

Outflow = 15.84 cfs @ 12.45 hrs, Volume= 2.890 af, Atten= 51%, Lag= 16.5 min

Primary = 15.84 cfs @ 12.45 hrs, Volume= 2.890 af

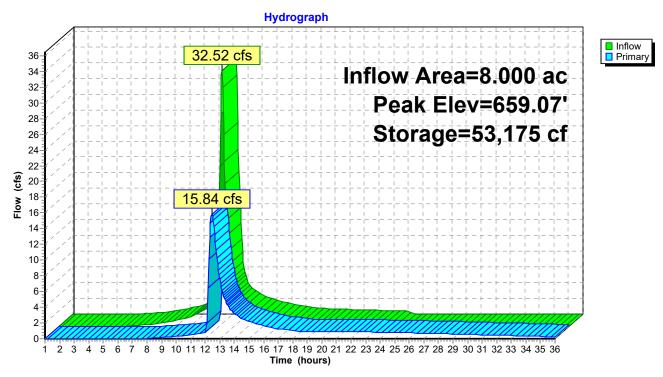
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 659.07' @ 12.45 hrs Surf.Area= 21,620 sf Storage= 53,175 cf

Plug-Flow detention time= 267.7 min calculated for 2.886 af (96% of inflow)

Center-of-Mass det. time= 248.0 min (1,051.7 - 803.7)

Volume	Inve	rt Avail.Sto	orage Stora	age Description			
#1	656.0	0' 74,6	600 cf Cust	om Stage Data (P	rismatic)Listed below (Recalc)		
Elevation		Surf.Area	Inc.Store	•			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)			
656.0	00	13,500	0	0			
658.0	00	18,300	31,800	31,800			
660.0	00	24,500	42,800	74,600			
Device	Routing	Invert	Outlet Dev	rices			
#1	Primary	656.00'	30.0" Rou	und Culvert L= 13	0.0' Ke= 0.500		
	•		Inlet / Outl	et Invert= 656.00' /	551.00' S= 0.8077 '/' Cc= 0.900		
			n = 0.012	Flow Area= 4.91 s	F .		
#2	Device 1	656.00'	5.0" Vert.	Orifice/Grate C=	0.600		
#3	Device 1	658.10'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)				
			0.5' Crest	Height			
#4	Device 1	659.50'	30.0" x 48	30.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads			

Primary OutFlow Max=15.83 cfs @ 12.45 hrs HW=659.07' TW=552.55' (Dynamic Tailwater)


1=Culvert (Passes 15.83 cfs of 31.89 cfs potential flow)

2=Orifice/Grate (Orifice Controls 1.11 cfs @ 8.15 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 14.72 cfs @ 3.99 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PB6: POND B6

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 371

Summary for Pond PB7: POND B7

Inflow Area = 13.450 ac, 27.88% Impervious, Inflow Depth = 3.97" for 25 year event

Inflow = 44.80 cfs @ 12.23 hrs, Volume= 4.445 af

Outflow = 11.08 cfs @ 12.76 hrs, Volume= 3.472 af, Atten= 75%, Lag= 32.2 min

Primary = 11.08 cfs @ 12.76 hrs, Volume= 3.472 af

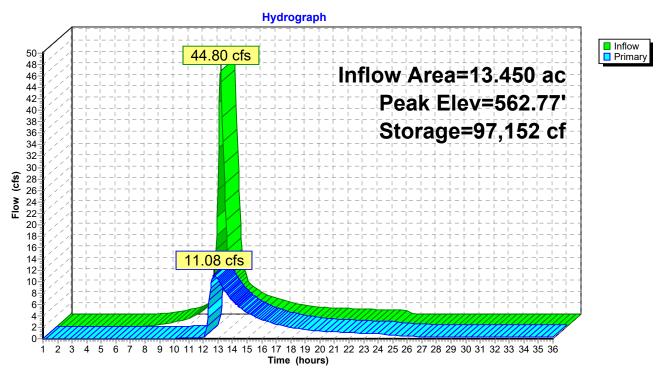
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 562.77' @ 12.76 hrs Surf.Area= 39,438 sf Storage= 97,152 cf

Plug-Flow detention time= 270.9 min calculated for 3.472 af (78% of inflow)

Center-of-Mass det. time= 190.5 min (1,011.5 - 821.0)

Volume	Inve	ert Avail.Sto	rage Storag	ge Description			
#1	560.0	0' 148,2	00 cf Custo	om Stage Data (Prismatic)Listed below (Recalc)			
Elevation		Surf.Area	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
(fee		(sq-ft)					
560.0		30,900	0	0			
562.0	00	36,900	67,800	67,800			
564.0	00	43,500	80,400	148,200			
Device	Routing	Invert	Outlet Device	ces			
#1	Primary	560.00'	36.0" Roun	nd Culvert L= 100.0' Ke= 0.500			
	,		Inlet / Outlet	t Invert= 560.00' / 558.00' S= 0.0200 '/' Cc= 0.900			
			· -	Flow Area= 7.07 sf			
#2	Device 1	560.00'	,				
#3	Device 1	561.50'	2.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)				
110	201100 1	301.00	0.5' Crest He				
#4	Device 1	563.65'		36.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads			

Primary OutFlow Max=11.07 cfs @ 12.76 hrs HW=562.77' TW=555.89' (Dynamic Tailwater)


1=Culvert (Passes 11.07 cfs of 38.62 cfs potential flow)

—2=Orifice/Grate (Orifice Controls 0.38 cfs @ 7.83 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 10.69 cfs @ 4.83 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PB7: POND B7

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 373

Summary for Pond PC10: POND C10

Inflow Area = 21.300 ac, 16.90% Impervious, Inflow Depth = 4.39" for 25 year event

Inflow = 81.25 cfs @ 12.20 hrs, Volume= 7.788 af

Outflow = 35.50 cfs @ 12.53 hrs, Volume= 7.728 af, Atten= 56%, Lag= 19.8 min

Primary = 35.50 cfs @ 12.53 hrs, Volume= 7.728 af

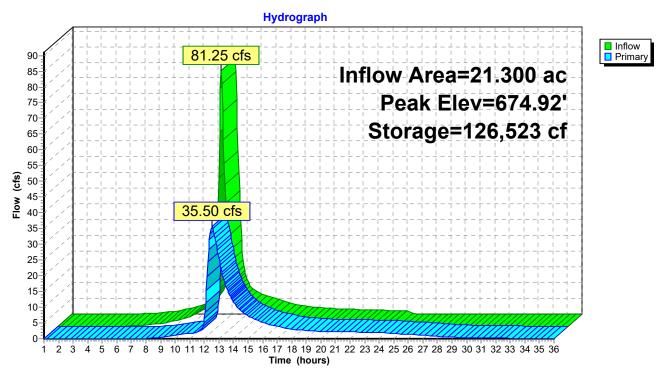
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 674.92' @ 12.53 hrs Surf.Area= 49,557 sf Storage= 126,523 cf

Plug-Flow detention time= 139.4 min calculated for 7.717 af (99% of inflow)

Center-of-Mass det. time= 135.4 min (943.8 - 808.4)

Volume	Inve	rt Avail.Sto	rage Storage	Description	
#1	672.00	0' 182,50	00 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
672.0	00	37,200	0	0	
674.0	00	45,500	82,700	82,700	
676.0	00	54,300	99,800	182,500	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	672.00'	L= 80.0' CPI Inlet / Outlet I		headwall, Ke= 0.500 670.00' S= 0.0250 '/' Cc= 0.900
#2 #3 #4	Device 1 Device 1 Device 1	672.00' 675.70' 673.00'	4.0" Vert. Orifice/Grate X 6.00 C= 0.600 30.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads 3.6' long Sharp-Crested Rectangular Weir 2 End Contraction(s) 2.0' Crest Height		

Primary OutFlow Max=35.45 cfs @ 12.53 hrs HW=674.92' TW=660.69' (Dynamic Tailwater)


1=Culvert (Passes 35.45 cfs of 81.65 cfs potential flow)

2=Orifice/Grate (Orifice Controls 4.18 cfs @ 7.99 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

-4=Sharp-Crested Rectangular Weir (Weir Controls 31.26 cfs @ 5.06 fps)

Pond PC10: POND C10

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 375

Summary for Pond PC2: POND C2

Inflow Area = 5.950 ac, 32.77% Impervious, Inflow Depth = 4.60" for 25 year event

Inflow = 22.30 cfs @ 12.23 hrs, Volume= 2.283 af

Outflow = 9.15 cfs @ 12.61 hrs, Volume= 2.076 af, Atten= 59%, Lag= 22.4 min

Primary = 9.15 cfs @ 12.61 hrs, Volume= 2.076 af

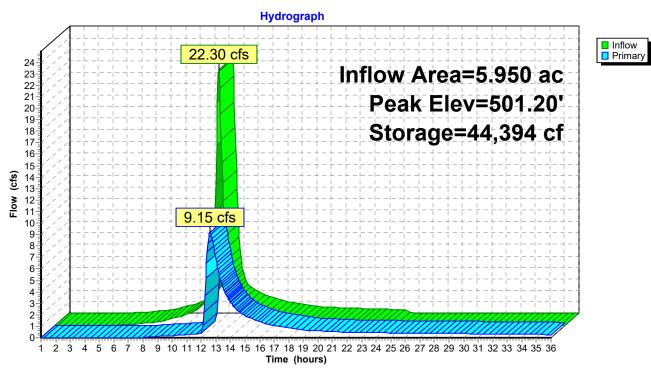
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 501.20' @ 12.61 hrs Surf.Area= 17,307 sf Storage= 44,394 cf

Plug-Flow detention time= 276.6 min calculated for 2.073 af (91% of inflow)

Center-of-Mass det. time= 232.6 min (1,037.2 - 804.6)

Volume	Inve	ert Avail.Sto	orage Stor	rage Description
#1	498.0	00' 58,9	00 cf Cus	stom Stage Data (Prismatic)Listed below (Recalc)
Elevation (fee		Surf.Area (sq-ft)	Inc.Stor	
498.0	00	10,600		0 0
500.0	00	14,600	25,20	00 25,200
502.0	00	19,100	33,70	58,900
Device	Routing	Invert	Outlet De	evices
#1	Primary	498.00'	24.0" Ro	ound Culvert L= 50.0' Ke= 0.500
	•		Inlet / Out	utlet Invert= 498.00' / 496.00' S= 0.0400 '/' Cc= 0.900
			n= 0.012,	, Flow Area= 3.14 sf
#2	Device 1	498.00'		t. Orifice/Grate C= 0.600
#3	Device 1	499.90'	_	Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest	
#4	Device 1	501.75'	30.0" x 4	18.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=9.15 cfs @ 12.61 hrs HW=501.20' TW=488.32' (Dynamic Tailwater)


_1=Culvert (Passes 9.15 cfs of 22.45 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.56 cfs @ 8.42 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 8.58 cfs @ 4.92 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PC2: POND C2

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 377

Summary for Pond PC4: POND C4

7.400 ac, 22.70% Impervious, Inflow Depth = 4.28" for 25 year event Inflow Area =

Inflow 27.11 cfs @ 12.21 hrs, Volume= 2.640 af

Outflow = 15.73 cfs @ 12.46 hrs, Volume= 2.522 af, Atten= 42%, Lag= 14.7 min

Primary 15.73 cfs @ 12.46 hrs, Volume= 2.522 af

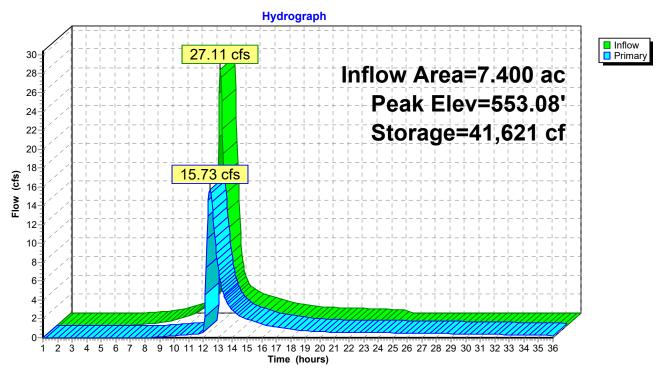
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 553.08' @ 12.46 hrs Surf.Area= 16,512 sf Storage= 41,621 cf

Plug-Flow detention time= 220.2 min calculated for 2.518 af (95% of inflow)

Center-of-Mass det. time= 196.1 min (1,008.1 - 812.0)

Volume	Inve	rt Avail.Sto	rage Storag	e Description	
#1	550.0	0' 57,7	00 cf Custor	n Stage Data (Prisi	matic)Listed below (Recalc)
Elevation		Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
550.0	00	10,700	0	0	
552.0	00	14,300	25,000	25,000	
554.0	00	18,400	32,700	57,700	
Device	Routing	Invert	Outlet Devic	es	
#1	Primary	550.00'	30.0" Roun	d Culvert L= 40.0'	Ke= 0.500
	,		Inlet / Outlet	Invert= 550.00' / 54	7.50' S= 0.0625 '/' Cc= 0.900
			n= 0.012, F	ow Area= 4.91 sf	
#2	Device 1	550.00'	4.0" Vert. O	rifice/Grate C= 0.6	600
#3	Device 1	551.80'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
			1.0' Crest He	eight	
#4	Device 1	553.75'	36.0" x 48.0	" Horiz. Orifice/Gra	te C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=15.69 cfs @ 12.46 hrs HW=553.08' TW=546.37' (Dynamic Tailwater)


-1=Culvert (Passes 15.69 cfs of 31.95 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.72 cfs @ 8.21 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 14.98 cfs @ 4.27 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PC4: POND C4

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 379

Summary for Pond PC6: POND C6

16.250 ac, 15.08% Impervious, Inflow Depth = 4.07" for 25 year event Inflow Area =

Inflow 59.96 cfs @ 12.19 hrs, Volume= 5.511 af

Outflow = 22.29 cfs @ 12.56 hrs, Volume= 5.400 af, Atten= 63%, Lag= 22.2 min

22.29 cfs @ 12.56 hrs, Volume= Primary 5.400 af

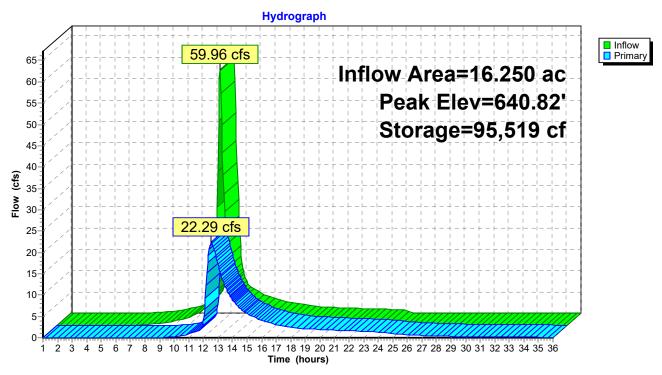
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 640.82' @ 12.56 hrs Surf.Area= 38,149 sf Storage= 95,519 cf

Plug-Flow detention time= 149.7 min calculated for 5.392 af (98% of inflow)

Center-of-Mass det. time= 138.6 min (954.0 - 815.4)

Volume	Inve	rt Avail.Sto	rage S	orage Des	cription	
#1	638.0	0' 143,0	00 cf C	istom Sta	ge Data (Pri	smatic)Listed below (Recalc)
Elevation	on :	Surf.Area		ore (Cum.Store	
(fee	et)	(sq-ft)	(cubic-fe	et) (cubic-feet)	
638.0	00	30,000		0	0	
640.0	00	35,500	65.	00	65,500	
642.0	00	42,000	77,	00	143,000	
		,	,		,	
Device	Routing	Invert	Outlet I	evices		
#1	Primary	638.00'	30.0" I	ound Cul	vert X 2.00	
	,		L = 50.0	CPP, sq	uare edge he	eadwall, Ke= 0.500
					•	34.00' S= 0.0800 '/' Cc= 0.900
					rea= 4.91 sf	0.0000
#2	Device 1	638.00'		•	e/Grate C=	0.600
#3	Device 1	639.00'				angular Weir 2 End Contraction(s)
#3	Device i	039.00		•	rested Rect	angular vven Z End Contraction(s)
	5	0.4.4 ==:		st Height		
#4	Device 1	641.75'	30.0" x	48.0" Hori	ız. Orifice/Gi	rate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=22.28 cfs @ 12.56 hrs HW=640.81' TW=639.09' (Dynamic Tailwater)


-1=Culvert (Passes 22.28 cfs of 59.12 cfs potential flow)

⁻²⁼Orifice/Grate (Orifice Controls 3.45 cfs @ 6.32 fps)

⁻³⁼Sharp-Crested Rectangular Weir (Weir Controls 18.83 cfs @ 5.36 fps)

⁻⁴⁼Orifice/Grate (Controls 0.00 cfs)

Pond PC6: POND C6

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 381

Summary for Pond PC7: POND C7

19.700 ac, 20.30% Impervious, Inflow Depth = 4.39" for 25 year event Inflow Area =

Inflow 79.98 cfs @ 12.17 hrs, Volume= 7.203 af

Outflow = 34.03 cfs @ 12.48 hrs, Volume= 6.946 af, Atten= 57%, Lag= 18.3 min

34.03 cfs @ 12.48 hrs, Volume= Primary 6.946 af

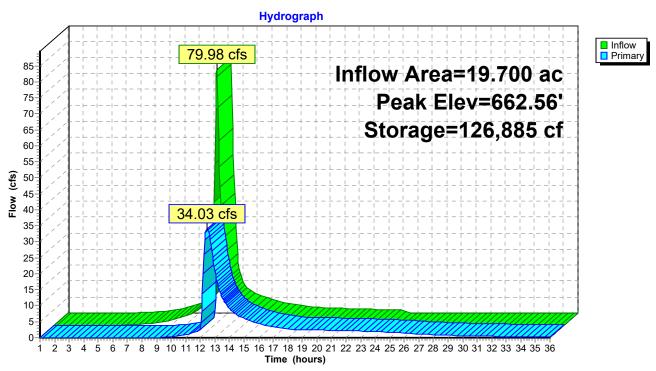
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 662.56' @ 12.48 hrs Surf.Area= 54,250 sf Storage= 126,885 cf

Plug-Flow detention time= 200.7 min calculated for 6.936 af (96% of inflow)

Center-of-Mass det. time= 181.1 min (987.3 - 806.2)

Volume	Inve	rt Avail.Sto	rage Storage	Description		
#1	660.0	0' 209,00	00 cf Custon	n Stage Data (Pr	rismatic)Listed below (Recalc)	
Elevation		Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
660.0	00	45,000	0	0		
662.0	00	52,000	97,000	97,000		
664.0	00	60,000	112,000	209,000		
Device	Routing	Invert	Outlet Device	es		
#1	Primary	660.00'	36.0" Round	d Culvert L= 60.	0' Ke= 0.500	
	,		Inlet / Outlet	Invert= 660.00' /	656.00' S= 0.0667 '/' Cc= 0.900	
			n= 0.012, Flo	ow Area= 7.07 sf		
#2	Device 1	660.00'	10.0" Vert. C	rifice/Grate C=	= 0.600	
#3	Device 1	661.30'	6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)			
			0.6' Crest He	ight	• ()	
#4	Device 1	663.75'	30.0" x 48.0"	' Horiz. Orifice/C	Grate C= 0.600 Limited to weir flow at low heads	

Primary OutFlow Max=33.93 cfs @ 12.48 hrs HW=662.56' TW=661.14' (Dynamic Tailwater)


-1=Culvert (Outlet Controls 33.93 cfs @ 7.10 fps)

2=Orifice/Grate (Passes < 3.13 cfs potential flow)

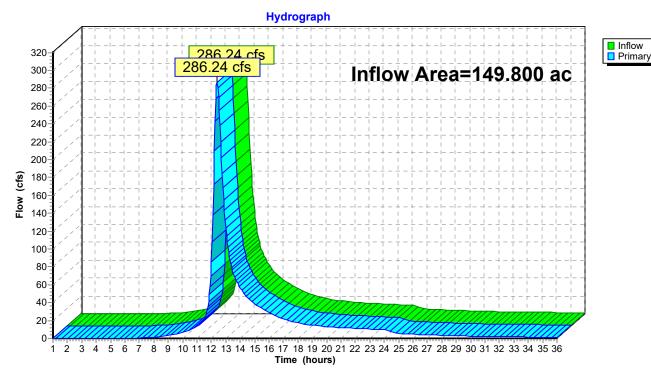
-3=Sharp-Crested Rectangular Weir (Passes < 33.42 cfs potential flow)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PC7: POND C7

Page 383

Summary for Pond XP: EXISTING POND


Inflow Area = 149.800 ac, 14.03% Impervious, Inflow Depth > 3.74" for 25 year event

Inflow = 286.24 cfs @ 12.39 hrs, Volume= 46.635 af

Primary = 286.24 cfs @ 12.39 hrs, Volume= 46.635 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Pond XP: EXISTING POND

Page 384

Time span=1.00-36.00 hrs, dt=0.05 hrs, 701 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment A: BASIN A	Runoff Area=37.220 ac 2.79% Impervious Runoff Depth=5.17" Flow Length=2,020' Tc=29.1 min CN=71 Runoff=129.29 cfs 16.051 af
Subcatchment B1: BASIN B1	Runoff Area=62.900 ac 11.46% Impervious Runoff Depth=6.14" Flow Length=4,780' Tc=19.0 min CN=79 Runoff=307.37 cfs 32.205 af
Subcatchment B10: BASIN 10	Runoff Area=16.750 ac 15.52% Impervious Runoff Depth=6.75" Flow Length=1,710' Tc=21.5 min CN=84 Runoff=83.92 cfs 9.422 af
Subcatchment B11: BASIN B11	Runoff Area=11.550 ac 3.46% Impervious Runoff Depth=6.51" Flow Length=1,030' Tc=12.2 min CN=82 Runoff=69.84 cfs 6.264 af
Subcatchment B12: BASIN B12	Runoff Area=24.200 ac 20.87% Impervious Runoff Depth=5.66" Flow Length=1,280' Tc=15.1 min CN=75 Runoff=120.14 cfs 11.413 af
Subcatchment B13: BASIN B13	Runoff Area=23.350 ac 0.00% Impervious Runoff Depth=5.17" Flow Length=2,650' Tc=32.1 min CN=71 Runoff=77.56 cfs 10.070 af
Subcatchment B14: BASIN 14	Runoff Area=10.000 ac 13.00% Impervious Runoff Depth=6.87" Flow Length=1,345' Tc=18.7 min CN=85 Runoff=53.77 cfs 5.726 af
Subcatchment B15: BASIN B15	Runoff Area=6.050 ac 9.09% Impervious Runoff Depth=6.75" Flow Length=550' Tc=7.1 min CN=84 Runoff=43.86 cfs 3.403 af
Subcatchment B16: BASIN B16	Runoff Area=3.650 ac 0.00% Impervious Runoff Depth=6.39" Flow Length=630' Tc=12.5 min CN=81 Runoff=21.55 cfs 1.943 af
Subcatchment B2: BASIN B2	Runoff Area=6.100 ac 13.11% Impervious Runoff Depth=5.90" Flow Length=675' Tc=13.9 min CN=77 Runoff=32.35 cfs 3.000 af
Subcatchment B3: BASIN B3	Runoff Area=26.650 ac 15.57% Impervious Runoff Depth=6.14" Flow Length=1,596' Tc=19.6 min CN=79 Runoff=128.58 cfs 13.645 af
Subcatchment B4: BASIN B4	Runoff Area=10.200 ac 13.73% Impervious Runoff Depth=6.51" Flow Length=795' Tc=13.0 min CN=82 Runoff=59.99 cfs 5.531 af
Subcatchment B5: BASIN B5	Runoff Area=5.500 ac 38.00% Impervious Runoff Depth=7.23" Flow Length=537' Tc=10.6 min CN=88 Runoff=37.47 cfs 3.316 af
Subcatchment B6: BASIN B6	Runoff Area=8.000 ac 27.12% Impervious Runoff Depth=6.99" Flow Length=895' Tc=13.1 min CN=86 Runoff=49.53 cfs 4.661 af
Subcatchment B7: BASIN 7	Runoff Area=13.450 ac 27.88% Impervious Runoff Depth=6.39" Flow Length=1,580' Tc=16.8 min CN=81 Runoff=71.32 cfs 7.158 af
Subcatchment B8: BASIN B8	Runoff Area=11.900 ac 2.94% Impervious Runoff Depth=6.14" Flow Length=2,100' Tc=22.3 min CN=79 Runoff=54.42 cfs 6.093 af
Subcatchment B9: BASIN B9	Runoff Area=5.200 ac 25.96% Impervious Runoff Depth=7.11" Flow Length=1,275' Tc=18.4 min CN=87 Runoff=28.82 cfs 3.082 af
Subcatchment C1: BASIN C1	Runoff Area=9.550 ac 19.90% Impervious Runoff Depth=6.75" Flow Length=972' Tc=10.9 min CN=84 Runoff=61.57 cfs 5.372 af

Avg. Flow Depth=1.73' Max Vel=8.67 fps Inflow=99.12 cfs 11.933 af

n=0.025 L=1,080.0' S=0.0194 '/' Capacity=575.53 cfs Outflow=98.43 cfs 11.931 af

Prepared by Kirk Rother, PE, PLLC

Reach RB11: RB11

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 385

Subcatchment C10: BASIN C10	Runoff Area=21.300 ac 16.90% Impervious Runoff Depth=6.87" Flow Length=2,285' Tc=15.0 min CN=85 Runoff=124.71 cfs 12.196 af
Subcatchment C11: BASIN C11	Runoff Area=9.550 ac 0.00% Impervious Runoff Depth=6.27" Flow Length=1,075' Tc=18.6 min CN=80 Runoff=47.83 cfs 4.986 af
Subcatchment C12: BASIN C12	Runoff Area=68.270 ac 0.00% Impervious Runoff Depth=5.90" Flow Length=3,260' Tc=19.0 min CN=77 Runoff=322.01 cfs 33.575 af
Subcatchment C13: BASIN C13	Runoff Area=68.220 ac 0.00% Impervious Runoff Depth=6.02" Flow Length=3,910' Tc=20.4 min CN=78 Runoff=318.27 cfs 34.240 af
Subcatchment C14: BASIN C12	Runoff Area=39.280 ac 0.00% Impervious Runoff Depth=5.90" Flow Length=3,650' Tc=12.4 min CN=77 Runoff=217.44 cfs 19.318 af
Subcatchment C2: BASIN C2	Runoff Area=5.950 ac 32.77% Impervious Runoff Depth=7.11" Flow Length=1,030' Tc=17.3 min CN=87 Runoff=33.72 cfs 3.527 af
Subcatchment C3: BASIN C3	Runoff Area=6.300 ac 0.00% Impervious Runoff Depth=6.27" Flow Length=905' Tc=19.4 min CN=80 Runoff=31.04 cfs 3.289 af
Subcatchment C4: BASIN C4	Runoff Area=7.400 ac 22.70% Impervious Runoff Depth=6.75" Flow Length=920' Tc=15.8 min CN=84 Runoff=41.95 cfs 4.162 af
Subcatchment C5: BASIN C5	Runoff Area=23.850 ac 0.00% Impervious Runoff Depth=4.93" Flow Length=1,840' Tc=18.8 min CN=69 Runoff=95.19 cfs 9.805 af
Subcatchment C6: BASIN C6	Runoff Area=16.250 ac 15.08% Impervious Runoff Depth=6.51" Flow Length=1,470' Tc=13.6 min CN=82 Runoff=94.25 cfs 8.812 af
Subcatchment C7: BASIN C7	Runoff Area=19.700 ac 20.30% Impervious Runoff Depth=6.87" Flow Length=1,860' Tc=12.6 min CN=85 Runoff=122.74 cfs 11.280 af
Subcatchment C8: BASIN C8	Runoff Area=11.050 ac 4.25% Impervious Runoff Depth=3.85" Flow Length=730' Tc=16.5 min CN=60 Runoff=35.69 cfs 3.547 af
Subcatchment C9: BASIN C9	Runoff Area=3.800 ac 0.00% Impervious Runoff Depth=3.97" Flow Length=1,030' Tc=11.0 min CN=61 Runoff=14.74 cfs 1.257 af
Subcatchment D: BASIN D	Runoff Area=2.200 ac 0.00% Impervious Runoff Depth=6.02" Flow Length=1,702' Tc=14.9 min CN=78 Runoff=11.61 cfs 1.104 af
Reach AP2: ANALYSIS POINT 2	Inflow=1,042.52 cfs 140.778 af Outflow=1,042.52 cfs 140.778 af
Reach AP3: ANALYSIS POINT 3	Inflow=1,243.98 cfs 154.523 af Outflow=1,243.98 cfs 154.523 af
Reach AP4: ANALYSIS POINT 4	Inflow=11.61 cfs 1.104 af Outflow=11.61 cfs 1.104 af
Reach RB1: RB1	Avg. Flow Depth=3.61' Max Vel=18.45 fps Inflow=634.19 cfs 89.848 af n=0.025 L=1,055.0' S=0.0360 '/' Capacity=783.31 cfs Outflow=633.89 cfs 89.836 af

Clovewood Post Developed2022 ABCD
Prepared by Kirk Rother, PE, PLLC
HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 386

Reach RB13: RB13	Avg. Flow Depth=2.13' Max Vel=12.60 fps Inflow=130.52 cfs 21.156 af n=0.025 L=335.0' S=0.0358 '/' Capacity=476.13 cfs Outflow=130.51 cfs 21.155 af
Reach RB14: RB14	Avg. Flow Depth=1.11' Max Vel=16.27 fps Inflow=53.77 cfs 5.726 af n=0.020 L=1,100.0' S=0.0864 '/' Capacity=182.82 cfs Outflow=53.67 cfs 5.726 af
Reach RB15: RB15	Avg. Flow Depth=1.91' Max Vel=5.12 fps Inflow=43.86 cfs 3.403 af n=0.030 L=600.0' S=0.0100 '/' Capacity=105.64 cfs Outflow=41.85 cfs 3.403 af
Reach RB16: RB16	Avg. Flow Depth=2.27' Max Vel=13.30 fps Inflow=140.08 cfs 23.097 af n=0.025 L=340.0' S=0.0382 '/' Capacity=247.88 cfs Outflow=140.07 cfs 23.096 af
Reach RB2: RB2	Avg. Flow Depth=0.56' Max Vel=7.72 fps Inflow=9.13 cfs 2.686 af n=0.025 L=460.0' S=0.0696 '/' Capacity=131.26 cfs Outflow=9.12 cfs 2.685 af
Reach RB3: RB3	Avg. Flow Depth=3.10' Max Vel=19.34 fps Inflow=527.34 cfs 76.376 af n=0.025 L=885.0' S=0.0475 '/' Capacity=899.13 cfs Outflow=527.31 cfs 76.368 af
Reach RB4: RB4	Avg. Flow Depth=1.82' Max Vel=7.08 fps Inflow=82.27 cfs 9.175 af n=0.030 L=340.0' S=0.0176 '/' Capacity=99.85 cfs Outflow=82.25 cfs 9.175 af
Reach RB6: RB6	Avg. Flow Depth=3.40' Max Vel=6.99 fps Inflow=366.74 cfs 55.139 af n=0.025 L=800.0' S=0.0050 '/' Capacity=516.81 cfs Outflow=365.18 cfs 55.123 af
Reach RB7: RB7	Avg. Flow Depth=2.94' Max Vel=10.20 fps Inflow=257.72 cfs 41.197 af n=0.025 L=285.0' S=0.0140 '/' Capacity=488.96 cfs Outflow=257.74 cfs 41.194 af
Reach RC1: RC1	Avg. Flow Depth=6.20' Max Vel=20.62 fps Inflow=1,201.89 cfs 149.153 af n=0.025 L=280.0' S=0.0321 '/' Capacity=566.54 cfs Outflow=1,202.21 cfs 149.151 af
Reach RC10: RC10	Avg. Flow Depth=0.91' Max Vel=5.59 fps Inflow=64.85 cfs 12.128 af n=0.030 L=600.0' S=0.0250 '/' Capacity=79.34 cfs Outflow=64.67 cfs 12.127 af
Reach RC11A: RC11-A	Avg. Flow Depth=5.05' Max Vel=24.33 fps Inflow=1,086.62 cfs 133.547 af n=0.025 L=380.0' S=0.0500 '/' Capacity=706.60 cfs Outflow=1,086.85 cfs 133.545 af
Reach RC11B: RC11-B	Avg. Flow Depth=2.31' Max Vel=25.23 fps Inflow=356.34 cfs 37.122 af n=0.025 L=660.0' S=0.1227 '/' Capacity=1,107.03 cfs Outflow=355.16 cfs 37.122 af
Reach RC11C: RC11-C	Avg. Flow Depth=4.57' Max Vel=18.80 fps Inflow=730.76 cfs 96.426 af n=0.025 L=125.0' S=0.0320 '/' Capacity=565.28 cfs Outflow=730.94 cfs 96.425 af
Reach RC12: RC12	Avg. Flow Depth=2.04' Max Vel=27.71 fps Inflow=322.01 cfs 33.575 af n=0.020 L=565.0' S=0.1097 '/' Capacity=1,308.49 cfs Outflow=322.08 cfs 33.575 af
Reach RC13: RC13	Avg. Flow Depth=2.58' Max Vel=19.90 fps Inflow=318.27 cfs 34.240 af n=0.025 L=530.0' S=0.0679 '/' Capacity=434.48 cfs Outflow=317.56 cfs 34.240 af
Reach RC14: RC14	Avg. Flow Depth=2.20' Max Vel=21.49 fps Inflow=217.44 cfs 19.318 af n=0.025 L=460.0' S=0.1043 '/' Capacity=409.49 cfs Outflow=217.26 cfs 19.318 af
Reach RC2: RC2	Avg. Flow Depth=4.94' Max Vel=26.18 fps Inflow=1,134.38 cfs 138.531 af n=0.025 L=510.0' S=0.0588 '/' Capacity=766.42 cfs Outflow=1,134.53 cfs 138.529 af
Reach RC3: RC3	Avg. Flow Depth=0.61' Max Vel=12.14 fps Inflow=29.43 cfs 4.030 af n=0.020 L=175.0' S=0.0914 '/' Capacity=590.61 cfs Outflow=29.44 cfs 4.030 af

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 387

Avg. Flow Depth=0.49' Max Vel=8.59 fps Inflow=29.43 cfs 4.031 af Reach RC4: RC4

n=0.030 L=230.0' S=0.1348 '/' Capacity=137.70 cfs Outflow=29.43 cfs 4.030 af

Reach RC5A: RC5-A Avg. Flow Depth=3.88' Max Vel=24.97 fps Inflow=635.21 cfs 86.624 af

n=0.025 L=800.0' S=0.0725 '/' Capacity=677.36 cfs Outflow=635.57 cfs 86.621 af

Avg. Flow Depth=3.48' Max Vel=25.36 fps Inflow=547.37 cfs 65.684 af Reach RC5B: RC5-B n=0.025 L=655.0' S=0.0840 '/' Capacity=728.98 cfs Outflow=547.71 cfs 65.683 af

Avg. Flow Depth=3.51' Max Vel=20.04 fps Inflow=503.92 cfs 53.558 af Reach RC5C: RC5-C n=0.025 L=180.0' S=0.0500 '/' Capacity=372.77 cfs Outflow=504.02 cfs 53.558 af

Avg. Flow Depth=1.39' Max Vel=15.03 fps Inflow=98.43 cfs 20.942 af Reach RC6: RC6 n=0.025 L=600.0' S=0.0800 '/' Capacity=893.79 cfs Outflow=98.45 cfs 20.940 af

Reach RC7: RC7 Avg. Flow Depth=1.36' Max Vel=9.27 fps Inflow=49.29 cfs 10.996 af n=0.025 L=400.0' S=0.0325 '/' Capacity=453.52 cfs Outflow=49.29 cfs 10.995 af

Avg. Flow Depth=1.53' Max Vel=12.01 fps Inflow=322.08 cfs 33.575 af Reach RC8: RC8 n=0.030 L=820.0' S=0.0585 '/' Capacity=576.22 cfs Outflow=321.40 cfs 33.575 af

Reach RC9: RC9 Avg. Flow Depth=1.31' Max Vel=9.38 fps Inflow=56.64 cfs 12.252 af n=0.025 L=270.0' S=0.0333'/' Capacity=576.94 cfs Outflow=56.59 cfs 12.251 af

Peak Elev=588.55' Inflow=130.52 cfs 21.156 af Pond B13P: ARCH CULV

120.0" x 48.0", R=96.0" Arch Culvert n=0.012 L=85.0' S=0.0588 '/' Outflow=130.52 cfs 21.156 af

Pond B16P: ARCH CULV Peak Elev=571.68' Inflow=140.08 cfs 23.097 af

120.0" x 48.0", R=96.0" Arch Culvert n=0.012 L=65.0' S=0.0308 '/' Outflow=140.08 cfs 23.097 af

Pond B4P: 36" HDPE Peak Elev=560.34' Inflow=82.27 cfs 9.175 af

36.0" Round Culvert n=0.012 L=68.0' S=0.0100 '/' Outflow=82.27 cfs 9.175 af

Pond C11P: ARCH CULV Peak Elev=517.75' Inflow=1,134.38 cfs 138.531 af

216.0" x 72.0", R=156.0" Arch Culvert n=0.020 L=60.0' S=0.0300 '/' Outflow=1,134.38 cfs 138.531 af

Pond C12P: (2) 54" HDPE Peak Elev=734.17' Inflow=322.01 cfs 33.575 af

54.0" Round Culvert x 2.00 n=0.012 L=75.0' S=0.0700 '/' Outflow=322.01 cfs 33.575 af

Pond C13P: ARCH CULV Peak Elev=701.13' Inflow=318.27 cfs 34.240 af

120.0" x 60.0", R=60.0" Arch Culvert n=0.025 L=60.0' S=0.1000'/ Outflow=318.27 cfs 34.240 af

Peak Elev=707.29' Inflow=217.44 cfs 19.318 af Pond C14P: (2) 48" HDPE

48.0" Round Culvert x 2.00 n=0.012 L=60.0' S=0.0333 '/' Outflow=217.44 cfs 19.318 af

Peak Elev=490.72' Inflow=75.20 cfs 10.624 af Pond C2P: 48" HDPE

48.0" Round Culvert n=0.012 L=206.0' S=0.0100 '/' Outflow=75.20 cfs 10.624 af

Peak Elev=503.41' Inflow=58.10 cfs 7.319 af Pond C3P: 36" HDPE 36.0" Round Culvert n=0.012 L=250.0' S=0.0479 '/' Outflow=58.10 cfs 7.319 af

Peak Elev=550.44' Inflow=730.76 cfs 96.426 af

Pond C5P: (2) 60" CULV 60.0" Round Culvert x 2.00 n=0.012 L=62.0' S=0.0113 '/' Outflow=730.76 cfs 96.426 af

Peak Elev=617.54' Inflow=356.34 cfs 37.122 af Pond C8P: ARCH CULV

144.0" x 48.0", R=96.0" Arch Culvert n=0.012 L=50.0' S=0.0800 '/' Outflow=356.34 cfs 37.122 af

Primary=527.34 cfs 76.376 af

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

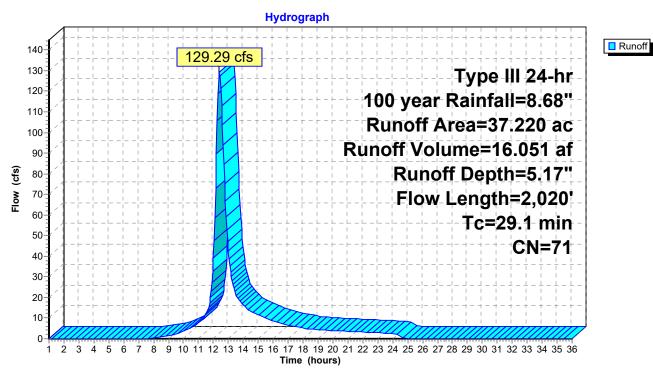
HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC Page 388

Pond C9P: 48" HDPE	Peak Elev=650.92' Inflow=56.64 cfs 12.252 af 48.0" Round Culvert n=0.012 L=55.0' S=0.0182'/ Outflow=56.64 cfs 12.252 af
Pond PB11: POND B11	Peak Elev=581.74' Storage=84,308 cf Inflow=117.09 cfs 11.989 af Outflow=99.12 cfs 11.933 af
Pond PB12: POND B12	Peak Elev=599.46' Storage=182,945 cf Inflow=120.14 cfs 11.413 af Outflow=53.92 cfs 11.086 af
Pond PB2: POND B2	Peak Elev=507.63' Storage=62,526 cf Inflow=32.35 cfs 3.000 af Outflow=9.13 cfs 2.686 af
Pond PB3: POND B3	Peak Elev=524.38' Storage=144,993 cf Inflow=128.58 cfs 13.645 af Outflow=107.06 cfs 13.481 af
Pond PB4: POND B4	Peak Elev=561.81' Storage=71,397 cf Inflow=59.99 cfs 5.531 af Outflow=46.40 cfs 5.488 af
Pond PB5: POND B5	Peak Elev=565.88' Storage=38,020 cf Inflow=37.47 cfs 3.316 af Outflow=32.03 cfs 3.186 af
Pond PB6: POND B6	Peak Elev=659.64' Storage=66,075 cf Inflow=49.53 cfs 4.661 af Outflow=35.43 cfs 4.523 af
Pond PB7: POND B7	Peak Elev=563.78' Storage=138,821 cf Inflow=71.32 cfs 7.158 af Outflow=29.79 cfs 6.169 af
Pond PC10: POND C10	Peak Elev=675.88' Storage=175,927 cf Inflow=124.71 cfs 12.196 af Outflow=64.85 cfs 12.128 af
Pond PC2: POND C2	Peak Elev=501.94' Storage=57,679 cf Inflow=33.72 cfs 3.527 af Outflow=21.00 cfs 3.305 af
Pond PC4: POND C4	Peak Elev=553.74' Storage=53,051 cf Inflow=41.95 cfs 4.162 af Outflow=29.43 cfs 4.031 af
Pond PC6: POND C6	Peak Elev=641.88' Storage=137,963 cf Inflow=94.25 cfs 8.812 af Outflow=42.66 cfs 8.691 af
Pond PC7: POND C7	Peak Elev=663.60' Storage=185,178 cf Inflow=122.74 cfs 11.280 af Outflow=49.29 cfs 10.996 af
Pond XP: EXISTING POND	Inflow=527.34 cfs 76.376 af

Total Runoff Area = 595.340 ac Runoff Volume = 299.451 af Average Runoff Depth = 6.04" 91.56% Pervious = 545.080 ac 8.44% Impervious = 50.260 ac

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 389


Summary for Subcatchment A: BASIN A

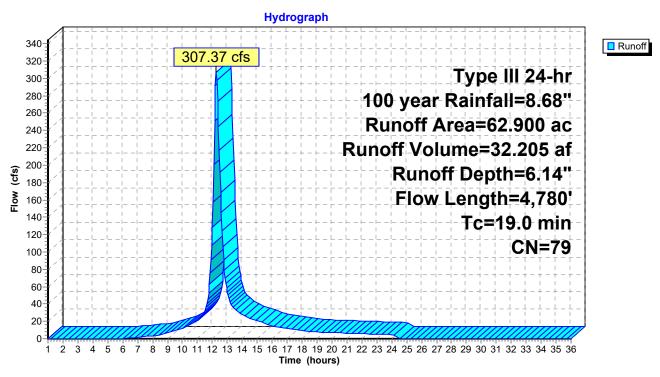
Runoff = 129.29 cfs @ 12.40 hrs, Volume= 16.051 af, Depth= 5.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area ((ac) (CN	Desc	cription		
*	7.3	350	89	Wetl	ands		
*			98	Impe	rvious Sui	rfaces	
			80			over, Good,	HSG D
			30		ds, Good,		
			55		ds, Good,		
			70		ds, Good,		
			77		ds, Good,		
			30		h, Good, F		
			48		h, Good, F		
			65 70		h, Good, F		
*			73 75		h, Good, F		
*			75 84		oads, HS0 oads, HS0		
*			88		oads, HS0		
*			90		oads, HS0		
_			71		hted Aver		
		180			1% Pervio		
	1.040 2.79% Impervious Area					ous Area	
					·		
	Тс	Length		Slope	Velocity	Capacity	Description
_	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
	20.5	100	0.	0200	0.08		Sheet Flow,
			_				Woods: Light underbrush n= 0.400 P2= 3.50"
	5.1	690	0.	0200	2.28		Shallow Concentrated Flow,
			_		4.00		Unpaved Kv= 16.1 fps
	2.7	690	0.	0700	4.26		Shallow Concentrated Flow,
	0.0	E40	0	0400	40.04	450.70	Unpaved Kv= 16.1 fps
	8.0	540	U.	0400	10.91	152.70	Parabolic Channel, W=7.00' D=3.00' Area=14.0 sf Perim=9.6' n= 0.035
_	20.4	2.000	т.	4-1			W-1.00 D-3.00 Alea-14.0 St Felill-3.0 II- 0.035
	29.1	2,020	10	otal			

Subcatchment A: BASIN A

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

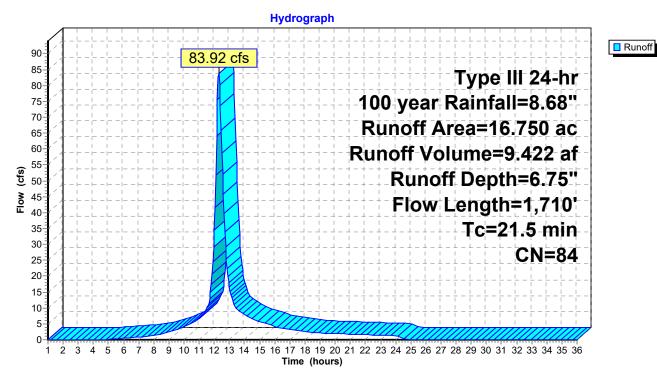

Page 391

Summary for Subcatchment B1: BASIN B1

Runoff 307.37 cfs @ 12.26 hrs, Volume= 32.205 af, Depth= 6.14"

	Area	(ac)	CN	Desc	cription						
*	3.	820	98	WAT	ER SURF	ACE					
*	11.	670	89	WET	LANDS						
*		550	35	OLD	COURSE	, A					
*		500	90		ROAD						
		220	77		ds, Good,	HSG D					
*		000	85	LOT							
*		400	98		PPING CI						
		000	80		>75% Grass cover, Good, HSG D						
		950	78			grazed, HS					
		000	30			grazed, HS	G A				
*		800	30		ds, Good,	HSG A					
*		140	98		ing Road						
_		850	98			ent Facility					
		900	79		hted Aver						
		690			4% Pervio	,					
	7.	210		11.40	o% imperv	ious Area					
	Тс	Length	, (Slope	Velocity	Capacity	Description				
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	Description				
_	13.2	100		.0600	0.13	(013)	Sheet Flow,				
	13.2	100	<i>)</i> 0.	.0000	0.13		Woods: Light underbrush n= 0.400 P2= 3.50"				
	1.3	270	0	0450	3.42		Shallow Concentrated Flow,				
	1.0	210	<i>,</i> 0.	0400	0.42		Unpaved Kv= 16.1 fps				
	2.3	1,665	5 0.	0140	12.21	488.35	Parabolic Channel,				
		.,					W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025				
	2.2	2,745	5 0.	0400	20.64	825.46	Parabolic Channel,				
	-	,					W=15.00' D=4.00' Area=40.0 sf Perim=17.5' n= 0.025				
	19.0	4,780) T	otal							
		.,. •									

Subcatchment B1: BASIN B1


Page 393

Summary for Subcatchment B10: BASIN 10

Runoff = 83.92 cfs @ 12.29 hrs, Volume= 9.422 af, Depth= 6.75"

_	Area	(ac) (CN	Desc	cription					
*	6.	250	85	LOT	S, D					
*	2.100 98 ROADS, W			DS, WALK	KS					
*	0.	500	98	BUILDING, PARKING						
	2.	350	77	Woo	ds, Good,	HSG D				
	3.	870	78	Mea	dow, non-g	grazed, HS	G D			
	1.	680	80	>75%	% Grass co	over, Good,	HSG D			
	16.	750	84	Weig	hted Aver	age				
	14.	150		84.4	8% Pervio	us Area				
	2.	600		15.5	2% Imperv	∕ious Area				
	Тс	Length		Slope	Velocity	Capacity	Description			
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)				
	18.0	100	0.	0100	0.09		Sheet Flow,			
							Grass: Dense n= 0.240 P2= 3.50"			
	1.4	350	0.	0650	4.10		Shallow Concentrated Flow,			
							Unpaved Kv= 16.1 fps			
	0.2	30	0.	0250	3.21		Shallow Concentrated Flow,			
							Paved Kv= 20.3 fps			
	1.5	890	0.	0250	10.18	17.99	Pipe Channel,			
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'			
							n= 0.012			
	0.4	340	0.	0400	14.86	99.05	Parabolic Channel,			
_							W=5.00' D=2.00' Area=6.7 sf Perim=6.7' n= 0.020			
	21.5	1,710	To	otal						

Subcatchment B10: BASIN 10

Summary for Subcatchment B11: BASIN B11

Runoff = 69.84 cfs @ 12.17 hrs, Volume= 6.264 af, Depth= 6.51"

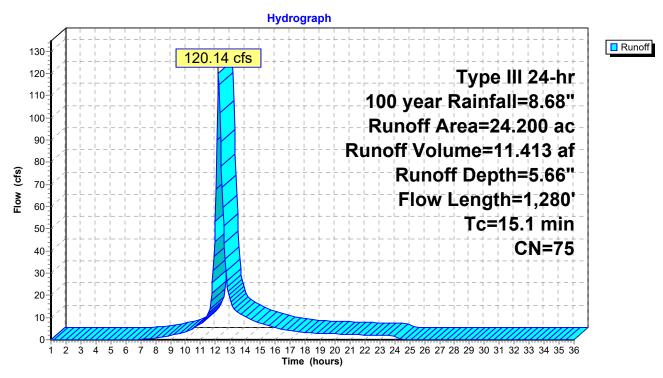
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area	(ac)	CN	Desc	cription					
*	0.	0.400 98 POND								
*	5.	350	85	LOT	OTS, D					
	2.	800	80	>75%	6 Grass co	over, Good	, HSG D			
	3.	000	77	Woo	ds, Good,	HSG D				
11.550 82 Weighted Average										
	11.150 96.54% Pervious Area									
	0.400			3.46	% Impervi	ous Area				
	Тс	Length		Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	11.8	100) (0.0800	0.14		Sheet Flow,			
							Woods: Light underbrush n= 0.400 P2= 3.50"			
	0.4	930) (0.0864	38.09	304.76	Parabolic Channel,			
							W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.012			
	12.2	1,030) 1	Γotal						

Subcatchment B11: BASIN B11

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

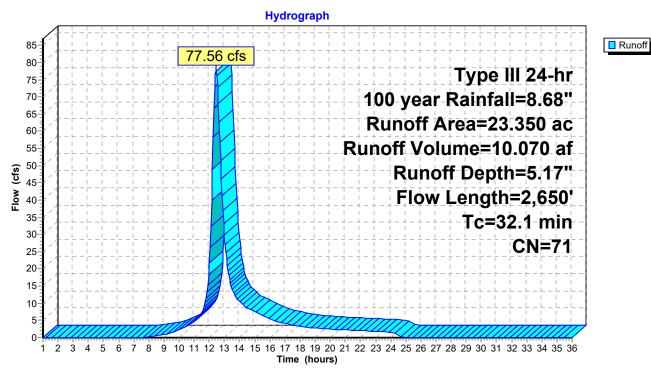

Page 396

Summary for Subcatchment B12: BASIN B12

Runoff 120.14 cfs @ 12.21 hrs, Volume= 11.413 af, Depth= 5.66"

	Area (ac) C	N Des	cription		
*	1.0	000	98 PON	ID		
*	3.0	050 9	8 ROA	DS, WAL	(S	
*	3.0	000 6	0 LOT	S, A		
	1.0	070 3	39 >759	% Grass co	over, Good,	HSG A
*	3.6	350 8	S5 LOT	S, D		
*	1.0	000	8 BUIL	DING, PA	RKING	
	5.8	350 8	30 >759	% Grass co	over, Good,	HSG D
	3.0	000	77 Woo	ds, Good,	HSG D	
					grazed, HS	G A
*				Acess Ro	ad	
	24.2			ghted Aver		
	19.1			3% Pervio		
	5.050 20.87% Impervious Are			7% Imperv	vious Area	
	_		01	\	0 ''	D 1.6
		Length	Slope	Velocity		Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	13.2	100	0.0600	0.13		Sheet Flow,
	0.7	400	0.0005	4.00		Woods: Light underbrush n= 0.400 P2= 3.50"
	0.7	160	0.0625	4.03		Shallow Concentrated Flow,
	0.0	0.5	0.0000	0.50		Unpaved Kv= 16.1 fps
	0.3	65	0.0300	3.52		Shallow Concentrated Flow,
	0.9	890	0.0700	17.04	30.11	Paved Kv= 20.3 fps Pipe Channel,
	0.9	090	0.0700	17.04	30.11	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.012
	0.0	65	0.1200	24.02	128.11	Parabolic Channel,
	0.0	03	0.1200	27.02	120.11	W=4.00' D=2.00' Area=5.3 sf Perim=5.9' n= 0.020
_	15.1	1,280	Total			77 1.00 D 2.00 7400 0.0 01 1 011111 0.0 11 0.020
	13.1	1,200	i Ulai			

Subcatchment B12: BASIN B12


Summary for Subcatchment B13: BASIN B13

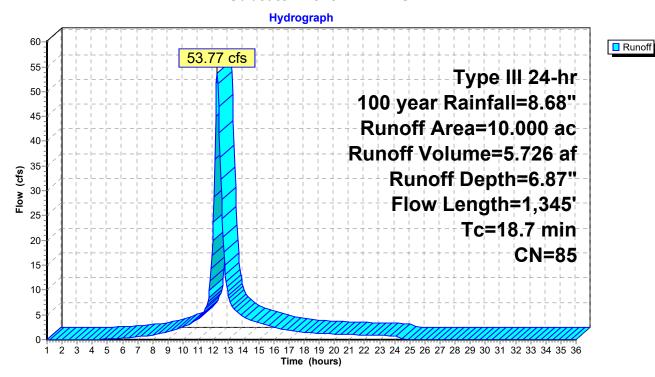
Runoff = 77.56 cfs @ 12.45 hrs, Volume= 10.070 af, Depth= 5.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area	(ac)	CN	Desc	ription		
*	2.	300	60	LOTS	S, A		
*	4.	000	85	LOTS	S, D		
*	1.	420	89	WET	LANDS		
	0.	900	39	>75%	6 Grass co	over, Good,	HSG A
	1.	450	80	>75%	6 Grass co	over, Good,	HSG D
	10.	830	77		ds, Good,		
	2.	450	30	Mead	dow, non-g	grazed, HS	G A
	23.	350	71	Weig	hted Aver	age	
	23.	350			00% Pervi		
	Tc	Length		Slope	Velocity	Capacity	Description
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	·
	20.5	100	0.	0200	0.08		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	11.2	2,020	0.	0350	3.01		Shallow Concentrated Flow,
		,					Unpaved Kv= 16.1 fps
	0.4	530	0.	0750	24.88	298.60	Parabolic Channel,
							W=6.00' D=3.00' Area=12.0 sf Perim=8.9' n= 0.020
	32.1	2,650	T	otal			

Subcatchment B13: BASIN B13

Summary for Subcatchment B14: BASIN 14

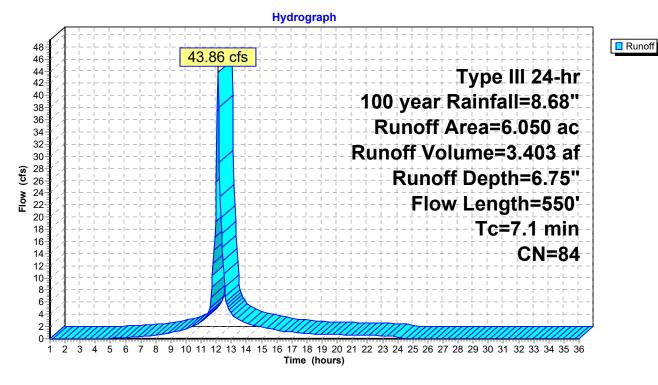

Runoff = 53.77 cfs @ 12.25 hrs, Volume= 5.726 af, Depth= 6.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area (ac) CN Desc			cription		
*	6.	250	35 LOT	S, D		
*				AĎS, WALI	KS	
					over, Good,	HSG D
				ds, Good,		
_				ghted Aver		
	10.000 85			0% Pervio	•	
	8.700 1.300			0% Fervio		
	١.	300	13.0	o /6 iiiipei (nous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
_					(013)	Shoot Flow
	15.6	100	0.0400	0.11		Sheet Flow,
	0.4	700	0.0000	4.00		Woods: Light underbrush n= 0.400 P2= 3.50"
	2.4	700	0.0900	4.83		Shallow Concentrated Flow,
	0.0	70	0.0400	4.00		Unpaved Kv= 16.1 fps
	0.3	70	0.0400	4.06		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.4	475	0.0760	21.51	67.56	Pipe Channel,
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
_						n= 0.012

18.7 1,345 Total

Subcatchment B14: BASIN 14

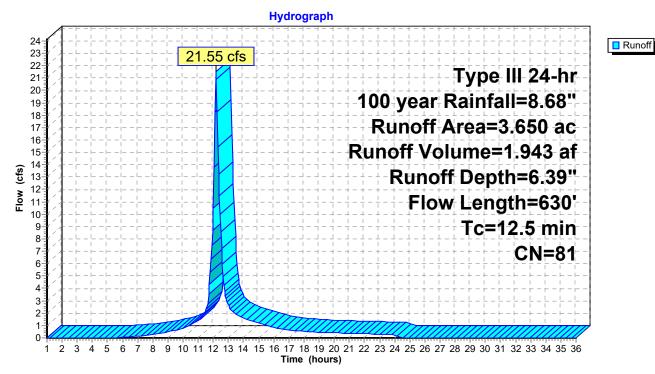

Page 400

Summary for Subcatchment B15: BASIN B15

Runoff = 43.86 cfs @ 12.10 hrs, Volume= 3.403 af, Depth= 6.75"

	Area	(ac) (N Des	cription		
*	3.	050	85 LO	ΓS, D		
*	0.400 98 ROADS, V			ADS, WALI	KS	
*	0.	150		LDING		
	1.	000	80 >75	% Grass c	over, Good	, HSG D
	1.	000	77 Wo	ods, Good,	HSG D	
	0.	450	78 Mea	adow, non-	grazed, HS	G D
	6.	050	84 We	ighted Aver	age	
	5.	500		91% Pervio	•	
		550	9.09	9% Impervi	ous Area	
				•		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	6.0	100	0.0600	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	0.5	140	0.0800	4.55		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	40	0.0250	10.18	17.99	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.012
	0.2	80	0.3000	8.82		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.3	190	0.0350	12.05	21.29	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_						n= 0.012
	7.1	550	Total			

Subcatchment B15: BASIN B15


Summary for Subcatchment B16: BASIN B16

Runoff = 21.55 cfs @ 12.17 hrs, Volume= 1.943 af, Depth= 6.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

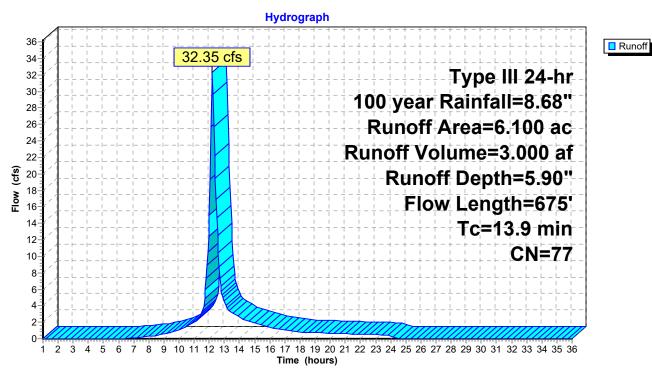
	Area	(ac) (ON Des	cription					
*	1.950 85 LOTS, D								
	0.	200	80 >75	% Grass c	over, Good	, HSG D			
	1.	350	77 Wo	ods, Good,	HSG D				
	0.	150	78 Me	adow, non-	grazed, HS	G D			
	3.650 81 Weighted Average								
	3.650 100.00% Pervious Area								
	Тс	Length	•	•	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.8	100	0.1000	0.15		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.50"			
	1.7	530	0.1100	5.34		Shallow Concentrated Flow,			
_						Unpaved Kv= 16.1 fps			
	12.5	630	Total						

Subcatchment B16: BASIN B16

Clovewood Post Developed2022 ABCD

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC


Page 403

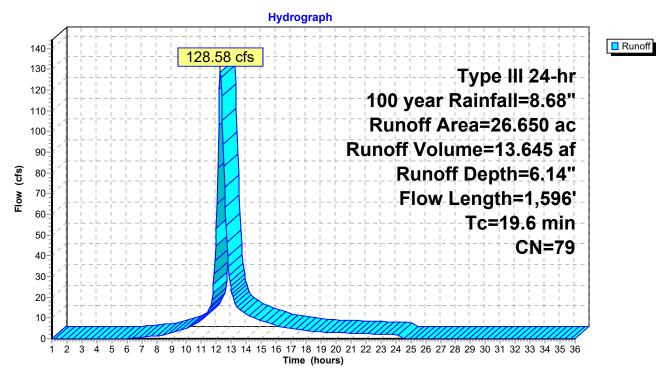
Summary for Subcatchment B2: BASIN B2

Runoff 32.35 cfs @ 12.19 hrs, Volume= 3.000 af, Depth= 5.90"

	Area	(ac) C	N Des	cription		
*	0.	500	98 ROA	DS, WALI	KS	
	0.	550		ds, Good,		
	0.	750	30 >75	% Grass c	over, Good,	, HSG D
*	2.	900		S, D		
*	0.3	300	98 Pon	d		
*	0.:	200 :	30 LOT	S, A		
					grazed, HS	G A
	0.	700			grazed, HS	
	6.	100		ghted Aver		
		300		9% Pervio		
	0.	800	13.1	1% Imperv	ious Area	
				•		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	12.4	100	0.0700	0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.5	200	0.1500	6.24		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	45	0.5000	14.35		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.8	190	0.0600	3.94		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	140	0.0869	18.98	33.55	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.012
	13.9	675	Total			

Subcatchment B2: BASIN B2

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

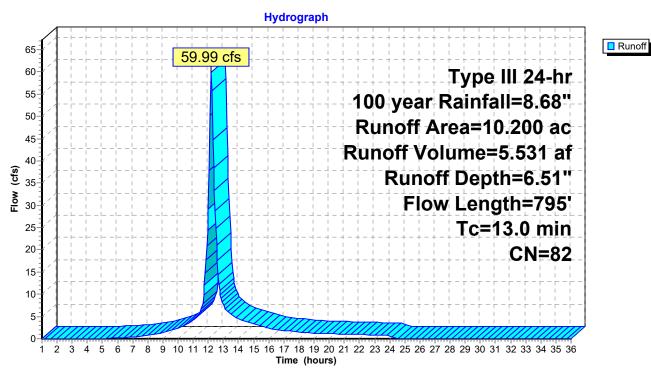

Page 405

Summary for Subcatchment B3: BASIN B3

Runoff = 128.58 cfs @ 12.26 hrs, Volume= 13.645 af, Depth= 6.14"

	Area	(ac)	CN	Desc	cription		
*	0.	600	98	PON	ID		
*	0.	350	30	Mea	dow, non-	grazed, HS	G A
*	3.	550	98	ROA	DS, WALI	KS	
	3.	000	80			over, Good,	HSG D
		400	77		ds, Good,		
*		650	85	LOT			
		000	78		,	grazed, HS	G D
		300	30		ds, Good,		-
*		350	60	LOT			
		450	39			over, Good,	HSG A
_		650	79		hted Aver		
		500	15		3% Pervio		
		150		-	-	/ious Area	
	٦.	100		10.0	7 70 IIIIpci v	nous Arca	
	Tc	Length	n 5	Slope	Velocity	Capacity	Description
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	Besonption
_	17.5	100		0300	0.10	(013)	Sheet Flow,
	17.5	100	0.0	0300	0.10		Woods: Light underbrush n= 0.400 P2= 3.50"
	0.6	100		0300	2.79		Shallow Concentrated Flow,
	0.0	100	0.0	0300	2.19		Unpaved Kv= 16.1 fps
	0.1	36	. 0	0200	9.11	16.09	Pipe Channel,
	0.1	30	0.0	0200	9.11	10.09	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.012
	0.3	100	0.	1000	5.09		Shallow Concentrated Flow,
	0.5	100	0.	1000	5.09		Unpaved Kv= 16.1 fps
	0.4	240		0427	12 21	00 51	
	0.4	310	0.0	0427	13.31	23.51	Pipe Channel, 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.012
	0.2	220		0550	15.40	164.31	
	0.2	230	0.0	USSU	15.40	104.31	Parabolic Channel,
	0.4	F0(0000	22.47	70.04	W=8.00' D=2.00' Area=10.7 sf Perim=9.2' n= 0.025
	0.4	520	0.0	0830	22.47	70.61	Pipe Channel, 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
	0.4	000		4000	07.00	050.00	n= 0.012
	0.1	200	J U.	1000	27.22	653.23	Parabolic Channel,
_							W=12.00' D=3.00' Area=24.0 sf Perim=13.8' n= 0.025
	19.6	1,596	i To	otal			

Subcatchment B3: BASIN B3


Page 407

Summary for Subcatchment B4: BASIN B4

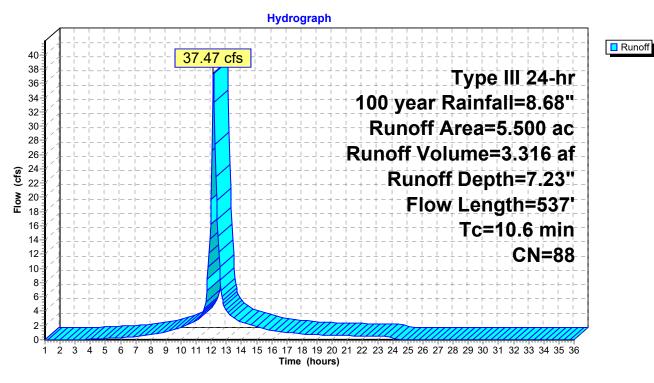
Runoff = 59.99 cfs @ 12.18 hrs, Volume= 5.531 af, Depth= 6.51"

	Area	(ac) C	N Des	cription		
*	0.	350	98 PON	ID		
*	0.	350	98 ROA	DS, WALI	KS	
*	2.	100	85 LOT	S, D		
*	0.	500	98 BUII	DINGS		
*	0.	200	98 PAR	KING		
	1.	700	80 >75°	% Grass c	over, Good,	HSG D
	4.	050	77 Woo	ds, Good,	HSG D	
_	0.	950	78 Mea	dow, non-	grazed, HS	G D
	10.	200	82 Wei	ghted Aver	age	
	8.	800	86.2	7% Pervio	us Area	
	1.400 13.73% Impervious Area				/ious Area	
	Тс	Length		Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	11.8	100	0.0800	0.14		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.4	180	0.2000	7.20		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.5	220	0.0150	7.62	60.95	Parabolic Channel,
						W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025
	0.3	295	0.0700	17.04	30.11	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_						n= 0.012
	13.0	795	Total			

Subcatchment B4: BASIN B4

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

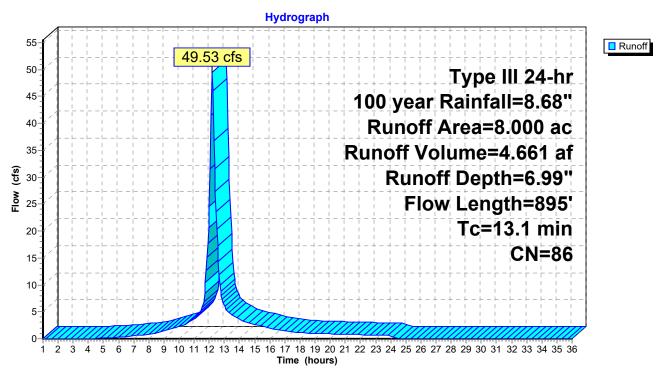

Page 409

Summary for Subcatchment B5: BASIN B5

Runoff 37.47 cfs @ 12.15 hrs, Volume= 3.316 af, Depth= 7.23"

	Area ((ac) (ON D	escription		
*	0.3	340	98 R	DADS, WAL	KS	
*	0.	150	98 P	DND		
*	1.0	600	98 P.	ARKING		
*	1.8	800	85 L	DTS, D		
	0.	500	80 >	'5% Grass c	over, Good	, HSG D
	0.8	810	77 W	oods, Good,	HSG D	
_	0.3	300	78 M	eadow, non-	grazed, HS	G D
	5.	500	88 W	eighted Ave	rage	
3.410 62.00% Pervious Area						
	2.090 38.00% Impervious Area				vious Area	
	Tc	Length			Capacity	Description
_	(min)	(feet)	(ft/	t) (ft/sec)	(cfs)	
	10.0	100	0.120	0.17		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.2	90	0.180	0 6.83		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	60	0.020	0 9.11	16.09	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.012
	0.3	287	0.050	0 17.44	54.80	Pipe Channel,
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
_						n= 0.012
	10.6	537	Total			

Subcatchment B5: BASIN B5

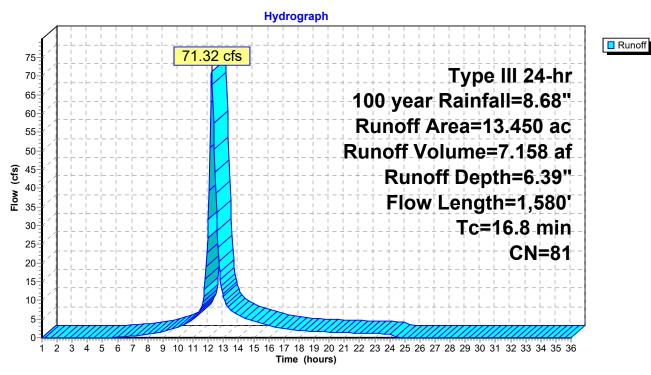

Page 411

Summary for Subcatchment B6: BASIN B6

Runoff = 49.53 cfs @ 12.18 hrs, Volume= 4.661 af, Depth= 6.99"

	Area	(ac) C	N Des	cription		
*	0.	850	98 ROA	DS, WLAI	KS	
*	0.	420 9	98 PON	ID		
*	2.	600	35 LOT	S, D		
*	0.	900	98 PAR	KING		
	1.	250	30 >759	% Grass co	over, Good	, HSG D
	1.	300	77 Woo	ds, Good,	HSG D	
	0.	680	78 Mea	dow, non-	grazed, HS	G D
	8.	000	36 Weig	ghted Aver	age	
	5.	830	72.8	8% Pervio	us Area	
	2.	170	27.1	2% Imperv	/ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.8	100	0.1000	0.15		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.9	300	0.1200	5.58		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	8.0	120	0.0150	2.49		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.6	375	0.0300	11.15	19.71	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_						n= 0.012
	13.1	895	Total			

Subcatchment B6: BASIN B6

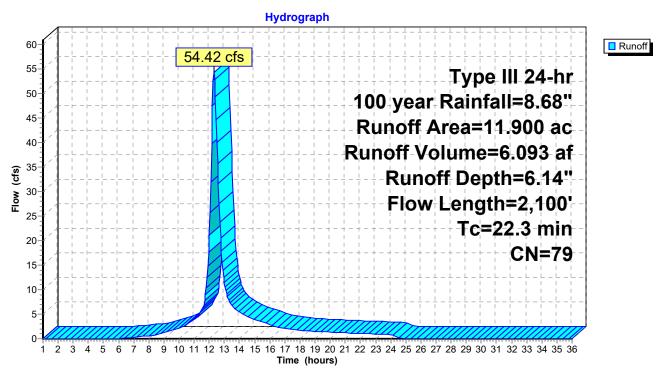

Page 413

Summary for Subcatchment B7: BASIN 7

Runoff = 71.32 cfs @ 12.22 hrs, Volume= 7.158 af, Depth= 6.39"

	Area	(ac) (CN	Desc	cription					
*	3.	050	98	ROA	DS, WAL	<				
*	4.	150	85	LOTS, D						
*				PON	_					
*				LOT	•					
			39			over, Good,				
			80			over, Good,	, HSG D			
					ds, Good,					
_		600				grazed, HS	G D			
			81		hted Aver					
		700			2% Pervio					
3.750 27.88% Impervious Area										
	т.	1	CI		Valasitu	C====:t+.	Description			
	Tc (min)	Length		lope ft/ft)	Velocity	Capacity (cfs)	Description			
_	(min)	(feet)			(ft/sec)	(CIS)	Object Flam			
	14.2	100	0.0	500	0.12		Sheet Flow,			
	0.6	230	Λ 1	700	6.64		Woods: Light underbrush n= 0.400 P2= 3.50" Shallow Concentrated Flow,			
	0.0	230	0.1	700	0.04		Unpaved Kv= 16.1 fps			
	0.5	120	0.0	400	4.06		Shallow Concentrated Flow,			
	0.5	120	0.0	400	4.00		Paved Kv= 20.3 fps			
	0.6	545	0.0	650	16.42	29.01	Pipe Channel,			
	0.0	0.0	0.0	.000	10.12	20.01	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'			
							n= 0.012			
	0.9	585	0.0	215	11.44	35.94	Pipe Channel,			
							24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'			
							n= 0.012			
_	16.8	1,580	Tot	tal						

Subcatchment B7: BASIN 7

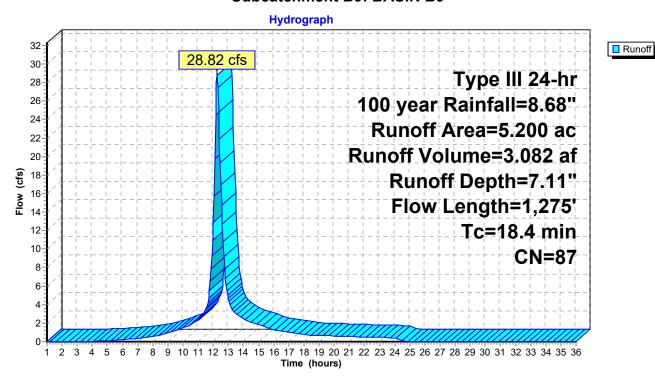

Page 415

Summary for Subcatchment B8: BASIN B8

Runoff = 54.42 cfs @ 12.30 hrs, Volume= 6.093 af, Depth= 6.14"

	Area	(ac)	CN	Desc	ription				
*	0.:	200	90	DIRT	ROAD, H	ISG D			
*	0.	350	98	ROA	D				
	3.	500	77	Woo	ds, Good,	HSG D			
	2.	500	80	>75%	% Grass co	over, Good,	HSG D		
	5.	100	78	Mea	dow, non-q	grazed, HS	G D		
*	0.:	250	85	Lots,	D				
	11.	900	79	Weig	jhted Aver	age			
	11.	550		97.0	6% Pervio	us Area			
	0.350 2.94% Impervious Area								
	Tc	Length		Slope	Velocity		Description		
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)			
	15.6	100	0.	.0400	0.11		Sheet Flow,		
							Woods: Light underbrush n= 0.400 P2= 3.50"		
	5.1	915	0.	.0350	3.01		Shallow Concentrated Flow,		
					40		Unpaved Kv= 16.1 fps		
	1.5	950	0.	.0300	10.77	86.20	Parabolic Channel,		
	0.4	405		0540	00.00	404.04	W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025		
	0.1	135	0.	.0519	23.29	164.61	Pipe Channel,		
							36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'		
_							n= 0.012		
	22.3	2,100) To	otal					

Subcatchment B8: BASIN B8

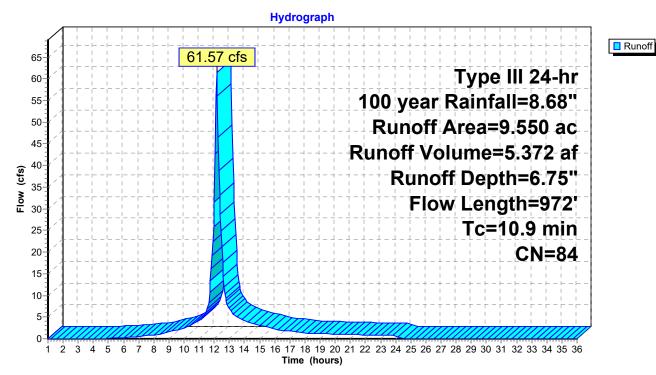

Summary for Subcatchment B9: BASIN B9

Runoff = 28.82 cfs @ 12.24 hrs, Volume= 3.082 af, Depth= 7.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area	(ac) C	N De	scription		
*	2.	750	35 LO	TS, D		
*	1.			AĎS, WALI	KS	
				,	over, Good	HSG D
_	5			ighted Aver		-
		200		04% Pervio		
		350		96% Imper		
	١.	000	20.	50 % imper	vious Aica	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	,	(cfs)	Description
_					(013)	Chaot Flour
	15.6	100	0.0400	0.11		Sheet Flow,
	4 -	405	0.0700	4.00		Woods: Light underbrush n= 0.400 P2= 3.50"
	1.7	435	0.0700	4.26		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.3	90	0.0600	4.97		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	8.0	650	0.0415	13.12	23.18	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_						n= 0.012
	18.4	1,275	Total			

Subcatchment B9: BASIN B9

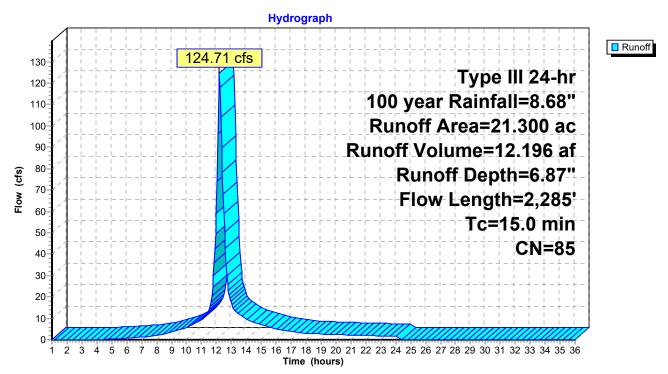

Summary for Subcatchment C1: BASIN C1

Runoff = 61.57 cfs @ 12.15 hrs, Volume= 5.372 af, Depth= 6.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area	(ac)	CN	Desc	ription		
*	1.	900	98	ROA	DS, WAL	(S, POND	
	3.	450	80	>75%	6 Grass co	over, Good,	HSG D
	2.	200	77	Woo	ds, Good,	HSG D	
*	2.	000	85	LOT	S, D		
	9.	550	84	Weig	hted Aver	age	
	7.	650		80.10	0% Pervio	us Area	
	1.	900		19.90	0% Imperv	ious Area	
	Тс	Length		Slope	Velocity	Capacity	Description
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	
	6.0	100	0.0	0600	0.28		Sheet Flow,
							Grass: Short n= 0.150 P2= 3.50"
	4.7	780	0.0	0300	2.79		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.2	92	0.0	0100	6.44	11.38	Pipe Channel,
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_							n= 0.012
	10.9	972	: To	otal			

Subcatchment C1: BASIN C1

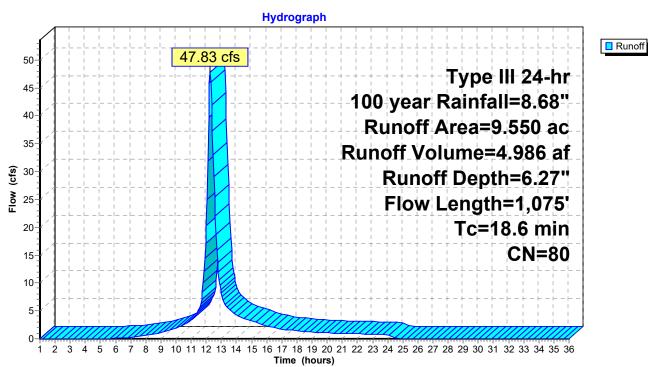

Page 419

Summary for Subcatchment C10: BASIN C10

Runoff = 124.71 cfs @ 12.20 hrs, Volume= 12.196 af, Depth= 6.87"

_	Area	(ac) (CN	Desc	cription					
*	9.	600	85	LOT	S, D					
*	* 2.750 98 ROADS, WALKS									
	3.	300	80			over, Good,	HSG D			
*			98	POND						
			77	Woods, Good, HSG D						
		450	78	Meadow, non-grazed, HSG D						
			85		hted Aver					
		700	00	_	0% Pervio	•				
		600			•	ious Area				
	0.	000		10.0	0 70 miper	100571100				
	Тс	Length	5	Slope	Velocity	Capacity	Description			
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	'			
	12.4	100	0.	0700	0.13	,	Sheet Flow,			
							Woods: Light underbrush n= 0.400 P2= 3.50"			
	1.1	490	0.:	2000	7.20		Shallow Concentrated Flow,			
							Unpaved Kv= 16.1 fps			
	0.7	195	0.	0500	4.54		Shallow Concentrated Flow,			
							Paved Kv= 20.3 fps			
	0.2	790	0.	6700	52.71	93.15	Pipe Channel,			
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'			
							n= 0.012			
	0.6	710	0.	0730	21.08	66.22	Pipe Channel,			
							24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'			
							n= 0.012			
	15.0	2,285	To	otal						

Subcatchment C10: BASIN C10

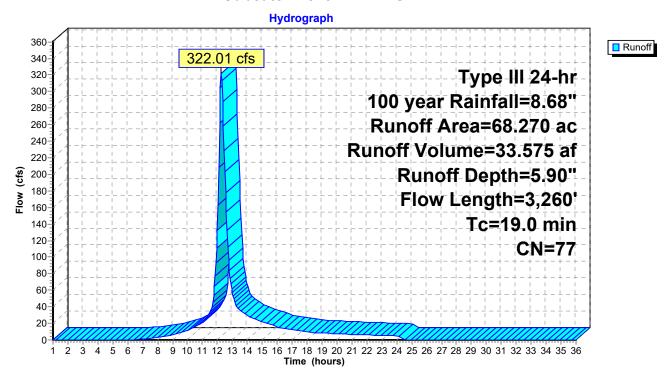

Summary for Subcatchment C11: BASIN C11

Runoff = 47.83 cfs @ 12.25 hrs, Volume= 4.986 af, Depth= 6.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area	(ac) (N Des	cription						
*		• •	85 LO	OTS, D						
				>75% Grass cover, Good, HSG D						
				ods, Good,		, 1100 B				
					grazed, HS	G D				
_					·	<u> </u>				
				ghted Aver .00% Pervi						
	9.	550	100	.00% Pervi	ous Area					
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description				
_	17.5	100		0.10	(013)	Sheet Flow,				
	17.5	100	0.0300	0.10		·				
	0.7	215	0.2500	0.05		Woods: Light underbrush n= 0.400 P2= 3.50"				
	0.7	315	0.2500	8.05		Shallow Concentrated Flow,				
	0.4	000	0.4007	04.50	4 400 04	Unpaved Kv= 16.1 fps				
	0.1	280	0.1227	34.59	1,106.91	Parabolic Channel,				
						W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.025				
	0.3	380	0.0500	22.08	706.60	Parabolic Channel,				
_						W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.025				
	18.6	1,075	Total							

Subcatchment C11: BASIN C11

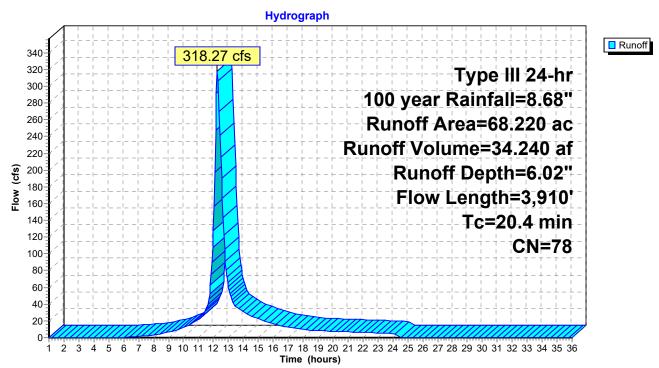

Summary for Subcatchment C12: BASIN C12

Runoff = 322.01 cfs @ 12.26 hrs, Volume= 33.575 af, Depth= 5.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

_	Area	(ac) C	N Des	cription		
				ods, Good,		
*	0.	600	30 Law	n, Good, F	ISG D	
_	0.	670	78 Mea	dow, non-	grazed, HS	G D
	68.	270	77 Wei	ghted Aver	age	
	68.	270	100	.00% Pervi	ous Area	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.8	100	0.1000	0.15		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	0.5	360	0.5900	12.37		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	7.7	2,800	0.1400	6.02		Shallow Concentrated Flow,
		•				Unpaved Kv= 16.1 fps
	19.0	3,260	Total			

Subcatchment C12: BASIN C12

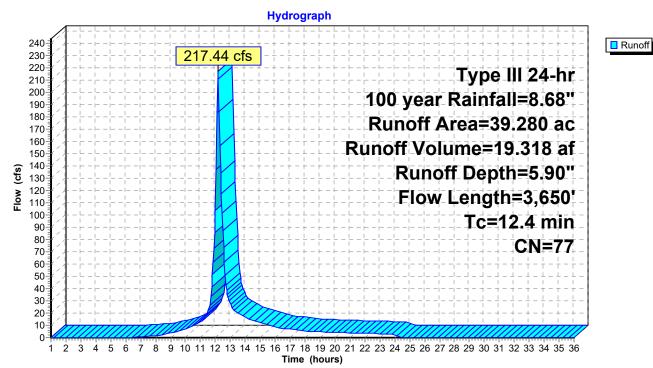

Summary for Subcatchment C13: BASIN C13

Runoff = 318.27 cfs @ 12.27 hrs, Volume= 34.240 af, Depth= 6.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area	(ac) (CN	Desc	ription		
*	4.	000	89	WET	LANDS		
	61.	320	77	Woo	ds, Good,	HSG D	
*	1.	150	85	LOT	S, D		
*	0.	750	96	Well	access Ro	oad	
	1.	000	80	>75%	√ Grass co	over, Good,	HSG D
	68.220 78			Weig	hted Aver	age	
	68.	220		100.0	00% Pervi	ous Area	
	Тс	Length	S	lope	Velocity	Capacity	Description
	(min)	(feet)	((ft/ft)	(ft/sec)	(cfs)	
	15.6	100	0.0)400	0.11		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	1.6	900	0.3	3500	9.52		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	1.5	610	0.0)200	6.83	91.11	Parabolic Channel,
							W=10.00' D=2.00' Area=13.3 sf Perim=11.0' n= 0.035
	1.7	2,300	0.1	1400	22.28	445.55	Parabolic Channel,
_							W=10.00' D=3.00' Area=20.0 sf Perim=12.0' n= 0.035
	20.4	3,910	То	tal			

Subcatchment C13: BASIN C13


Summary for Subcatchment C14: BASIN C12

Runoff = 217.44 cfs @ 12.17 hrs, Volume= 19.318 af, Depth= 5.90"

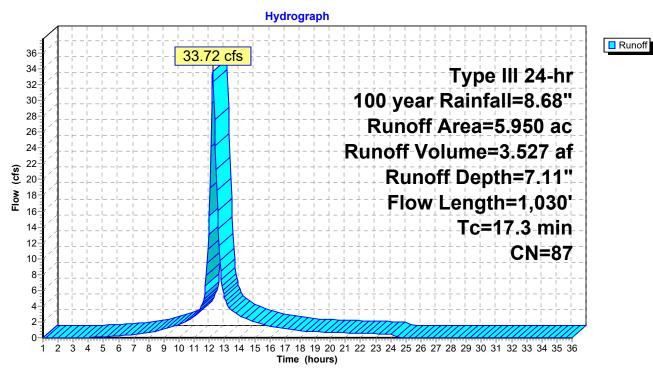
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

Area	(ac) C	N Des	cription		
* 0	.780 8	39 WE1	9 WETLANDS		
38	.500	77 Woo	ds, Good,	HSG D	
			ghted Aver		
39	.280	100.	00% Pervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.2	100	0.2000	0.20		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.50"
3.0	1,460	0.2500	8.05		Shallow Concentrated Flow,
1.1	1.800	0.1500	27.32	874.19	Unpaved Kv= 16.1 fps Parabolic Channel,
1.1	1,000	0.1500	21.32	074.19	W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.035
0.0	50	0.0200	20.32	399.01	Pipe Channel,
0.0	00	0.0200	20.02	000.01	60.0" Round Area= 19.6 sf Perim= 15.7' r= 1.25'
					n= 0.012
0.1	240	0.0800	27.93	893.79	Parabolic Channel,
					W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.025
12.4	3,650	Total			

Subcatchment C14: BASIN C12

Page 425

Summary for Subcatchment C2: BASIN C2

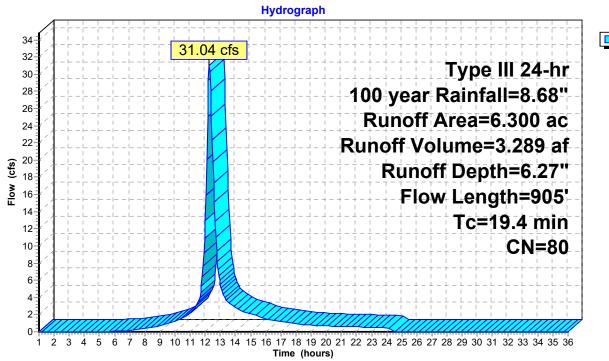

Runoff = 33.72 cfs @ 12.23 hrs, Volume= 3.527 af, Depth= 7.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

_	Area	(ac) (CN	Desc	ription					
*	0.	250	98	PON	D					
*	1.700 98			ROADS, WALKS						
*	1.	700	85	LOTS, D						
	0.	500	80	>75% Grass cover, Good, HSG D						
	0.	800	77	Woods, Good, HSG D						
	1.	000	78	Meadow, non-grazed, HSG D						
	5.	950	87	Weig	hted Aver	age				
	4.	000			, 3% Pervio	•				
	1.	950		32.7	7% Imperv	ious Area				
					•					
	Tc	Length	5	Slope	Velocity	Capacity	Description			
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)				
	15.6	100	0.	0400	0.11		Sheet Flow,			
							Woods: Light underbrush n= 0.400 P2= 3.50"			
	0.4	160	0.	1400	6.02		Shallow Concentrated Flow,			
							Unpaved Kv= 16.1 fps			
	0.1	60	0.	4500	10.80		Shallow Concentrated Flow,			
							Unpaved Kv= 16.1 fps			
	0.4	135	0.	1000	5.09		Shallow Concentrated Flow,			
							Unpaved Kv= 16.1 fps			
	0.2	70	0.	0600	4.97		Shallow Concentrated Flow,			
							Paved Kv= 20.3 fps			
	0.6	505	0.	0330	14.17	44.52	Pipe Channel,			
							24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'			
							n= 0.012			

17.3 1,030 Total

Subcatchment C2: BASIN C2


Summary for Subcatchment C3: BASIN C3

Runoff = 31.04 cfs @ 12.26 hrs, Volume= 3.289 af, Depth= 6.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area	(ac) (CN De	scription				
*	0.	380	89 WE	TLANDS				
*	1.	500	85 LOTS, D					
	0.350 78 Meadow, non-grazed, HSG D							
_	4.	070	77 Wo	ods, Good,	HSG D			
6.300 80 Weighted Average								
	6.	300	100	0.00% Pervi	ous Area			
	_		01		0 "			
	Tc	Length			Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	17.5	100	0.0300	0.10		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 3.50"		
	1.8	630	0.1300	5.80		Shallow Concentrated Flow,		
						Unpaved Kv= 16.1 fps		
	0.1	175	0.0900	23.44	468.78	Parabolic Channel,		
						W=12.00' D=2.50' Area=20.0 sf Perim=13.3' n= 0.025		
	19.4	905	Total					

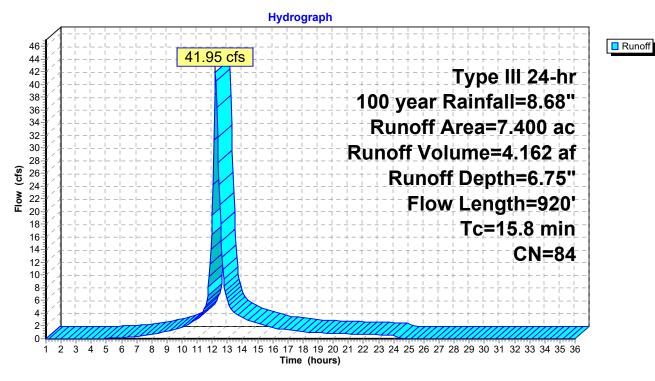
Subcatchment C3: BASIN C3

Runoff

Page 428

Summary for Subcatchment C4: BASIN C4

Runoff = 41.95 cfs @ 12.21 hrs, Volume= 4.162 af, Depth= 6.75"

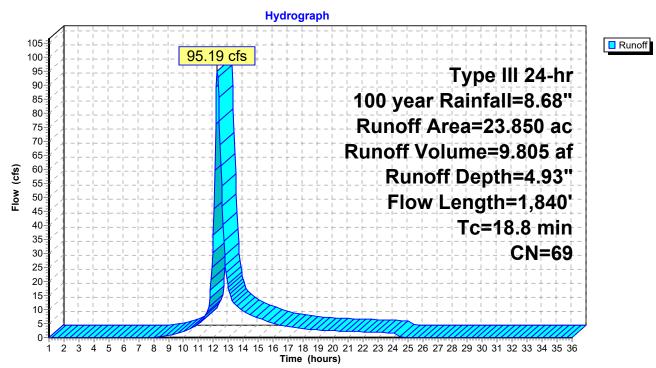

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area (ac) (CN	Desc	cription		
*	1.4	430	98	ROA	DS/ WAL	(S	
*	3.	100	85	LOT	S, D		
*	0.2	250	98	PON	ID		
	0.4	400	78	Mea	dow, non-g	grazed, HS	G D
*	0.	580	60	LOT	S, A		
	1.2	280	77	Woo	ds, Good,	HSG D	
	0.3	360	80			over, Good,	, HSG D
	7.4	400	84	Weio	hted Aver	age	
		720			0% Pervio		
		680		22.7	0% Imperv	ious Area	
	Tc	Length		Slope	Velocity	Capacity	Description
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	·
	14.2	100	0.	0500	0.12		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	0.5	220	0.	1800	6.83		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.7	140	0.	0300	3.52		Shallow Concentrated Flow,
							Paved Kv= 20.3 fps
	0.3	340	0.	0650	16.42	29.01	Pipe Channel,
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.012
	0.1	120	0.	2000	24.81	132.31	Parabolic Channel,
							W=4.00' D=2.00' Area=5.3 sf Perim=5.9' n= 0.025
	15.8	920	To	otal			

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 429

Subcatchment C4: BASIN C4

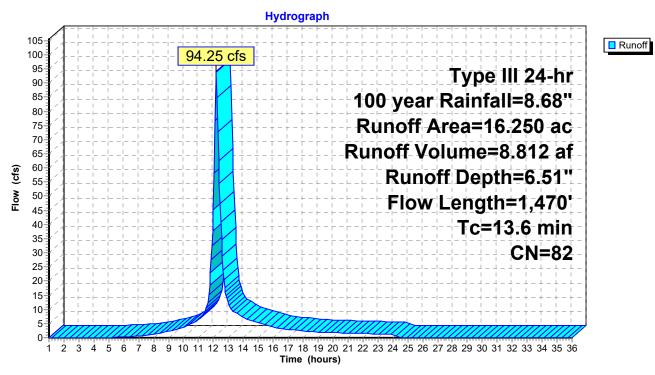

Summary for Subcatchment C5: BASIN C5

Runoff = 95.19 cfs @ 12.26 hrs, Volume= 9.805 af, Depth= 4.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

_	Area	(ac)	CN	Desc	cription		
	10.	250	77	Woo	ds, Good,	HSG D	
*	3.	700	85	LOT	S, D		
	1.	100	80	>75%	√ Grass co √	over, Good,	HSG D
	1.000 39 >75% Grass cover, Good, HSG A						
*	1.	250	60	LOT	S, A		
	3.	950	30	Woo	ds, Good,	HSG A	
*	0.	700	96	Well	Access R	oads	
*	0.	420	89	Wetl	ands		
_	1.	480	78	Mea	dow, non-g	grazed, HS	G D
	23.	850	69		hted Aver		
	23.	850		100.	00% Pervi	ous Area	
	Тс	Length		Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.6	100) (0.0400	0.11		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	2.3	580) (0.0700	4.26		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.9	1,160) (0.0750	22.54	721.17	Parabolic Channel,
_							W=12.00' D=4.00' Area=32.0 sf Perim=14.9' n= 0.030
	18.8	1 840) Т	Total			

Subcatchment C5: BASIN C5


Summary for Subcatchment C6: BASIN C6

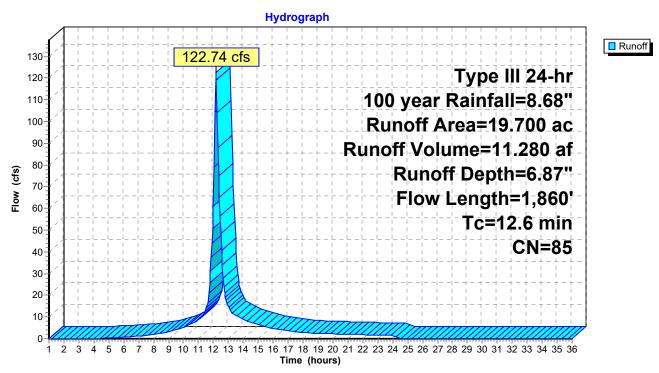
Runoff 94.25 cfs @ 12.18 hrs, Volume= 8.812 af, Depth= 6.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area	(ac) (N Des	cription						
*	0.	650	98 PON	1D						
*	0.	100	60 LOT	S, A						
*	1.	800	98 ROA	ADS, WALI	KS					
*	10.			S, D						
				% Grass c	over, Good	, HSG A				
	0.	950	80 >75	>75% Grass cover, Good, HSG D						
				Woods, Good, HSG D						
				ds, Good,						
					grazed, HS					
_					grazed, HS	G D				
				ghted Aver						
		800	0	2% Pervio						
	2.	450	15.0	8% Imperv	∕ious Area					
	_		01							
	Tc	Length		Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	11.8	100	0.0800	0.14		Sheet Flow,				
	0.4	470	0.4000	0.44		Woods: Light underbrush n= 0.400 P2= 3.50"				
	0.4	170	0.1600	6.44		Shallow Concentrated Flow,				
	0.0	225	0.0400	40.00	22.76	Unpaved Kv= 16.1 fps				
	0.3	235	0.0400	12.88	22.76	Pipe Channel,				
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' n= 0.012				
	1.0	830	0.0300	13.51	42.45	Pipe Channel,				
	1.0	030	0.0300	13.51	42.43	24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
						n= 0.012				
	0.1	135	0.1400	23.28	186.21	Parabolic Channel,				
	0.1	100	J. 1-00	20.20	100.21	W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025				
_	13.6	1,470	Total			7. 0.00 B 2.00 /100 0.00 F 0.011 7.0 H 0.020				
	15.0	1,470	i Olai							

Subcatchment C6: BASIN C6

Page 433

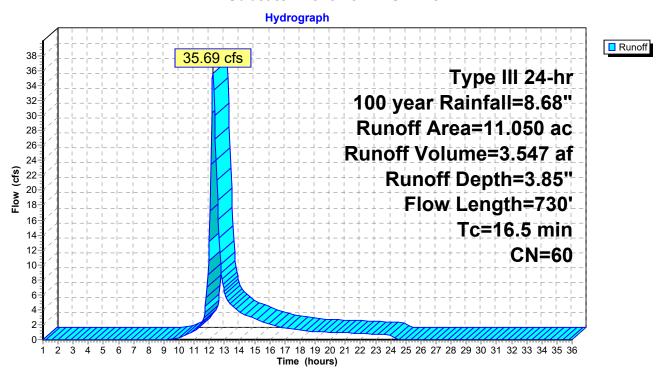

Summary for Subcatchment C7: BASIN C7

Runoff = 122.74 cfs @ 12.17 hrs, Volume= 11.280 af, Depth= 6.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

* 2.500 98 ROADS / WALKS * 0.500 98 BLDG * 10.450 95 LOTS D	
0.500 96 BLDG	
* 10.4E0 9E LOTS D	
* 10.450 85 LOTS, D	
* 1.000 98 POND	
0.400 39 >75% Grass cover, Good, HSG A	
2.750 80 >75% Grass cover, Good, HSG D	
1.000 77 Woods, Good, HSG D	
1.100 78 Meadow, non-grazed, HSG D	
19.700 85 Weighted Average	
15.700 79.70% Pervious Area	
4.000 20.30% Impervious Area	
T	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs)	
10.5 100 0.0150 0.16 Sheet Flow,	
Grass: Short n= 0.150 P2= 3.50"	
0.5 150 0.1000 5.09 Shallow Concentrated Flow,	
Unpaved Kv= 16.1 fps 1.0 900 0.0600 15.77 27.87 Pipe Channel,	
1.0 900 0.0600 15.77 27.87 Pipe Channel, 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'	
n= 0.012	
0.5 630 0.0600 19.11 60.03 Pipe Channel,	
24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'	
n= 0.012	
0.1 80 0.2000 24.81 132.31 Parabolic Channel ,	
W=4.00' D=2.00' Area=5.3 sf Perim=5.9' n= 0.025	25
12.6 1,860 Total	

Subcatchment C7: BASIN C7

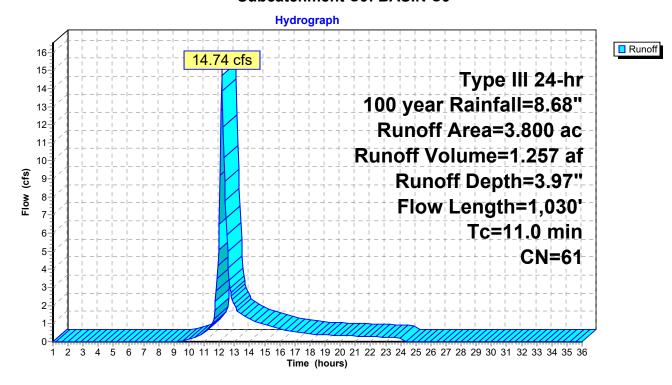

Summary for Subcatchment C8: BASIN C8

Runoff = 35.69 cfs @ 12.24 hrs, Volume= 3.547 af, Depth= 3.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

_	Area	(ac)	CN	Des	cription		
*	0.	710	89	Wetl	ands		
*	0.	470	98	Impe	ervious Su	rfaces	
	3.	390	77	Woo	ds, Good,	HSG D	
*	1.	030	79	Old	Golf Cours	e, HSG D	
*	1.	900	35	Old	Golf Cours	e, HSG A	
	0.	770	78	Mea	dow, non-	grazed, HS	G D
*	2.	780	30	Woo	ds, Good,	HSG A	
	11.	050	60	Weig	ghted Aver	age	
	10.	580		95.7	5% Pervio	us Area	
	0.	470		4.25	% Impervi	ous Area	
	Тс	Length	1	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.6	100	0 (.0400	0.11		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	0.6	130	0 (.0500	3.60		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.3	500	0 (.0585	25.56	2,555.82	Parabolic Channel,
_							W=30.00' D=5.00' Area=100.0 sf Perim=32.1' n= 0.030
	16.5	730) T	otal			

Subcatchment C8: BASIN C8

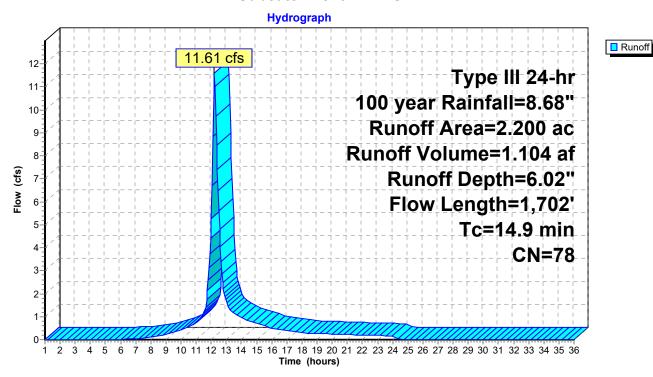

Summary for Subcatchment C9: BASIN C9

Runoff = 14.74 cfs @ 12.16 hrs, Volume= 1.257 af, Depth= 3.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area	(ac) C	N Des	cription		
	1.	000	30 Woo	ds, Good,	HSG A	
	0.	350	39 >75°	% Grass c	over, Good	, HSG A
*	0.	500	60 LOT			
*	1.	000	35 LOT	S, D		
	0.	950		ds, Good,	HSG D	
	3.	800	61 Wei	hted Aver	age	
		800		00% Pervi		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	9.4	100	0.1400	0.18	· · ·	Sheet Flow,
	• • •			• • • • • • • • • • • • • • • • • • • •		Woods: Light underbrush n= 0.400 P2= 3.50"
	0.7	200	0.1000	5.09		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.9	730	0.0325	14.17	377.93	Parabolic Channel,
						W=10.00' D=4.00' Area=26.7 sf Perim=13.3' n= 0.030
	11.0	1,030	Total			

Subcatchment C9: BASIN C9


Summary for Subcatchment D: BASIN D

Runoff = 11.61 cfs @ 12.20 hrs, Volume= 1.104 af, Depth= 6.02"

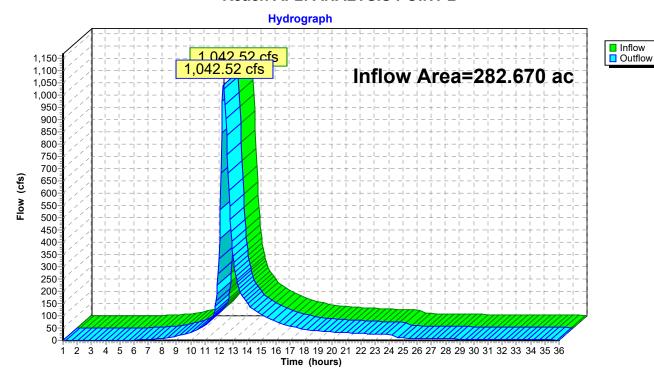
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

Area	(ac) C	N Desc	cription							
0.	0.850 78 Meadow, non-grazed, HSG D									
0.	0.900 77 Woods, Good, HSG D									
0.	0.450 80 >75% Grass cover, Good, HSG D									
2.	2.200 78 Weighted Average									
2.	200		, 00% Pervi							
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•					
13.2	100	0.0600	0.13		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 3.50"					
0.2	90	0.2500	8.05		Shallow Concentrated Flow,					
					Unpaved Kv= 16.1 fps					
8.0	900	0.1000	19.67	157.38	Parabolic Channel,					
					W=6.00' D=2.00' Area=8.0 sf Perim=7.5' n= 0.025					
0.1	72	0.0200	14.46	102.19	Pipe Channel,					
					36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'					
					n= 0.012					
0.6	540	0.0600	14.56	97.05	Parabolic Channel,					
					W=5.00' D=2.00' Area=6.7 sf Perim=6.7' n= 0.025					
14.9	1,702	Total								

Subcatchment D: BASIN D

Page 438

Summary for Reach AP2: ANALYSIS POINT 2


Inflow Area = 282.670 ac, 12.10% Impervious, Inflow Depth > 5.98" for 100 year event

Inflow = 1,042.52 cfs @ 12.33 hrs, Volume= 140.778 af

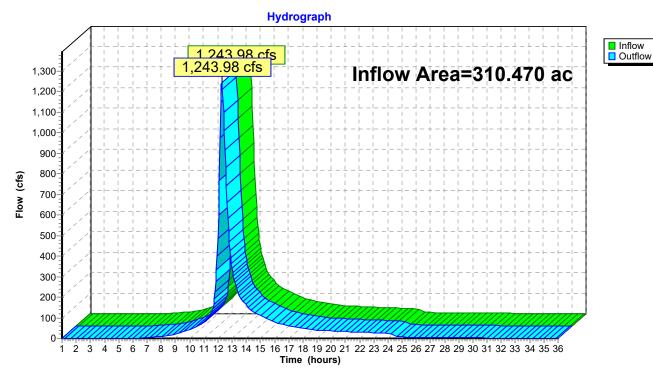
Outflow = 1,042.52 cfs @ 12.33 hrs, Volume= 140.778 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP2: ANALYSIS POINT 2

Page 439

Summary for Reach AP3: ANALYSIS POINT 3


Inflow Area = 310.470 ac, 5.17% Impervious, Inflow Depth > 5.97" for 100 year event

Inflow = 1,243.98 cfs @ 12.28 hrs, Volume= 154.523 af

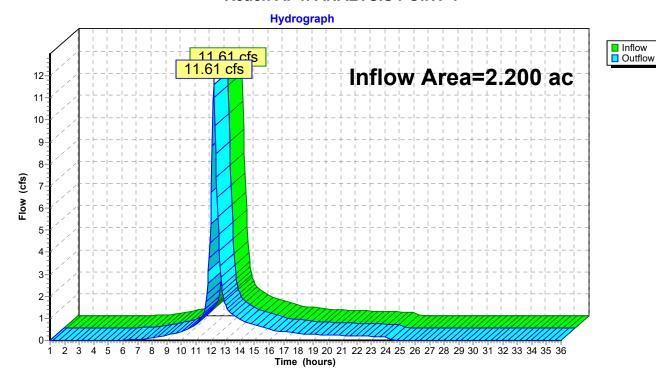
Outflow = 1,243.98 cfs @ 12.28 hrs, Volume= 154.523 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP3: ANALYSIS POINT 3

Page 440

Summary for Reach AP4: ANALYSIS POINT 4


2.200 ac, 0.00% Impervious, Inflow Depth = 6.02" for 100 year event Inflow Area =

Inflow 1.104 af

11.61 cfs @ 12.20 hrs, Volume= 11.61 cfs @ 12.20 hrs, Volume= Outflow 1.104 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Reach AP4: ANALYSIS POINT 4

Page 441

Inflow
Outflow

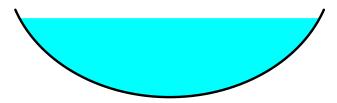
Summary for Reach RB1: RB1

Inflow Area = 176.450 ac, 14.26% Impervious, Inflow Depth > 6.11" for 100 year event

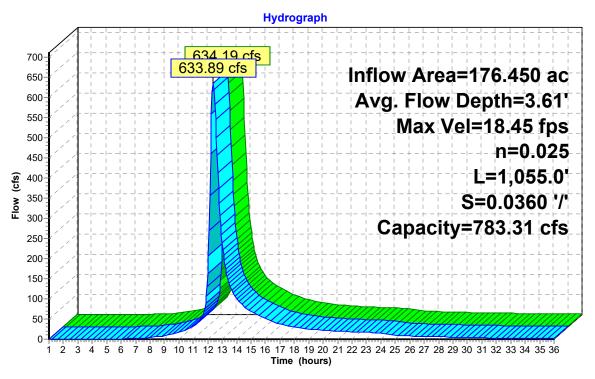
Inflow = 634.19 cfs @ 12.35 hrs, Volume= 89.848 af

Outflow = 633.89 cfs @ 12.37 hrs, Volume= 89.836 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 18.45 fps, Min. Travel Time= 1.0 min Avg. Velocity = 5.94 fps, Avg. Travel Time= 3.0 min

Peak Storage= 36,239 cf @ 12.37 hrs Average Depth at Peak Storage= 3.61'


Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 783.31 cfs

15.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 1,055.0' Slope= 0.0360 '/'

Inlet Invert= 504.00', Outlet Invert= 466.00'

Reach RB1: RB1

Page 442

Summary for Reach RB11: RB11

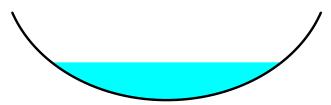
Inflow Area = 21.550 ac, 7.89% Impervious, Inflow Depth > 6.65" for 100 year event

Inflow = 99.12 cfs @ 12.31 hrs, Volume= 11.933 af

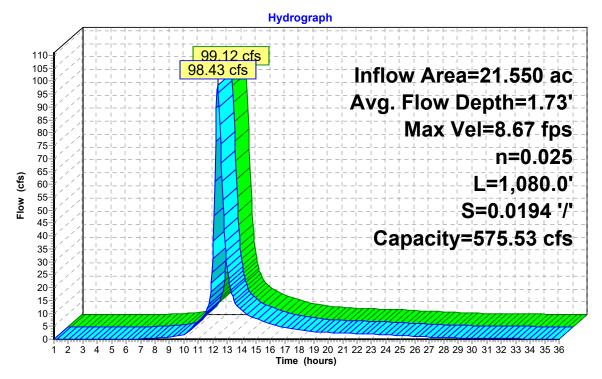
Outflow = 98.43 cfs @ 12.34 hrs, Volume= 11.931 af, Atten= 1%, Lag= 1.7 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 8.67 fps, Min. Travel Time= 2.1 min Avg. Velocity = 2.57 fps, Avg. Travel Time= 7.0 min


Peak Storage= 12,262 cf @ 12.34 hrs Average Depth at Peak Storage= 1.73'

Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 575.53 cfs


15.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 1,080.0' Slope= 0.0194 '/'

Inlet Invert= 575.00', Outlet Invert= 554.00'

Reach RB11: RB11

Page 443

Inflow
Outflow

Summary for Reach RB13: RB13

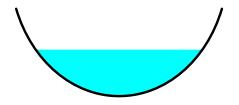
Inflow Area = 47.550 ac, 10.62% Impervious, Inflow Depth > 5.34" for 100 year event

Inflow = 130.52 cfs @ 12.47 hrs, Volume= 21.156 af

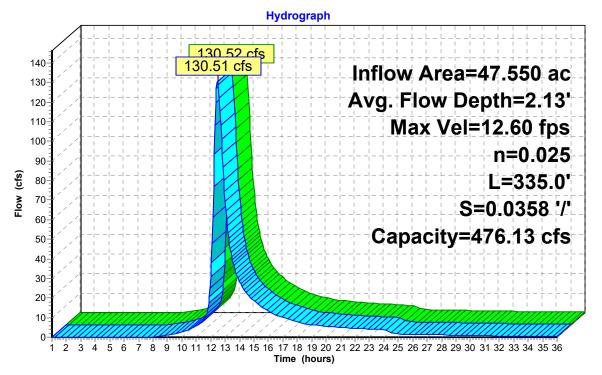
Outflow = 130.51 cfs @ 12.47 hrs, Volume= 21.155 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 12.60 fps, Min. Travel Time= 0.4 min Avg. Velocity = 4.49 fps, Avg. Travel Time= 1.2 min


Peak Storage= 3,466 cf @ 12.47 hrs Average Depth at Peak Storage= 2.13'

Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 476.13 cfs


10.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 335.0' Slope= 0.0358 '/'

Inlet Invert= 581.00', Outlet Invert= 569.00'

Reach RB13: RB13

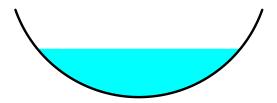
Page 444

Summary for Reach RB14: RB14

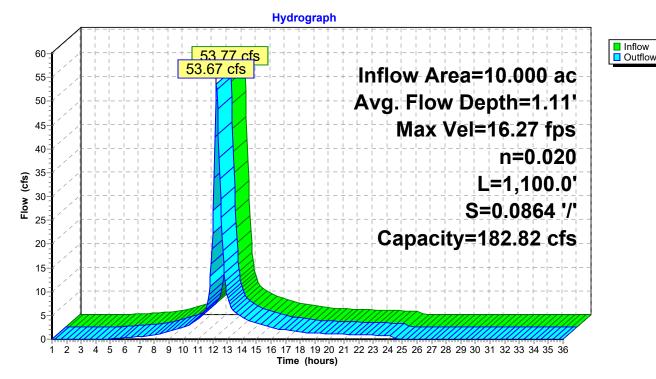
Inflow Area = 10.000 ac, 13.00% Impervious, Inflow Depth = 6.87" for 100 year event

Inflow = 53.77 cfs @ 12.25 hrs, Volume= 5.726 af

Outflow = 53.67 cfs @ 12.26 hrs, Volume= 5.726 af, Atten= 0%, Lag= 0.8 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 16.27 fps, Min. Travel Time= 1.1 min Avg. Velocity = 5.66 fps, Avg. Travel Time= 3.2 min


Peak Storage= 3,625 cf @ 12.26 hrs Average Depth at Peak Storage= 1.11'

Bank-Full Depth= 2.00' Flow Area= 8.0 sf, Capacity= 182.82 cfs

6.00' x 2.00' deep Parabolic Channel, n= 0.020 Length= 1,100.0' Slope= 0.0864 '/' Inlet Invert= 681.00', Outlet Invert= 586.00'

Reach RB14: RB14

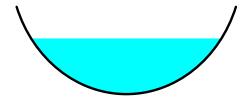
Page 445

Summary for Reach RB15: RB15

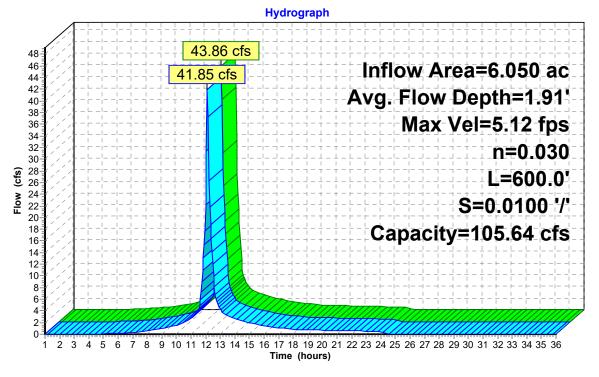
Inflow Area = 6.050 ac, 9.09% Impervious, Inflow Depth = 6.75" for 100 year event

Inflow = 43.86 cfs @ 12.10 hrs, Volume= 3.403 af

Outflow = 41.85 cfs @ 12.13 hrs, Volume= 3.403 af, Atten= 5%, Lag= 1.5 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.12 fps, Min. Travel Time= 2.0 min Avg. Velocity = 1.60 fps, Avg. Travel Time= 6.2 min


Peak Storage= 4,882 cf @ 12.13 hrs Average Depth at Peak Storage= 1.91' Bank-Full Depth= 3.00' Flow Area= 16.0 sf, Capacity= 105.64 cfs

 $8.00'\ x\ 3.00'$ deep Parabolic Channel, n= 0.030 Earth, grassed & winding Length= 600.0' Slope= $0.0100\ '/'$

Inlet Invert= 552.00', Outlet Invert= 546.00'

Reach RB15: RB15

Page 446

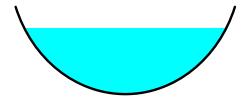
Inflow
Outflow

Summary for Reach RB16: RB16

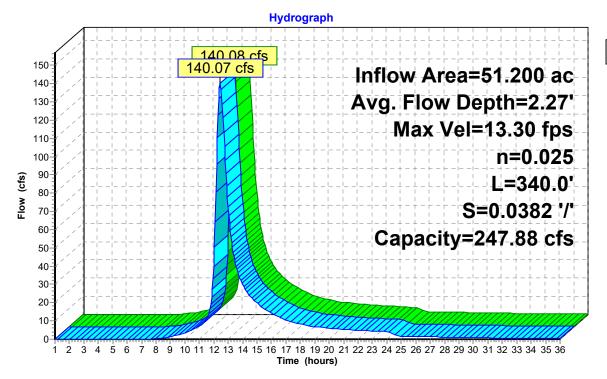
Inflow Area = 51.200 ac, 9.86% Impervious, Inflow Depth > 5.41" for 100 year event

Inflow = 140.08 cfs @ 12.45 hrs, Volume= 23.097 af

Outflow = 140.07 cfs @ 12.46 hrs, Volume= 23.096 af, Atten= 0%, Lag= 0.3 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 13.30 fps, Min. Travel Time= 0.4 min Avg. Velocity = 4.56 fps, Avg. Travel Time= 1.2 min


Peak Storage= 3,581 cf @ 12.46 hrs Average Depth at Peak Storage= 2.27'

Bank-Full Depth= 3.00' Flow Area= 16.0 sf, Capacity= 247.88 cfs

8.00' x 3.00' deep Parabolic Channel, n= 0.025 Length= 340.0' Slope= 0.0382 '/' Inlet Invert= 567.00', Outlet Invert= 554.00'

Reach RB16: RB16

Page 447

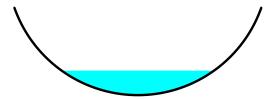
Inflow
Outflow

Summary for Reach RB2: RB2

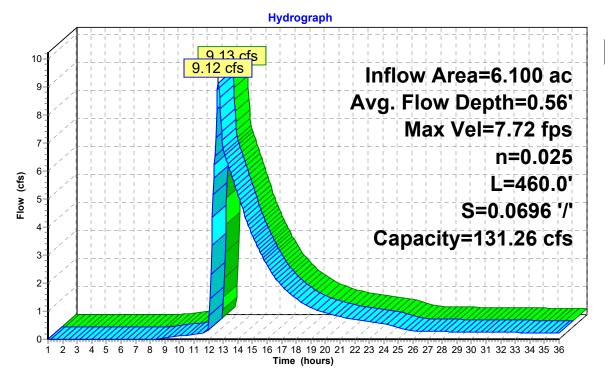
Inflow Area = 6.100 ac, 13.11% Impervious, Inflow Depth > 5.28" for 100 year event

Inflow = 9.13 cfs @ 12.64 hrs, Volume= 2.686 af

Outflow = 9.12 cfs @ 12.65 hrs, Volume= 2.685 af, Atten= 0%, Lag= 0.7 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 7.72 fps, Min. Travel Time= 1.0 min Avg. Velocity = 3.40 fps, Avg. Travel Time= 2.3 min


Peak Storage= 543 cf @ 12.65 hrs Average Depth at Peak Storage= 0.56'

Bank-Full Depth= 2.00' Flow Area= 8.0 sf, Capacity= 131.26 cfs

6.00' x 2.00' deep Parabolic Channel, n= 0.025 Length= 460.0' Slope= 0.0696 '/' Inlet Invert= 500.00', Outlet Invert= 468.00'

Reach RB2: RB2

Page 448

Summary for Reach RB3: RB3

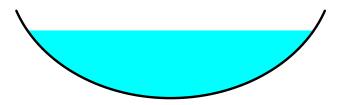
Inflow Area = 149.800 ac, 14.03% Impervious, Inflow Depth > 6.12" for 100 year event

Inflow = 527.34 cfs @ 12.34 hrs, Volume= 76.376 af

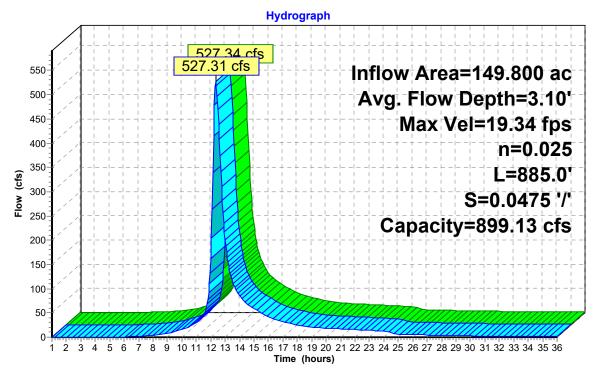
Outflow = 527.31 cfs @ 12.35 hrs, Volume= 76.368 af, Atten= 0%, Lag= 0.6 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 19.34 fps, Min. Travel Time= 0.8 min Avg. Velocity = 6.18 fps, Avg. Travel Time= 2.4 min


Peak Storage= 24,132 cf @ 12.35 hrs Average Depth at Peak Storage= 3.10'

Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 899.13 cfs


15.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 885.0' Slope= 0.0475 '/'

Inlet Invert= 546.00', Outlet Invert= 504.00'

Reach RB3: RB3

Page 449

Summary for Reach RB4: RB4

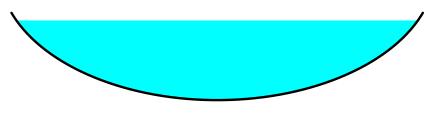
Inflow Area = 17.100 ac, 9.94% Impervious, Inflow Depth = 6.44" for 100 year event

Inflow = 82.27 cfs @ 12.28 hrs, Volume= 9.175 af

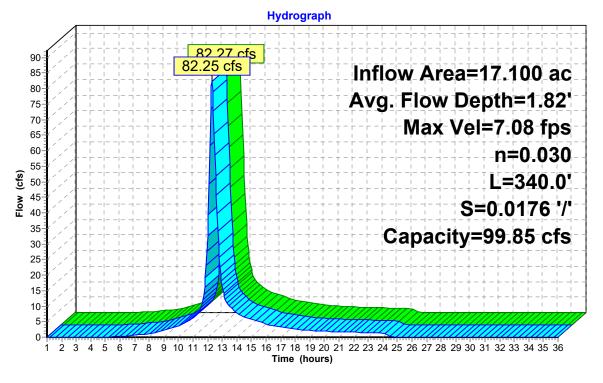
Outflow = 82.25 cfs @ 12.29 hrs, Volume= 9.175 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 7.08 fps, Min. Travel Time= 0.8 min Avg. Velocity = 2.35 fps, Avg. Travel Time= 2.4 min


Peak Storage= 3,950 cf @ 12.29 hrs Average Depth at Peak Storage= 1.82'

Bank-Full Depth= 2.00' Flow Area= 13.3 sf, Capacity= 99.85 cfs


10.00' x 2.00' deep Parabolic Channel, n= 0.030

Length= 340.0' Slope= 0.0176 '/'

Inlet Invert= 552.00', Outlet Invert= 546.00'

Reach RB4: RB4

Page 450

Inflow
Outflow

Summary for Reach RB6: RB6

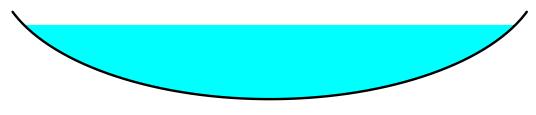
Inflow Area = 110.950 ac, 13.76% Impervious, Inflow Depth > 5.96" for 100 year event

Inflow = 366.74 cfs @ 12.37 hrs, Volume= 55.139 af

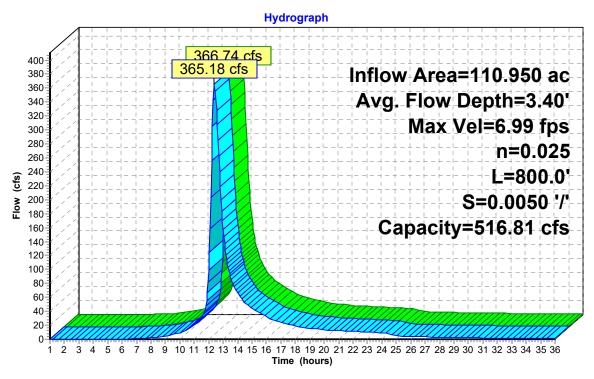
Outflow = 365.18 cfs @ 12.39 hrs, Volume= 55.123 af, Atten= 0%, Lag= 1.5 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.99 fps, Min. Travel Time= 1.9 min Avg. Velocity = 2.24 fps, Avg. Travel Time= 6.0 min


Peak Storage= 41,766 cf @ 12.39 hrs Average Depth at Peak Storage= 3.40'

Bank-Full Depth= 4.00' Flow Area= 66.7 sf, Capacity= 516.81 cfs


25.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 800.0' Slope= 0.0050 '/'

Inlet Invert= 550.00', Outlet Invert= 546.00'

Reach RB6: RB6

Page 451

Summary for Reach RB7: RB7

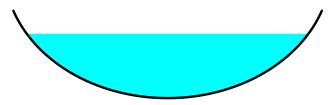
Inflow Area = 86.200 ac, 12.18% Impervious, Inflow Depth > 5.74" for 100 year event

Inflow = 257.72 cfs @ 12.41 hrs, Volume= 41.197 af

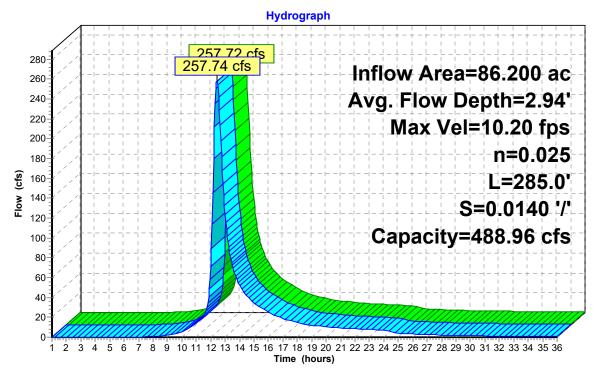
Outflow = 257.74 cfs @ 12.42 hrs, Volume= 41.194 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 10.20 fps, Min. Travel Time= 0.5 min Avg. Velocity = 3.37 fps, Avg. Travel Time= 1.4 min


Peak Storage= 7,201 cf @ 12.42 hrs Average Depth at Peak Storage= 2.94'

Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 488.96 cfs


15.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 285.0' Slope= 0.0140 '/'

Inlet Invert= 554.00', Outlet Invert= 550.00'

Reach RB7: RB7

10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC Page 452

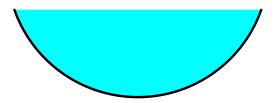
Summary for Reach RC1: RC1

Inflow Area = 300.920 ac, 4.70% Impervious, Inflow Depth > 5.95" for 100 year event

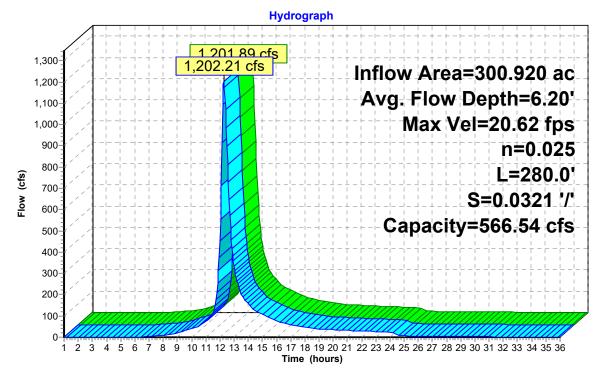
Inflow = 1,201.89 cfs @ 12.28 hrs, Volume= 149.153 af

Outflow = 1,202.21 cfs @ 12.28 hrs, Volume= 149.151 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 20.62 fps, Min. Travel Time= 0.2 min Avg. Velocity = 6.63 fps, Avg. Travel Time= 0.7 min

Peak Storage= 16,321 cf @ 12.28 hrs Average Depth at Peak Storage= 6.20'


Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 566.54 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 280.0' Slope= 0.0321 '/'

Inlet Invert= 483.00', Outlet Invert= 474.00'

Reach RC1: RC1

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 453

Inflow
Outflow

Summary for Reach RC10: RC10

21.300 ac, 16.90% Impervious, Inflow Depth > 6.83" for 100 year event Inflow Area =

Inflow 64.85 cfs @ 12.47 hrs, Volume= 12.128 af

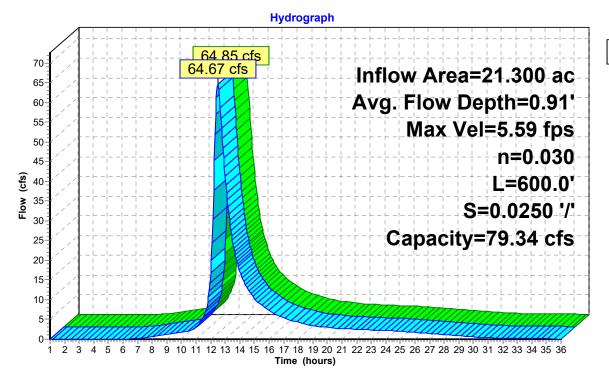
Outflow 64.67 cfs @ 12.49 hrs, Volume= 12.127 af, Atten= 0%, Lag= 1.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.59 fps, Min. Travel Time= 1.8 min Avg. Velocity = 1.91 fps, Avg. Travel Time= 5.2 min

Peak Storage= 6,942 cf @ 12.49 hrs Average Depth at Peak Storage= 0.91'

Bank-Full Depth= 1.00' Flow Area= 13.3 sf, Capacity= 79.34 cfs


20.00' x 1.00' deep Parabolic Channel, n= 0.030

Length= 600.0' Slope= 0.0250 '/'

Inlet Invert= 660.00', Outlet Invert= 645.00'

Reach RC10: RC10

Page 454

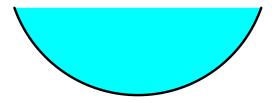
Inflow
Outflow

Summary for Reach RC11A: RC11-A

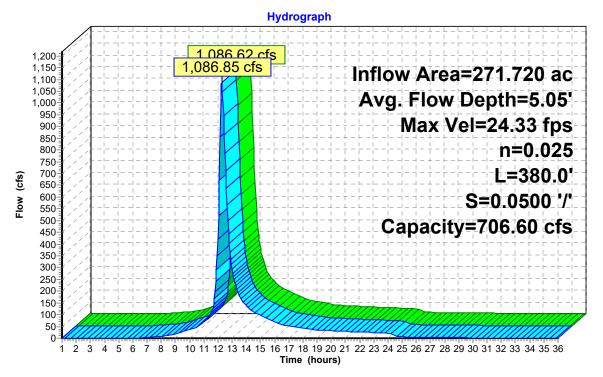
Inflow Area = 271.720 ac, 3.87% Impervious, Inflow Depth > 5.90" for 100 year event

Inflow = 1,086.62 cfs @ 12.27 hrs, Volume= 133.547 af

Outflow = 1,086.85 cfs @ 12.27 hrs, Volume= 133.545 af, Atten= 0%, Lag= 0.2 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 24.33 fps, Min. Travel Time= 0.3 min Avg. Velocity = 7.54 fps, Avg. Travel Time= 0.8 min


Peak Storage= 16,952 cf @ 12.27 hrs Average Depth at Peak Storage= 5.05'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 706.60 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 380.0' Slope= 0.0500'/' Inlet Invert= 527.00', Outlet Invert= 508.00'

Reach RC11A: RC11-A

Page 455

Summary for Reach RC11B: RC11-B

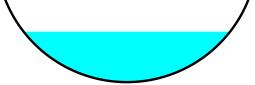
Inflow Area = 79.320 ac, 0.59% Impervious, Inflow Depth = 5.62" for 100 year event

Inflow = 356.34 cfs @ 12.27 hrs, Volume= 37.122 af

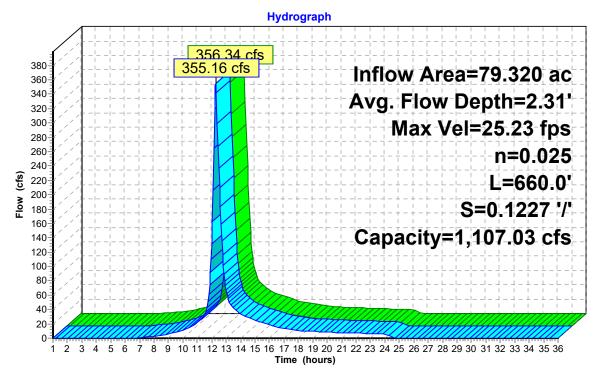
Outflow = 355.16 cfs @ 12.28 hrs, Volume= 37.122 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 25.23 fps, Min. Travel Time= 0.4 min Avg. Velocity = 8.69 fps, Avg. Travel Time= 1.3 min


Peak Storage= 9,272 cf @ 12.28 hrs Average Depth at Peak Storage= 2.31'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 1,107.03 cfs


12.00' x 4.00' deep Parabolic Channel, n=0.025

Length= 660.0' Slope= 0.1227 '/' Inlet Invert= 608.00', Outlet Invert= 527.00'

\

Reach RC11B: RC11-B

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 456

Inflow
Outflow

Summary for Reach RC11C: RC11-C

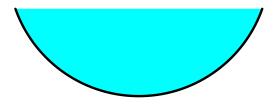
Inflow Area = 192.400 ac, 5.22% Impervious, Inflow Depth > 6.01" for 100 year event

Inflow = 730.76 cfs @ 12.26 hrs, Volume= 96.426 af

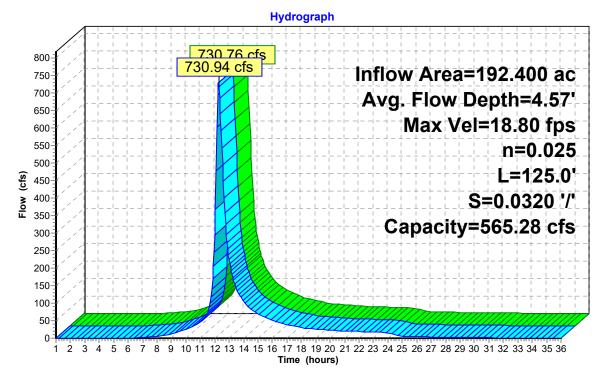
Outflow = 730.94 cfs @ 12.26 hrs, Volume= 96.425 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 18.80 fps, Min. Travel Time= 0.1 min Avg. Velocity = 5.96 fps, Avg. Travel Time= 0.3 min


Peak Storage= 4,858 cf @ 12.26 hrs Average Depth at Peak Storage= 4.57'

Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 565.28 cfs


12.00' x 4.00' deep Parabolic Channel, n=0.025

Length= 125.0' Slope= 0.0320 '/'

Inlet Invert= 531.00', Outlet Invert= 527.00'

Reach RC11C: RC11-C

Page 457

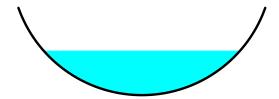
Summary for Reach RC12: RC12

Inflow Area = 68.270 ac, 0.00% Impervious, Inflow Depth = 5.90" for 100 year event

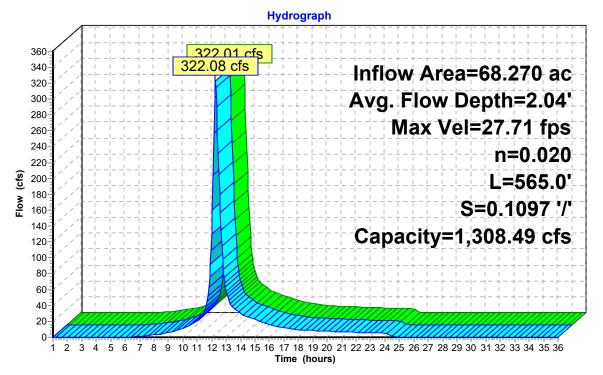
Inflow = 322.01 cfs @ 12.26 hrs, Volume= 33.575 af

Outflow = 322.08 cfs @ 12.26 hrs, Volume= 33.575 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 27.71 fps, Min. Travel Time= 0.3 min Avg. Velocity = 10.12 fps, Avg. Travel Time= 0.9 min

Peak Storage= 6,563 cf @ 12.26 hrs Average Depth at Peak Storage= 2.04'


Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 1,308.49 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.020 Length= 565.0' Slope= 0.1097 '/'

Inlet Invert= 722.00', Outlet Invert= 660.00'

Reach RC12: RC12

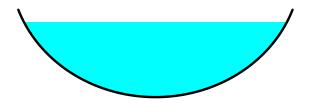
Page 458

Summary for Reach RC13: RC13

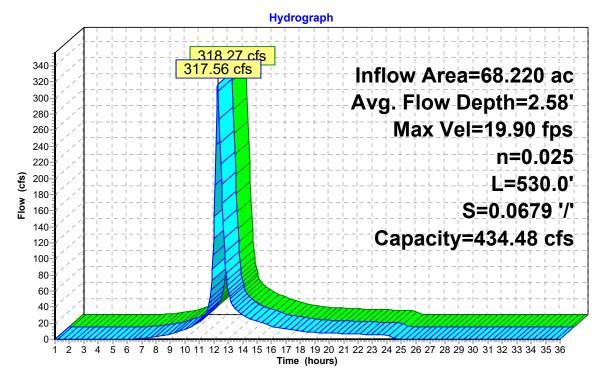
Inflow Area = 68.220 ac, 0.00% Impervious, Inflow Depth = 6.02" for 100 year event

Inflow = 318.27 cfs @ 12.27 hrs, Volume= 34.240 af

Outflow = 317.56 cfs @ 12.28 hrs, Volume= 34.240 af, Atten= 0%, Lag= 0.4 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 19.90 fps, Min. Travel Time= 0.4 min Avg. Velocity = 7.24 fps, Avg. Travel Time= 1.2 min


Peak Storage= 8,448 cf @ 12.28 hrs Average Depth at Peak Storage= 2.58'

Bank-Full Depth= 3.00' Flow Area= 20.0 sf, Capacity= 434.48 cfs

10.00' x 3.00' deep Parabolic Channel, n= 0.025 Length= 530.0' Slope= 0.0679 '/' Inlet Invert= 690.00', Outlet Invert= 654.00'

Reach RC13: RC13

Page 459

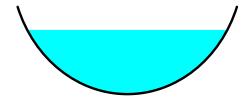
Inflow
Outflow

Summary for Reach RC14: RC14

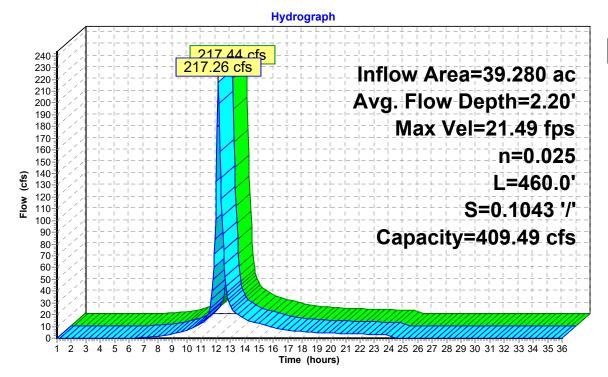
Inflow Area = 39.280 ac, 0.00% Impervious, Inflow Depth = 5.90" for 100 year event

Inflow = 217.44 cfs @ 12.17 hrs, Volume= 19.318 af

Outflow = 217.26 cfs @ 12.17 hrs, Volume= 19.318 af, Atten= 0%, Lag= 0.3 min


Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 21.49 fps, Min. Travel Time= 0.4 min Avg. Velocity = 7.74 fps, Avg. Travel Time= 1.0 min


Peak Storage= 4,629 cf @ 12.17 hrs Average Depth at Peak Storage= 2.20'

Bank-Full Depth= 3.00' Flow Area= 16.0 sf, Capacity= 409.49 cfs

8.00' x 3.00' deep Parabolic Channel, n= 0.025 Length= 460.0' Slope= 0.1043 '/' Inlet Invert= 702.00', Outlet Invert= 654.00'

Reach RC14: RC14

Page 460

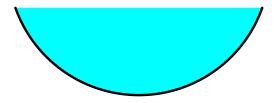
Summary for Reach RC2: RC2

Inflow Area = 281.270 ac, 3.74% Impervious, Inflow Depth > 5.91" for 100 year event

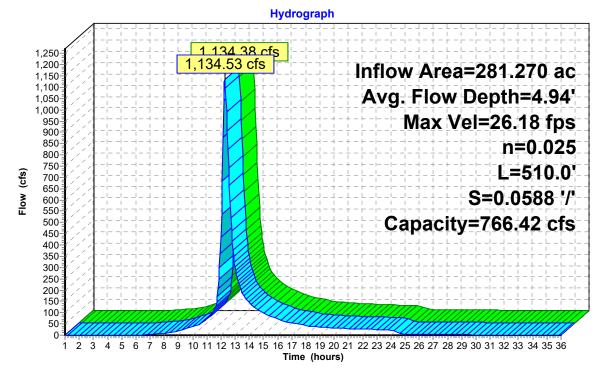
Inflow = 1,134.38 cfs @ 12.27 hrs, Volume= 138.531 af

Outflow = 1,134.53 cfs @ 12.27 hrs, Volume= 138.529 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 26.18 fps, Min. Travel Time= 0.3 min Avg. Velocity = 8.09 fps, Avg. Travel Time= 1.1 min

Peak Storage= 22,060 cf @ 12.27 hrs Average Depth at Peak Storage= 4.94'


Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 766.42 cfs

12.00' x 4.00' deep Parabolic Channel, n=0.025 Length= 510.0' Slope= 0.0588 '/'

Inlet Invert= 504.00', Outlet Invert= 474.00'

Reach RC2: RC2

Page 461

Summary for Reach RC3: RC3

Inflow Area = 7.400 ac, 22.70% Impervious, Inflow Depth > 6.54" for 100 year event

Inflow = 29.43 cfs @ 12.39 hrs, Volume= 4.030 af

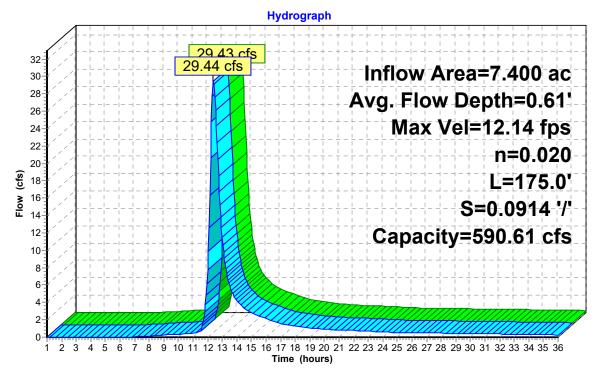
Outflow = 29.44 cfs @ 12.39 hrs, Volume= 4.030 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 12.14 fps, Min. Travel Time= 0.2 min Avg. Velocity = 3.98 fps, Avg. Travel Time= 0.7 min

Peak Storage= 424 cf @ 12.39 hrs Average Depth at Peak Storage= 0.61'

Bank-Full Depth= 2.50' Flow Area= 20.0 sf, Capacity= 590.61 cfs


12.00' x 2.50' deep Parabolic Channel, n= 0.020

Length= 175.0' Slope= 0.0914 '/'

Inlet Invert= 514.00', Outlet Invert= 498.00'

Reach RC3: RC3

Page 462

Summary for Reach RC4: RC4

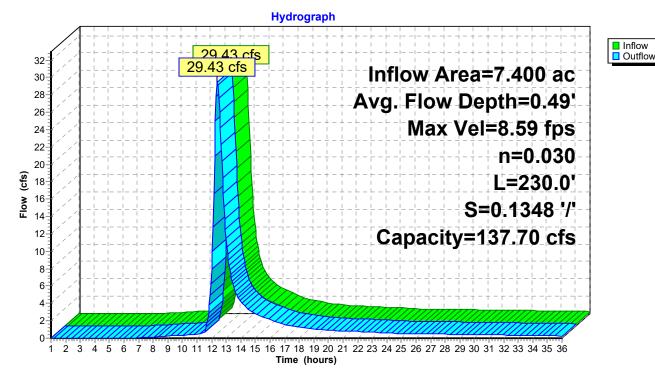
Inflow Area = 7.400 ac, 22.70% Impervious, Inflow Depth > 6.54" for 100 year event

Inflow = 29.43 cfs @ 12.38 hrs, Volume= 4.031 af

Outflow = 29.43 cfs @ 12.39 hrs, Volume= 4.030 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 8.59 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.76 fps, Avg. Travel Time= 1.4 min


Peak Storage= 788 cf @ 12.39 hrs Average Depth at Peak Storage= 0.49'

Bank-Full Depth= 1.00' Flow Area= 10.0 sf, Capacity= 137.70 cfs

15.00' x 1.00' deep Parabolic Channel, n= 0.030 Length= 230.0' Slope= 0.1348 '/' Inlet Invert= 546.00', Outlet Invert= 515.00'

‡

Reach RC4: RC4

Page 463

Inflow

Outflow

Summary for Reach RC5A: RC5-A

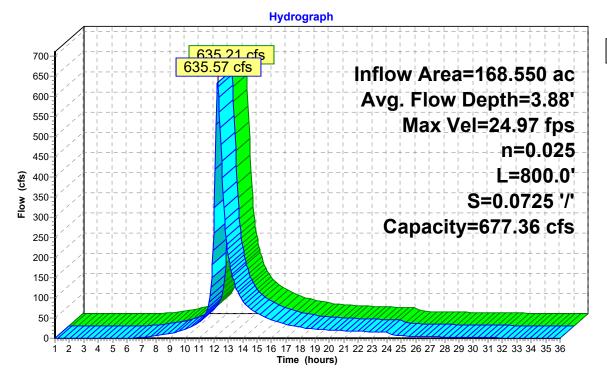
Inflow Area = 168.550 ac, 5.96% Impervious, Inflow Depth > 6.17" for 100 year event

Inflow = 635.21 cfs @ 12.26 hrs, Volume= 86.624 af

Outflow = 635.57 cfs @ 12.26 hrs, Volume= 86.621 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 24.97 fps, Min. Travel Time= 0.5 min Avg. Velocity = 8.13 fps, Avg. Travel Time= 1.6 min


Peak Storage= 20,353 cf @ 12.26 hrs Average Depth at Peak Storage= 3.88'

Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 677.36 cfs

10.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 800.0' Slope= 0.0725 '/' Inlet Invert= 590.00', Outlet Invert= 532.00'

Reach RC5A: RC5-A

Page 464

Summary for Reach RC5B: RC5-B

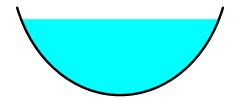
Inflow Area = 128.800 ac, 2.80% Impervious, Inflow Depth > 6.12" for 100 year event

Inflow = 547.37 cfs @ 12.24 hrs, Volume= 65.684 af

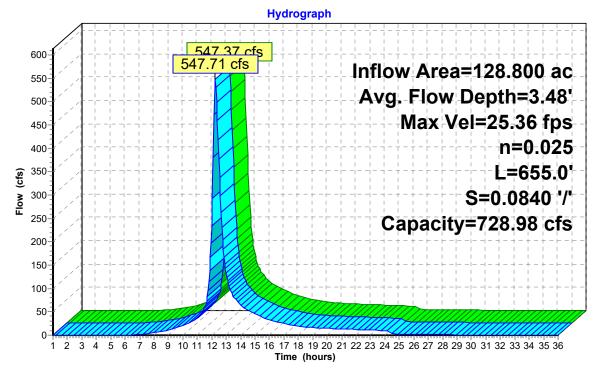
Outflow = 547.71 cfs @ 12.25 hrs, Volume= 65.683 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 25.36 fps, Min. Travel Time= 0.4 min Avg. Velocity = 7.53 fps, Avg. Travel Time= 1.4 min


Peak Storage= 14,145 cf @ 12.25 hrs Average Depth at Peak Storage= 3.48'

Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 728.98 cfs


10.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 655.0' Slope= 0.0840 '/'

Inlet Invert= 645.00', Outlet Invert= 590.00'

Reach RC5B: RC5-B

Page 465

Inflow
Outflow

Summary for Reach RC5C: RC5-C

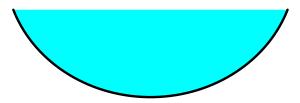
Inflow Area = 107.500 ac, 0.00% Impervious, Inflow Depth = 5.98" for 100 year event

Inflow = 503.92 cfs @ 12.23 hrs, Volume= 53.558 af

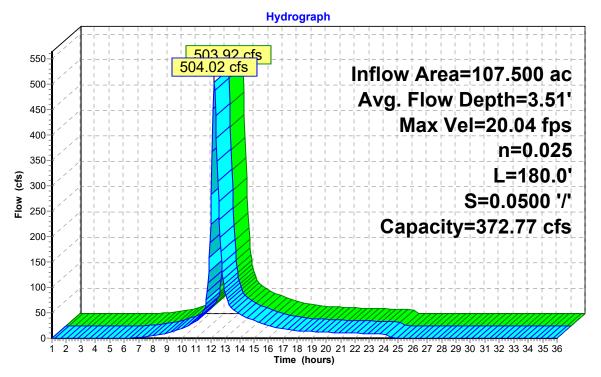
Outflow = 504.02 cfs @ 12.23 hrs, Volume= 53.558 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 20.04 fps, Min. Travel Time= 0.1 min Avg. Velocity = 7.37 fps, Avg. Travel Time= 0.4 min


Peak Storage= 4,522 cf @ 12.23 hrs Average Depth at Peak Storage= 3.51'

Bank-Full Depth= 3.00' Flow Area= 20.0 sf, Capacity= 372.77 cfs


10.00' x 3.00' deep Parabolic Channel, n= 0.025

Length= 180.0' Slope= 0.0500 '/'

Inlet Invert= 654.00', Outlet Invert= 645.00'

Reach RC5C: RC5-C

Page 466

Inflow
Outflow

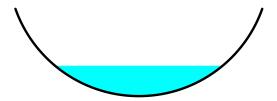
Summary for Reach RC6: RC6

Inflow Area = 39.750 ac, 16.23% Impervious, Inflow Depth > 6.32" for 100 year event

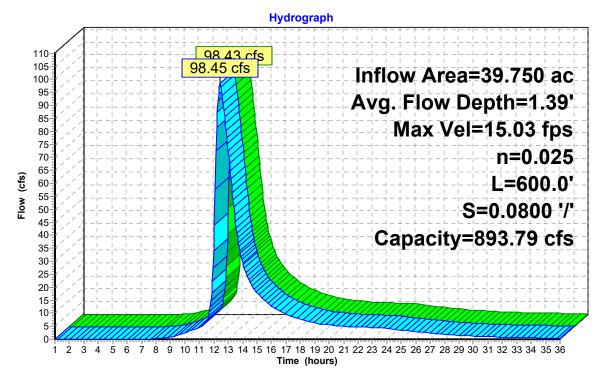
Inflow = 98.43 cfs @ 12.46 hrs, Volume= 20.942 af

Outflow = 98.45 cfs @ 12.47 hrs, Volume= 20.940 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 15.03 fps, Min. Travel Time= 0.7 min Avg. Velocity = 5.61 fps, Avg. Travel Time= 1.8 min

Peak Storage= 3,929 cf @ 12.47 hrs Average Depth at Peak Storage= 1.39'


Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 893.79 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 600.0' Slope= 0.0800 '/'

Inlet Invert= 638.00', Outlet Invert= 590.00'

Reach RC6: RC6

Page 467

Summary for Reach RC7: RC7

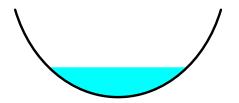
Inflow Area = 19.700 ac, 20.30% Impervious, Inflow Depth > 6.70" for 100 year event

Inflow = 49.29 cfs @ 12.49 hrs, Volume= 10.996 af

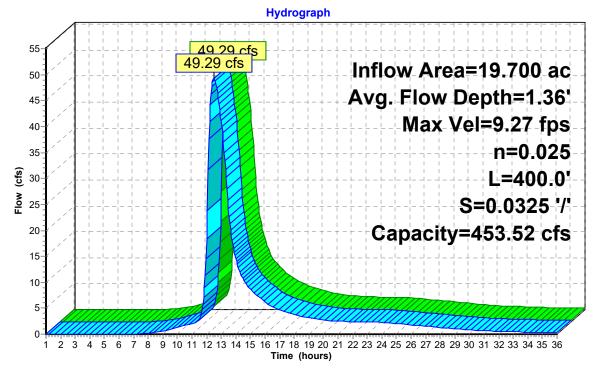
Outflow = 49.29 cfs @ 12.50 hrs, Volume= 10.995 af, Atten= 0%, Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 9.27 fps, Min. Travel Time= 0.7 min Avg. Velocity = 3.58 fps, Avg. Travel Time= 1.9 min


Peak Storage= 2,126 cf @ 12.50 hrs Average Depth at Peak Storage= 1.36'

Bank-Full Depth= 4.00' Flow Area= 26.7 sf, Capacity= 453.52 cfs


10.00' x 4.00' deep Parabolic Channel, n= 0.025

Length= 400.0' Slope= 0.0325 '/'

Inlet Invert= 660.00', Outlet Invert= 647.00'

Reach RC7: RC7

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 468

Inflow
Outflow

Summary for Reach RC8: RC8

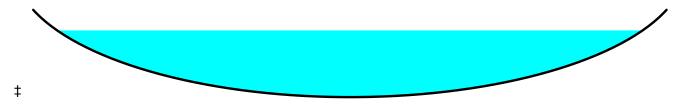
Inflow Area = 68.270 ac, 0.00% Impervious, Inflow Depth = 5.90" for 100 year event

Inflow = 322.08 cfs @ 12.26 hrs, Volume= 33.575 af

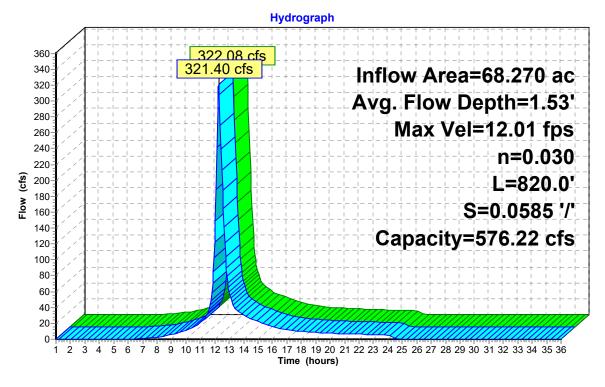
Outflow = 321.40 cfs @ 12.27 hrs, Volume= 33.575 af, Atten= 0%, Lag= 0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 12.01 fps, Min. Travel Time= 1.1 min Avg. Velocity = 3.91 fps, Avg. Travel Time= 3.5 min


Peak Storage= 21,870 cf @ 12.27 hrs Average Depth at Peak Storage= 1.53'

Bank-Full Depth= 2.00' Flow Area= 40.0 sf, Capacity= 576.22 cfs


30.00' x 2.00' deep Parabolic Channel, n= 0.030

Length= 820.0' Slope= 0.0585 '/'

Inlet Invert= 660.00', Outlet Invert= 612.00'

Reach RC8: RC8

Page 469

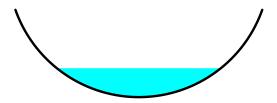
Summary for Reach RC9: RC9

Inflow Area = 23.500 ac, 17.02% Impervious, Inflow Depth > 6.26" for 100 year event

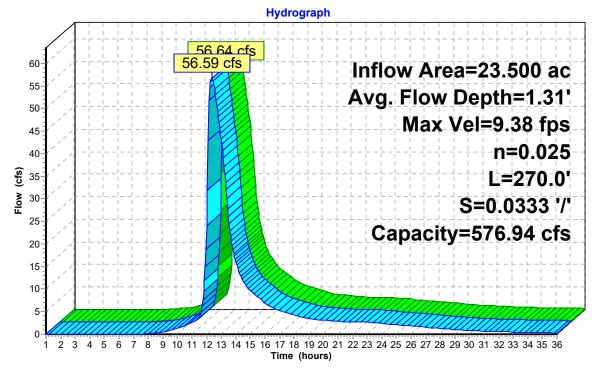
Inflow = 56.64 cfs @ 12.35 hrs, Volume= 12.252 af

Outflow = 56.59 cfs @ 12.35 hrs, Volume= 12.251 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 9.38 fps, Min. Travel Time= 0.5 min Avg. Velocity = 3.53 fps, Avg. Travel Time= 1.3 min

Peak Storage= 1,628 cf @ 12.35 hrs Average Depth at Peak Storage= 1.31'


Bank-Full Depth= 4.00' Flow Area= 32.0 sf, Capacity= 576.94 cfs

12.00' x 4.00' deep Parabolic Channel, n= 0.025 Length= 270.0' Slope= 0.0333 '/'

Inlet Invert= 647.00', Outlet Invert= 638.00'

Reach RC9: RC9

Page 470

Inflow

Primary

Summary for Pond B13P: ARCH CULV

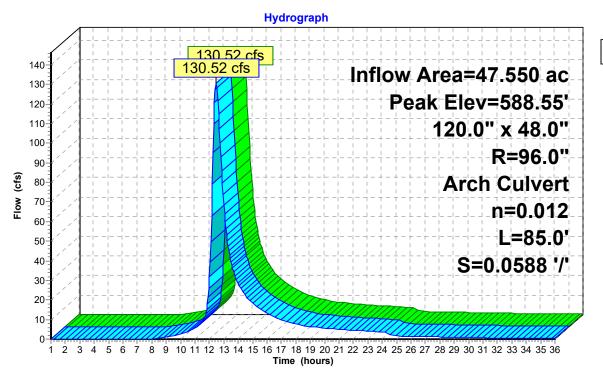
Inflow Area = 47.550 ac, 10.62% Impervious, Inflow Depth > 5.34" for 100 year event

Inflow = 130.52 cfs @ 12.47 hrs, Volume= 21.156 af

Outflow = 130.52 cfs @ 12.47 hrs, Volume= 21.156 af, Atten= 0%, Lag= 0.0 min

Primary = 130.52 cfs @ 12.47 hrs, Volume= 21.156 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 588.55' @ 12.47 hrs

Flood Elev= 610.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	586.00'	120.0" W x 48.0" H, R=96.0" Arch Culvert
			L= 85.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 586.00' / 581.00' S= 0.0588 '/' Cc= 0.900
			n= 0.012, Flow Area= 34.43 sf

Primary OutFlow Max=130.12 cfs @ 12.47 hrs HW=588.54' TW=583.12' (Dynamic Tailwater) 1=Culvert (Inlet Controls 130.12 cfs @ 5.14 fps)

Pond B13P: ARCH CULV

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 471

Summary for Pond B16P: ARCH CULV

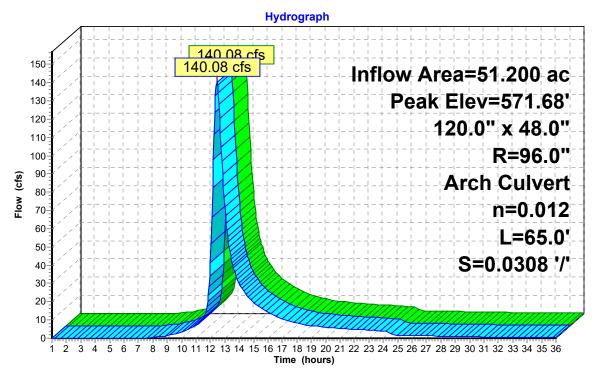
Inflow Area = 51.200 ac, 9.86% Impervious, Inflow Depth > 5.41" for 100 year event

Inflow = 140.08 cfs @ 12.45 hrs, Volume= 23.097 af

Outflow = 140.08 cfs @ 12.45 hrs, Volume= 23.097 af, Atten= 0%, Lag= 0.0 min

Primary = 140.08 cfs @ 12.45 hrs, Volume= 23.097 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 571.68' @ 12.45 hrs

Flood Elev= 578.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	569.00'	120.0" W x 48.0" H, R=96.0" Arch Culvert L= 65.0' Ke= 0.500 Inlet / Outlet Invert= 569.00' / 567.00' S= 0.0308 '/' Cc= 0.900 n= 0.012, Flow Area= 34.43 sf

Primary OutFlow Max=139.93 cfs @ 12.45 hrs HW=571.68' TW=569.27' (Dynamic Tailwater) 1=Culvert (Inlet Controls 139.93 cfs @ 5.27 fps)

Pond B16P: ARCH CULV

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

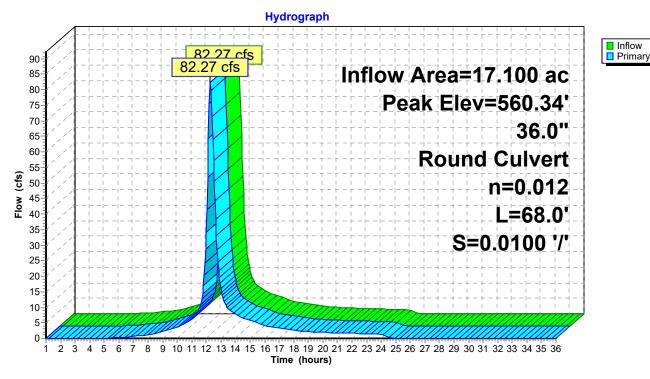
Page 472

Summary for Pond B4P: 36" HDPE

17.100 ac, 9.94% Impervious, Inflow Depth = 6.44" for 100 year event Inflow Area =

Inflow 82.27 cfs @ 12.28 hrs, Volume= 9.175 af

Outflow 82.27 cfs @ 12.28 hrs, Volume= 9.175 af, Atten= 0%, Lag= 0.0 min


82.27 cfs @ 12.28 hrs, Volume= Primary 9.175 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 560.34' @ 12.28 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	553.00'	36.0" Round Culvert L= 68.0' Ke= 0.500	
	-		Inlet / Outlet Invert= 553.00' / 552.32' S= 0.0100 '/'	Cc = 0.900
			n= 0.012, Flow Area= 7.07 sf	

Primary OutFlow Max=81.73 cfs @ 12.28 hrs HW=560.27' TW=553.82' (Dynamic Tailwater) 1=Culvert (Inlet Controls 81.73 cfs @ 11.56 fps)

Pond B4P: 36" HDPE

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 473

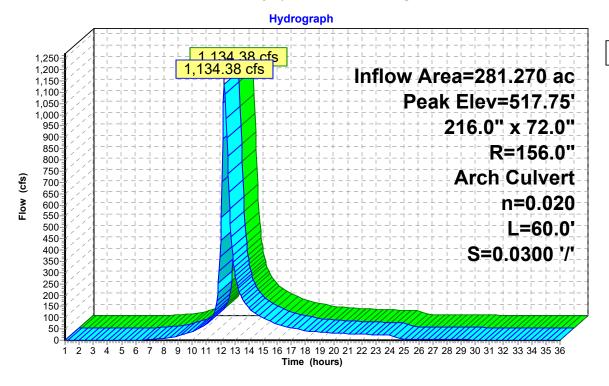
InflowPrimary

Summary for Pond C11P: ARCH CULV

281.270 ac, 3.74% Impervious, Inflow Depth > 5.91" for 100 year event Inflow Area =

Inflow 1,134.38 cfs @ 12.27 hrs, Volume= 138.531 af

Outflow 1,134.38 cfs @ 12.27 hrs, Volume= 138.531 af, Atten= 0%, Lag= 0.0 min


Primary = 1,134.38 cfs @ 12.27 hrs, Volume= 138.531 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 517.75' @ 12.27 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	507.80'	216.0" W x 72.0" H, R=156.0" Arch Culvert
	_		L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 507.80' / 506.00' S= 0.0300 '/' Cc= 0.900
			n= 0.020. Flow Area= 87.66 sf

Primary OutFlow Max=1,122.81 cfs @ 12.27 hrs HW=517.63' TW=508.91' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1,122.81 cfs @ 12.81 fps)

Pond C11P: ARCH CULV

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

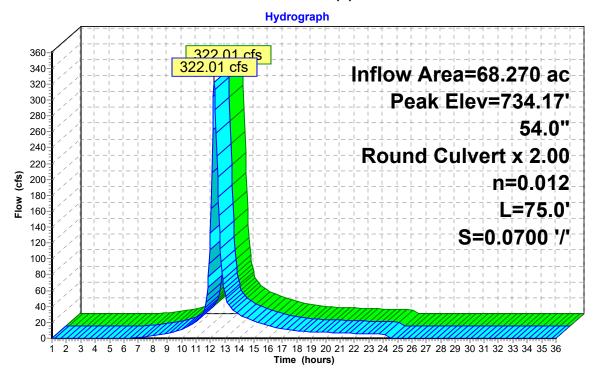
Page 474

Summary for Pond C12P: (2) 54" HDPE

Inflow Area = 68.270 ac, 0.00% Impervious, Inflow Depth = 5.90" for 100 year event

Inflow = 322.01 cfs @ 12.26 hrs, Volume= 33.575 af

Outflow = 322.01 cfs @ 12.26 hrs, Volume= 33.575 af, Atten= 0%, Lag= 0.0 min


Primary = 322.01 cfs @ 12.26 hrs, Volume= 33.575 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 734.17' @ 12.26 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	727.50'	54.0" Round Culvert X 2.00
	-		L= 75.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 727.50' / 722.25' S= 0.0700 '/' Cc= 0.900
			n= 0.012, Flow Area= 15.90 sf

Primary OutFlow Max=320.30 cfs @ 12.26 hrs HW=734.12' TW=724.03' (Dynamic Tailwater) 1=Culvert (Inlet Controls 320.30 cfs @ 10.07 fps)

Pond C12P: (2) 54" HDPE

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 475

Summary for Pond C13P: ARCH CULV

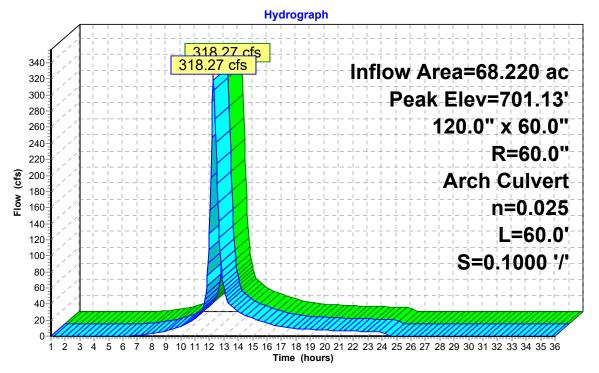
Inflow Area = 68.220 ac, 0.00% Impervious, Inflow Depth = 6.02" for 100 year event

Inflow = 318.27 cfs @ 12.27 hrs, Volume= 34.240 af

Outflow = 318.27 cfs @ 12.27 hrs, Volume= 34.240 af, Atten= 0%, Lag= 0.0 min

Primary = 318.27 cfs @ 12.27 hrs, Volume= 34.240 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 701.13' @ 12.27 hrs

Flood Elev= 712.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	696.00'	120.0" W x 60.0" H, R=60.0" Arch Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 696.00' / 690.00' S= 0.1000 '/' Cc= 0.900
			n= 0.025 Flow Area= 39.27 sf

Primary OutFlow Max=315.33 cfs @ 12.27 hrs HW=701.09' TW=692.57' (Dynamic Tailwater) 1=Culvert (Inlet Controls 315.33 cfs @ 8.03 fps)

Pond C13P: ARCH CULV

Page 476

Inflow

Primary

Summary for Pond C14P: (2) 48" HDPE

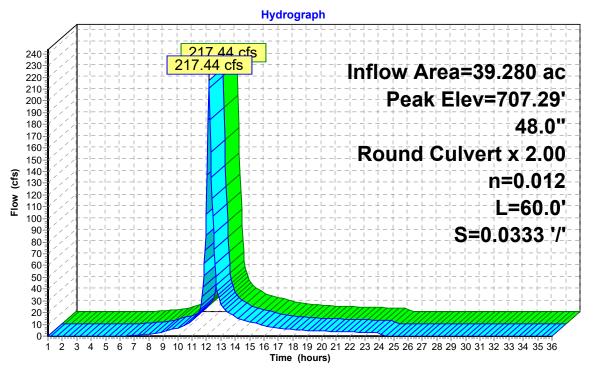
Inflow Area = 39.280 ac, 0.00% Impervious, Inflow Depth = 5.90" for 100 year event

Inflow = 217.44 cfs @ 12.17 hrs, Volume= 19.318 af

Outflow = 217.44 cfs @ 12.17 hrs, Volume= 19.318 af, Atten= 0%, Lag= 0.0 min

Primary = 217.44 cfs @ 12.17 hrs, Volume= 19.318 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 707.29' @ 12.18 hrs

Flood Elev= 712.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	702.00'	48.0" Round Culvert X 2.00
	-		L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 702.00' / 700.00' S= 0.0333 '/' Cc= 0.900
			n= 0.012, Flow Area= 12.57 sf

Primary OutFlow Max=209.60 cfs @ 12.17 hrs HW=707.18' TW=704.18' (Dynamic Tailwater) 1=Culvert (Inlet Controls 209.60 cfs @ 8.34 fps)

Pond C14P: (2) 48" HDPE

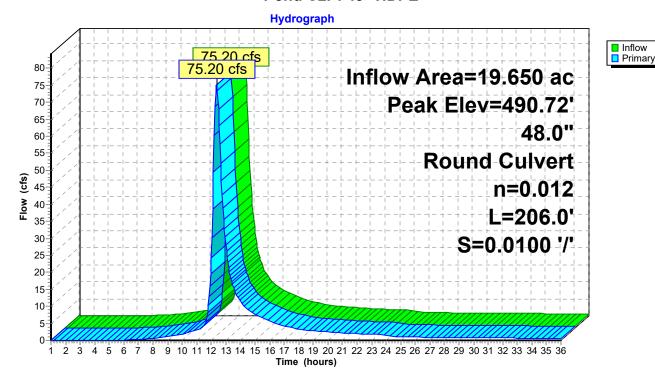
Page 477

Summary for Pond C2P: 48" HDPE

Inflow Area = 19.650 ac, 18.47% Impervious, Inflow Depth > 6.49" for 100 year event

Inflow = 75.20 cfs @ 12.37 hrs, Volume= 10.624 af

Outflow = 75.20 cfs @ 12.37 hrs, Volume= 10.624 af, Atten= 0%, Lag= 0.0 min


Primary = 75.20 cfs @ 12.37 hrs, Volume= 10.624 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 490.72' @ 12.34 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	486.02'	48.0" Round Culvert L= 206.0' CPP, square edge headwall, Ke= 0.500
	-		Inlet / Outlet Invert= 486.02' / 483.97' S= 0.0100 '/ Cc= 0.900
			n= 0.012, Flow Area= 12.57 sf

Primary OutFlow Max=79.83 cfs @ 12.37 hrs HW=490.66' TW=488.91' (Dynamic Tailwater) 1=Culvert (Inlet Controls 79.83 cfs @ 6.35 fps)

Pond C2P: 48" HDPE

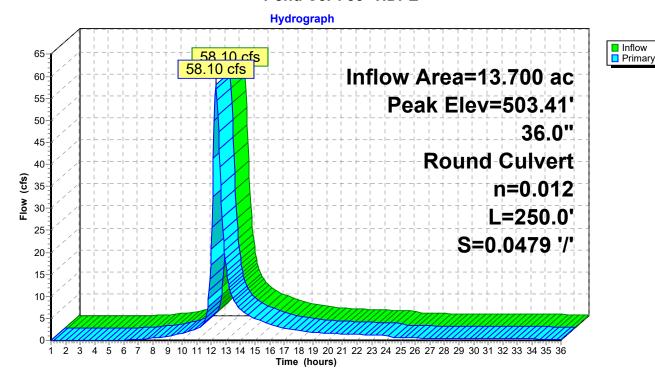
Page 478

Summary for Pond C3P: 36" HDPE

Inflow Area = 13.700 ac, 12.26% Impervious, Inflow Depth > 6.41" for 100 year event

Inflow = 58.10 cfs @ 12.31 hrs, Volume= 7.319 af

Outflow = 58.10 cfs @ 12.31 hrs, Volume= 7.319 af, Atten= 0%, Lag= 0.0 min


Primary = 58.10 cfs @ 12.31 hrs, Volume= 7.319 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 503.41' @ 12.31 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	499.00'	36.0" Round Culvert L= 250.0' Ke= 0.500
			Inlet / Outlet Invert= 499.00' / 487.02' S= 0.0479 '/' Cc= 0.900
			n= 0.012 Flow Area= 7.07 sf

Primary OutFlow Max=57.83 cfs @ 12.31 hrs HW=503.39' TW=490.64' (Dynamic Tailwater) 1=Culvert (Inlet Controls 57.83 cfs @ 8.18 fps)

Pond C3P: 36" HDPE

Page 479

Inflow

Primary

Summary for Pond C5P: (2) 60" CULV

Inflow Area = 192.400 ac, 5.22% Impervious, Inflow Depth > 6.01" for 100 year event

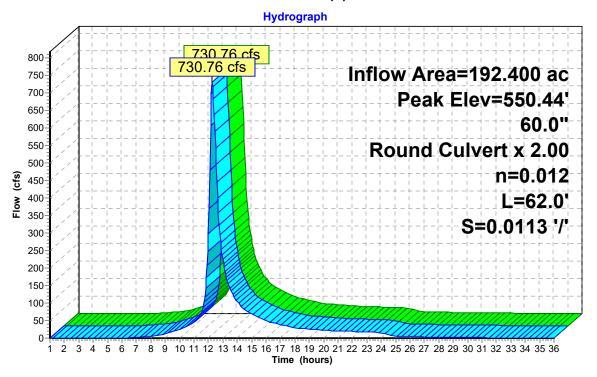
Inflow = 730.76 cfs @ 12.26 hrs, Volume= 96.426 af

Outflow = 730.76 cfs @ 12.26 hrs, Volume= 96.426 af, Atten= 0%, Lag= 0.0 min

Primary = 730.76 cfs @ 12.26 hrs, Volume= 96.426 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 550.44' @ 12.27 hrs


Flood Elev= 551.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	531.70'	60.0" Round Culvert X 2.00
			L= 62.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 531.70' / 531.00' S= 0.0113 '/' Cc= 0.900
			n= 0.012 Flow Area= 19.63 sf

Primary OutFlow Max=724.92 cfs @ 12.26 hrs HW=550.26' TW=535.56' (Dynamic Tailwater)

1=Culvert (Inlet Controls 724.92 cfs @ 18.46 fps)

Pond C5P: (2) 60" CULV

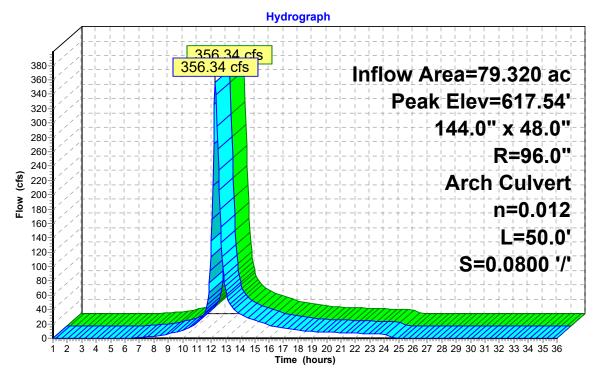
Page 480

Summary for Pond C8P: ARCH CULV

Inflow Area = 79.320 ac, 0.59% Impervious, Inflow Depth = 5.62" for 100 year event

Inflow = 356.34 cfs @ 12.27 hrs, Volume= 37.122 af

Outflow = 356.34 cfs @ 12.27 hrs, Volume= 37.122 af, Atten= 0%, Lag= 0.0 min


Primary = 356.34 cfs @ 12.27 hrs, Volume= 37.122 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 617.54' @ 12.27 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	612.00'	144.0" W x 48.0" H, R=96.0" Arch Culvert
	•		L= 50.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 612.00' / 608.00' S= 0.0800 '/' Cc= 0.900
			n= 0.012, Flow Area= 38.02 sf

Primary OutFlow Max=352.62 cfs @ 12.27 hrs HW=617.47' TW=610.30' (Dynamic Tailwater) 1=Culvert (Inlet Controls 352.62 cfs @ 9.27 fps)

Pond C8P: ARCH CULV

Page 481

Summary for Pond C9P: 48" HDPE

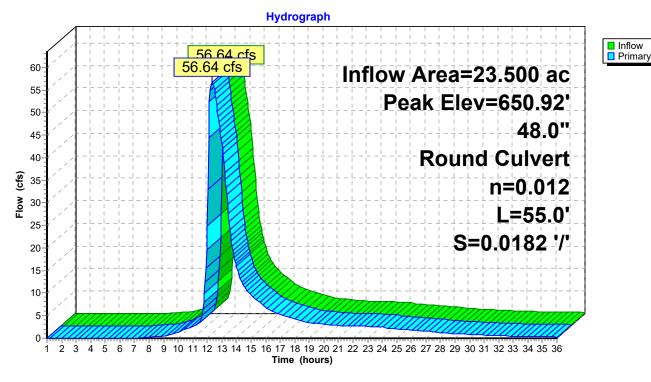
Inflow Area = 23.500 ac, 17.02% Impervious, Inflow Depth > 6.26" for 100 year event

Inflow = 56.64 cfs @ 12.35 hrs, Volume= 12.252 af

Outflow = 56.64 cfs @ 12.35 hrs, Volume= 12.252 af, Atten= 0%, Lag= 0.0 min

Primary = 56.64 cfs @ 12.35 hrs, Volume= 12.252 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs


Peak Elev= 650.92' @ 12.35 hrs

Flood Elev= 712.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	648.00'	48.0" Round Culvert L= 55.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 648.00' / 647.00' S= 0.0182 '/' Cc= 0.900 n= 0.012, Flow Area= 12.57 sf

Primary OutFlow Max=56.64 cfs @ 12.35 hrs HW=650.92' TW=648.31' (Dynamic Tailwater) 1=Culvert (Barrel Controls 56.64 cfs @ 8.06 fps)

Pond C9P: 48" HDPE

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 482

Summary for Pond PB11: POND B11

Inflow Area = 21.550 ac, 7.89% Impervious, Inflow Depth = 6.68" for 100 year event

Inflow = 117.09 cfs @ 12.20 hrs, Volume= 11.989 af

Outflow = 99.12 cfs @ 12.31 hrs, Volume= 11.933 af, Atten= 15%, Lag= 6.9 min

Primary = 99.12 cfs @ 12.31 hrs, Volume= 11.933 af

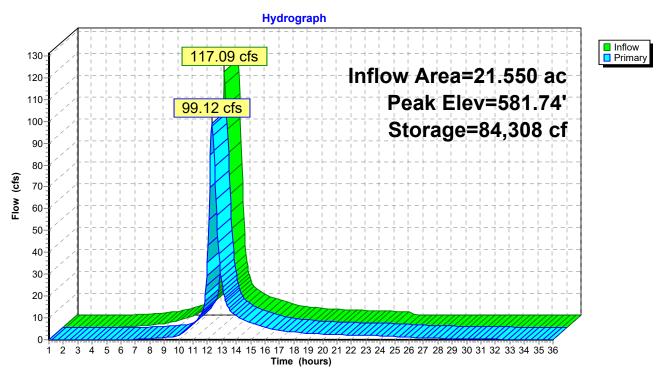
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 581.74' @ 12.31 hrs Surf.Area= 29,070 sf Storage= 84,308 cf

Plug-Flow detention time= 65.1 min calculated for 11.916 af (99% of inflow)

Center-of-Mass det. time= 63.0 min (864.3 - 801.3)

Volume	Inver	t Avail.Stor	age Storage	Description		
#1	578.00	' 91,99	0 cf Custom	Stage Data (Pris	smatic)Listed below (R	lecalc)
Elevation	on S	urf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
578.0	00	16,290	0	0		
580.0	00	22,850	39,140	39,140		
582.0	00	30,000	52,850	91,990		
Device	Routing	Invert	Outlet Devices	3		
#1	Primary	576.00'	36.0" Round	Culvert X 2.00		
	•		L= 100.0' CF	P, square edge h	neadwall, Ke= 0.500	
			Inlet / Outlet In	nvert= 576.00 / 5	72.00' S= 0.0400 '/' (Cc= 0.900
			n= 0.012, Flo	w Area= 7.07 sf		
#2	Device 1	581.75'	30.0" x 48.0"	Horiz. Orifice/Gr	ate C= 0.600 Limited	d to weir flow at low heads
#3	Device 1	579.30'	4.9' long Sha	rp-Crested Recta	angular Weir 2 End Co	ontraction(s)
			0.5' Crest Hei	ght		. ,
#4	Device 1	578.00'	0.5' long Sha 0.5' Crest Hei		angular Weir 2 End Co	ontraction(s)

Primary OutFlow Max=98.60 cfs @ 12.31 hrs HW=581.73' TW=576.72' (Dynamic Tailwater)


1=Culvert (Passes 98.60 cfs of 140.04 cfs potential flow)

-2=Orifice/Grate (Controls 0.00 cfs)

-3=Sharp-Crested Rectangular Weir (Weir Controls 87.32 cfs @ 8.13 fps)

-4=Sharp-Crested Rectangular Weir (Weir Controls 11.28 cfs @ 12.09 fps)

Pond PB11: POND B11

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 484

Summary for Pond PB12: POND B12

Inflow Area = 24.200 ac, 20.87% Impervious, Inflow Depth = 5.66" for 100 year event

Inflow = 120.14 cfs @ 12.21 hrs, Volume= 11.413 af

Outflow = 53.92 cfs @ 12.54 hrs, Volume= 11.086 af, Atten= 55%, Lag= 19.7 min

Primary = 53.92 cfs @ 12.54 hrs, Volume= 11.086 af

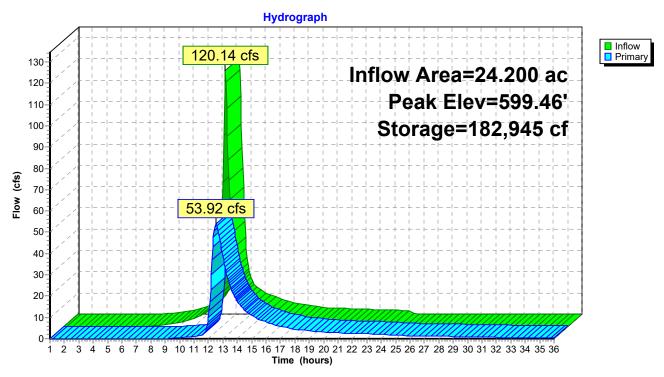
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 599.46' @ 12.54 hrs Surf.Area= 60,958 sf Storage= 182,945 cf

Plug-Flow detention time= 145.8 min calculated for 11.070 af (97% of inflow)

Center-of-Mass det. time= 130.1 min (949.4 - 819.3)

Volume	Inve	rt Avail.Sto	rage Storage	e Description		
#1	596.0	0' 216,6	00 cf Custor	n Stage Data (Pr	ismatic)Listed below (Recalc)	
Elevation	on	Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
596.0	00	44,900	0	0		
598.0	00	54,100	99,000	99,000		
600.0	00	63,500	117,600	216,600		
Device	Routing	Invert	Outlet Devic	es		
#1	Primary	596.00'	36.0" Roun	d Culvert X 2.00	L= 40.0' Ke= 0.500	
	-		Inlet / Outlet	Invert= 596.00' /	595.00' S= 0.0250 '/' Cc= 0.900	
			n= 0.012, Fl	low Area= 7.07 sf		
#2	Device 1	596.00'	8.5" Vert. O	rifice/Grate C=	0.600	
#3	Device 1	597.00'	4.0' long Sh	arp-Crested Rec	tangular Weir 2 End Contraction(s)	
			2.1' Crest He	eight		
#4	Device 1	599.75'	48.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads			

Primary OutFlow Max=53.85 cfs @ 12.54 hrs HW=599.46' TW=588.51' (Dynamic Tailwater)


1=Culvert (Passes 53.85 cfs of 95.22 cfs potential flow)

2=Orifice/Grate (Orifice Controls 3.34 cfs @ 8.48 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 50.50 cfs @ 5.86 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PB12: POND B12

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 486

Summary for Pond PB2: POND B2

Inflow Area = 6.100 ac, 13.11% Impervious, Inflow Depth = 5.90" for 100 year event

Inflow = 32.35 cfs @ 12.19 hrs, Volume= 3.000 af

Outflow = 9.13 cfs @ 12.64 hrs, Volume= 2.686 af, Atten= 72%, Lag= 27.1 min

Primary = 9.13 cfs @ 12.64 hrs, Volume= 2.686 af

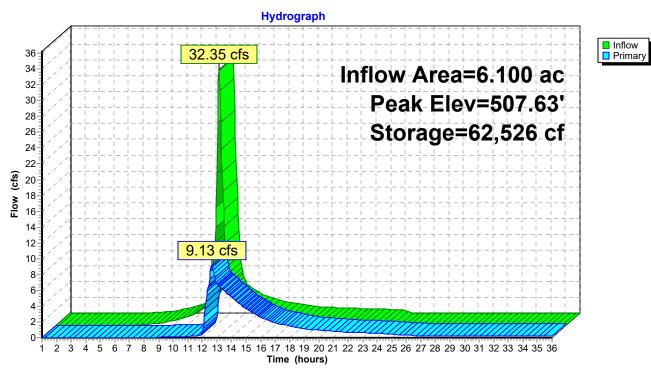
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 507.63' @ 12.64 hrs Surf.Area= 21,584 sf Storage= 62,526 cf

Plug-Flow detention time= 241.5 min calculated for 2.686 af (90% of inflow)

Center-of-Mass det. time= 191.4 min (1,005.3 - 813.9)

Volume	Inv	ert Avail.Sto	orage Storag	ge Description	
#1	504.0	00' 70,6	00 cf Custo	om Stage Data (Prismatic)Listed below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
504.0	00	13,100	0	0	
506.0	00	17,500	30,600	30,600	
508.0	00	22,500	40,000	70,600	
Device	Routing	Invert	Outlet Devi	ices	
#1	Primary	504.00'	30.0" Roui	nd Culvert L= 40.0' Ke= 0.500	_
	-		Inlet / Outle	et Invert= 504.00' / 498.00' S= 0.1500 '/' Cc= 0.900	
			n= 0.012, F	Flow Area= 4.91 sf	
#2	Device 1	504.00'		Orifice/Grate C= 0.600	
#3	Device 1	505.50'		Sharp-Crested Rectangular Weir 2 End Contraction(s)	
			2.0' Crest H		
#4	Device 1	507.50'	30.0" x 48.0	.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low head	s

Primary OutFlow Max=9.10 cfs @ 12.64 hrs HW=507.63' TW=500.56' (Dynamic Tailwater)


1=Culvert (Passes 9.10 cfs of 36.49 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.44 cfs @ 9.02 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 6.60 cfs @ 5.40 fps)

-4=Orifice/Grate (Weir Controls 2.06 cfs @ 1.19 fps)

Pond PB2: POND B2

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 488

Summary for Pond PB3: POND B3

26.650 ac, 15.57% Impervious, Inflow Depth = 6.14" for 100 year event Inflow Area =

Inflow 128.58 cfs @ 12.26 hrs, Volume= 13.645 af

Outflow = 107.06 cfs @ 12.39 hrs, Volume= 13.481 af, Atten= 17%, Lag= 7.7 min

107.06 cfs @ 12.39 hrs, Volume= Primary 13.481 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 524.38' @ 12.39 hrs Surf.Area= 40,189 sf Storage= 144,993 cf

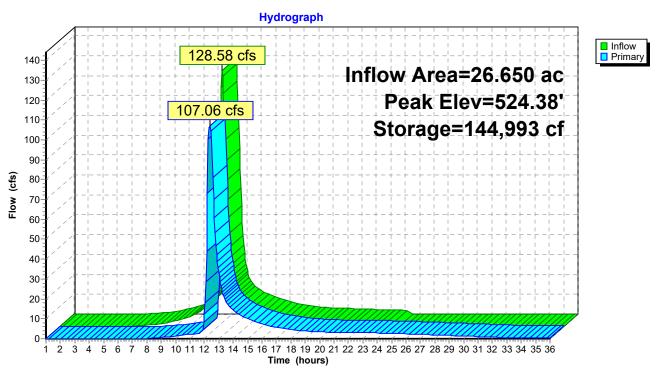
Plug-Flow detention time= 138.6 min calculated for 13.481 af (99% of inflow)

Center-of-Mass det. time= 131.2 min (946.0 - 814.7)

Volume	Inver	t Avail.Stor	age Storage	e Description	
#1	520.00	170,60	0 cf Custom	n Stage Data (Prismatic)Listed below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
520.0	00	26,300	0	0	
522.0	00	32,400	58,700	58,700	
524.0	00	38,900	71,300	130,000	
525.0	00	42,300	40,600	170,600	
Device	Routing	Invert	Outlet Devices	es	
#1	Primary	518.00'	30.0" Round	d Culvert X 2.00 L= 70.0' Ke= 0.500	
				Invert= 518.00' / 514.00' S= 0.0571 '/' Cc= 0.900 ow Area= 4.91 sf	
#2	Device 1	520.00'	9.0" Vert. Orifice/Grate C= 0.600		
#3	Device 1	522.40'	_	arp-Crested Rectangular Weir 2 End Contraction(s)	
#4	Device 1	523.75'	0.5' Crest Heig	ight ' Horiz. Orifice/Grate X 2.00 C= 0.600	
π¬•	Device I	525.75		eir flow at low heads	
#5	Device 1	523.25'	6.0' long Shar 0.5' Crest Heig	arp-Crested Rectangular Weir 2 End Contraction(s) ight	

Primary OutFlow Max=107.02 cfs @ 12.39 hrs HW=524.38' TW=507.60' (Dynamic Tailwater)

-1=Culvert (Inlet Controls 107.02 cfs @ 10.90 fps)


2=Orifice/Grate (Passes < 4.25 cfs potential flow)

-3=Sharp-Crested Rectangular Weir (Passes < 60.70 cfs potential flow)

-4=Orifice/Grate (Passes < 42.11 cfs potential flow)

-5=Sharp-Crested Rectangular Weir (Passes < 28.78 cfs potential flow)

Pond PB3: POND B3

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 490

Summary for Pond PB4: POND B4

Inflow Area = 10.200 ac, 13.73% Impervious, Inflow Depth = 6.51" for 100 year event

Inflow = 59.99 cfs @ 12.18 hrs, Volume= 5.531 af

Outflow = 46.40 cfs @ 12.30 hrs, Volume= 5.488 af, Atten= 23%, Lag= 7.4 min

Primary = 46.40 cfs @ 12.30 hrs, Volume= 5.488 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 561.81' @ 12.30 hrs Surf.Area= 23,516 sf Storage= 71,397 cf

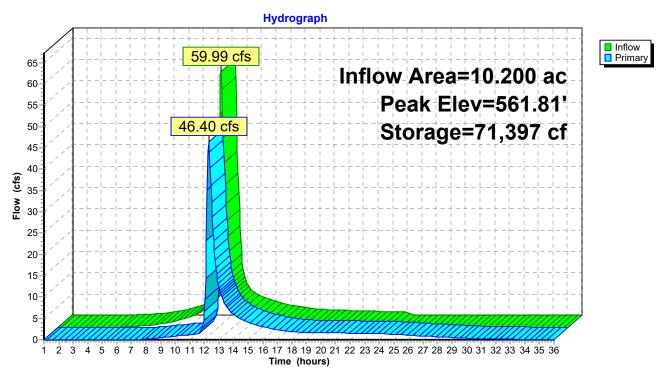
Plug-Flow detention time= 140.6 min calculated for 5.481 af (99% of inflow)

Center-of-Mass det. time= 136.6 min (938.3 - 801.7)

Volume	Inver	t Avail.Stor	age Storage [Description
#1	558.00	' 76,00	0 cf Custom	Stage Data (Prismatic)Listed below (Recalc)
Elevatio (fee 558.0 560.0	ot) 00	turf.Area (sq-ft) 14,000 19,000	Inc.Store (cubic-feet) 0 33,000	Cum.Store (cubic-feet) 0 33,000
562.0	00	24,000	43,000	76,000
Device	Routing	Invert	Outlet Devices	S
#1	Primary	558.00'	Inlet / Outlet In	Culvert L= 50.0' Ke= 0.500 nvert= 558.00' / 554.00' S= 0.0800 '/' Cc= 0.900 w Area= 7.07 sf
#2	Device 1	558.00'	7.0" Vert. Orifi	fice/Grate C= 0.600
#3	Device 1	560.00'	2.5' long Shar 0.5' Crest Heig	rp-Crested Rectangular Weir 2 End Contraction(s) ght
#4 #5	Device 1 Device 1	561.50' 561.00'	30.0" x 48.0" H	Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads rp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=46.31 cfs @ 12.30 hrs HW=561.81' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 46.31 cfs of 51.68 cfs potential flow)


2=Orifice/Grate (Orifice Controls 2.41 cfs @ 9.03 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 24.46 cfs @ 6.33 fps)

-4=Orifice/Grate (Weir Controls 7.17 cfs @ 1.81 fps)

-5=Sharp-Crested Rectangular Weir (Weir Controls 12.27 cfs @ 3.51 fps)

Pond PB4: POND B4

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 492

Summary for Pond PB5: POND B5

Inflow Area = 5.500 ac, 38.00% Impervious, Inflow Depth = 7.23" for 100 year event

Inflow = 37.47 cfs @ 12.15 hrs, Volume= 3.316 af

Outflow = 32.03 cfs @ 12.22 hrs, Volume= 3.186 af, Atten= 15%, Lag= 4.4 min

Primary = 32.03 cfs @ 12.22 hrs, Volume= 3.186 af

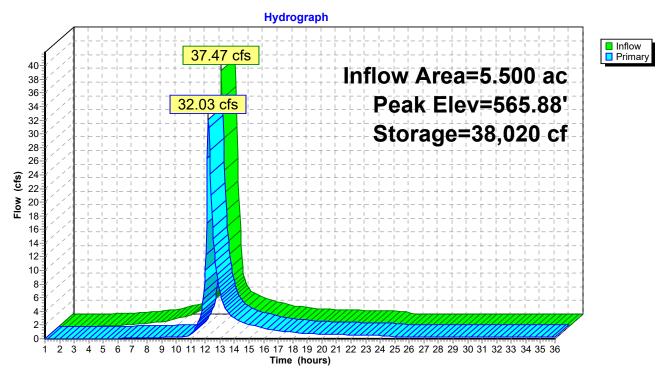
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 565.88' @ 12.22 hrs Surf.Area= 13,282 sf Storage= 38,020 cf

Plug-Flow detention time= 148.8 min calculated for 3.181 af (96% of inflow)

Center-of-Mass det. time= 127.0 min (910.8 - 783.8)

Volume	Inv	ert Avail.St	orage	Storage	Description	
#1	562.0	00' 39,6	600 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevation		Surf.Area		Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic	:-feet)	(cubic-feet)	
562.0	00	6,500		0	0	
564.0	00	9,800	1	6,300	16,300	
566.0	00	13,500	2	3,300	39,600	
Device	Routing	Invert	Outle	et Device	s	
#1	Primary	562.00	30.0	' Round	Culvert L= 75	.0' Ke= 0.500
			Inlet	/ Outlet I	nvert= 562.00' /	558.00' S= 0.0533 '/' Cc= 0.900
			n= 0.	.012, Flo	ow Area= 4.91 st	f
#2	Device 1	562.00	0' 3.0" Vert. Orifice/Grate C= 0.600		ifice/Grate C=	0.600
#3	Device 1	564.00	2.0' I	ong Sha	rp-Crested Red	ctangular Weir 2 End Contraction(s)
			0.5' (Crest Hei	ght	
#4	Device 1	565.50	36.0" x 54.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at lovery			Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=31.34 cfs @ 12.22 hrs HW=565.87' TW=0.00' (Dynamic Tailwater)


1=Culvert (Passes 31.34 cfs of 38.26 cfs potential flow)

—2=Orifice/Grate (Orifice Controls 0.46 cfs @ 9.32 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 19.82 cfs @ 6.52 fps)

-4=Orifice/Grate (Weir Controls 11.06 cfs @ 1.99 fps)

Pond PB5: POND B5

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 494

Summary for Pond PB6: POND B6

Inflow Area = 8.000 ac, 27.12% Impervious, Inflow Depth = 6.99" for 100 year event

Inflow = 49.53 cfs @ 12.18 hrs, Volume= 4.661 af

Outflow = 35.43 cfs @ 12.32 hrs, Volume= 4.523 af, Atten= 28%, Lag= 8.6 min

Primary = 35.43 cfs @ 12.32 hrs, Volume= 4.523 af

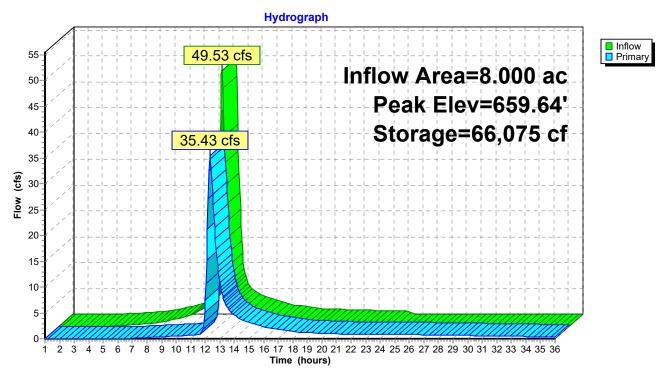
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 659.64' @ 12.32 hrs Surf.Area= 23,396 sf Storage= 66,075 cf

Plug-Flow detention time= 196.5 min calculated for 4.517 af (97% of inflow)

Center-of-Mass det. time= 179.7 min (971.4 - 791.7)

Volume	Inve	rt Avail.Sto	rage Storage	e Description			
#1	656.0	0' 74,6	00 cf Custon	n Stage Data (Prismatic)Listed below (Recalc)			
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
656.0		13,500	0	0			
658.0		18,300	31,800	31,800			
660.0	00	24,500	42,800	74,600			
Device	Routing	Invert	Outlet Device	es			
#1	Primary	656.00'	Inlet / Outlet	d Culvert L= 130.0' Ke= 0.500 Invert= 656.00' / 551.00' S= 0.8077 '/' Cc= 0.900 ow Area= 4.91 sf			
#2	Device 1	656.00'	5.0" Vert. Orifice/Grate C= 0.600				
#3	Device 1	658.10'	•	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s) 0.5' Crest Height			
#4	Device 1	659.50'	30.0" x 48.0"	"Horiz. Orifice/Grate C= 0.600 Limited to weir flow at lov	v heads		

Primary OutFlow Max=35.07 cfs @ 12.32 hrs HW=659.64' TW=553.33' (Dynamic Tailwater)


1=Culvert (Passes 35.07 cfs of 36.52 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 1.22 cfs @ 8.92 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 31.68 cfs @ 5.58 fps)

-4=Orifice/Grate (Weir Controls 2.17 cfs @ 1.21 fps)

Pond PB6: POND B6

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 496

Summary for Pond PB7: POND B7

Inflow Area = 13.450 ac, 27.88% Impervious, Inflow Depth = 6.39" for 100 year event

Inflow = 71.32 cfs @ 12.22 hrs, Volume= 7.158 af

Outflow = 29.79 cfs @ 12.59 hrs, Volume= 6.169 af, Atten= 58%, Lag= 21.9 min

Primary = 29.79 cfs @ 12.59 hrs, Volume= 6.169 af

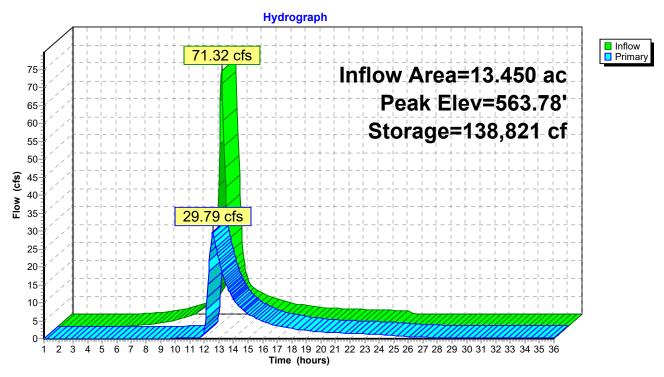
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 563.78' @ 12.59 hrs Surf.Area= 42,783 sf Storage= 138,821 cf

Plug-Flow detention time= 199.8 min calculated for 6.169 af (86% of inflow)

Center-of-Mass det. time= 139.3 min (946.9 - 807.6)

Volume	Inve	ert Avail.Sto	rage Storag	ge Description		
#1	560.0	00' 148,2	00 cf Custo	om Stage Data (Prismatic)Listed below (Recalc)		
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
560.0	00	30,900	0	0		
562.0	00	36,900	67,800	67,800		
564.0	00	43,500	80,400	148,200		
Device	Routing	Invert	Outlet Device	ices		
#1	Primary	560.00'	36.0" Roui	nd Culvert L= 100.0' Ke= 0.500	_	
	•		Inlet / Outle	et Invert= 560.00' / 558.00' S= 0.0200 '/' Cc= 0.900		
			n= 0.012, F	Flow Area= 7.07 sf		
#2	Device 1	560.00'	3.0" Vert. Orifice/Grate C= 0.600			
#3	Device 1	561.50'	2.0' long SI	harp-Crested Rectangular Weir 2 End Contraction(s)		
			0.5' Crest H			
#4	Device 1	563.65'	36.0" x 48.0	0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	3	

Primary OutFlow Max=29.72 cfs @ 12.59 hrs HW=563.78' TW=556.79' (Dynamic Tailwater)


1=Culvert (Passes 29.72 cfs of 51.40 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.45 cfs @ 9.21 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 27.10 cfs @ 7.69 fps)

-4=Orifice/Grate (Weir Controls 2.17 cfs @ 1.18 fps)

Pond PB7: POND B7

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 498

Summary for Pond PC10: POND C10

Inflow Area = 21.300 ac, 16.90% Impervious, Inflow Depth = 6.87" for 100 year event

Inflow = 124.71 cfs @ 12.20 hrs, Volume= 12.196 af

Outflow = 64.85 cfs @ 12.47 hrs, Volume= 12.128 af, Atten= 48%, Lag= 16.1 min

Primary = 64.85 cfs @ 12.47 hrs, Volume= 12.128 af

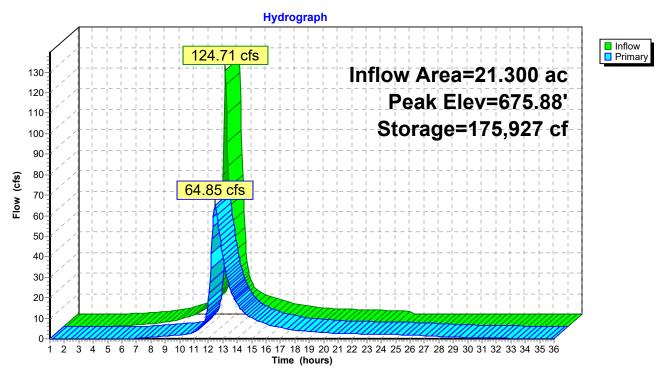
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 675.88' @ 12.47 hrs Surf.Area= 53,765 sf Storage= 175,927 cf

Plug-Flow detention time= 115.5 min calculated for 12.128 af (99% of inflow)

Center-of-Mass det. time= 112.0 min (908.1 - 796.1)

Volume	Inve	rt Avail.Sto	rage Storaç	je Description				
#1	672.00	0' 182,5	00 cf Custo	m Stage Data (P	rismatic)Listed below (Recalc)			
Elevation (fee	•	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
672.0	00	37,200	0	0				
674.0	00	45,500	82,700	82,700				
676.0	00	54,300	99,800	182,500				
Device	Routing	Invert	Outlet Device	ces				
#1	Primary	672.00'		nd Culvert X 2.00				
			L= 80.0' CPP, square edge headwall, Ke= 0.500					
			Inlet / Outle	t Invert= 672.00' /	670.00' S= 0.0250 '/' Cc= 0.900			
		n=		n= 0.012, Flow Area= 7.07 sf				
#2	Device 1	672.00'		Prifice/Grate X 6.0				
#3	Device 1	675.70' 30.0" x 48.0)" Horiz. Orifice/(Grate C= 0.600 Limited to weir flow at low heads			
#4	Device 1	673.00'	3.6' long Sharp-Crested Rectangular Weir 2 End Contraction(s) 2.0' Crest Height					

Primary OutFlow Max=64.62 cfs @ 12.47 hrs HW=675.87' TW=660.91' (Dynamic Tailwater)


1=Culvert (Passes 64.62 cfs of 104.89 cfs potential flow)

²⁼Orifice/Grate (Orifice Controls 4.85 cfs @ 9.27 fps)

⁻³⁼Orifice/Grate (Weir Controls 3.09 cfs @ 1.36 fps)

⁻⁴⁼Sharp-Crested Rectangular Weir (Weir Controls 56.68 cfs @ 6.52 fps)

Pond PC10: POND C10

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 500

Summary for Pond PC2: POND C2

Inflow Area = 5.950 ac, 32.77% Impervious, Inflow Depth = 7.11" for 100 year event

Inflow = 33.72 cfs @ 12.23 hrs, Volume= 3.527 af

Outflow = 21.00 cfs @ 12.46 hrs, Volume= 3.305 af, Atten= 38%, Lag= 13.8 min

Primary = 21.00 cfs @ 12.46 hrs, Volume= 3.305 af

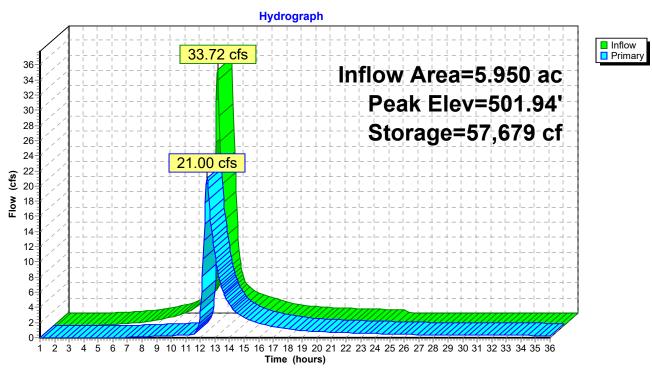
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 501.94' @ 12.46 hrs Surf.Area= 18,956 sf Storage= 57,679 cf

Plug-Flow detention time= 201.7 min calculated for 3.305 af (94% of inflow)

Center-of-Mass det. time= 167.4 min (960.3 - 792.9)

Volume	Inve	ert Avail.Sto	orage Storag	age Description		
#1	498.0	00' 58,9	00 cf Custo	om Stage Data (Prismatic)Listed below (Recalc)		
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)			
498.0	00	10,600	0	0		
500.0	00	14,600	25,200	25,200		
502.0	00	19,100	33,700	58,900		
Device	Routing	Invert	Outlet Devi	rices		
#1	Primary	498.00'	24.0" Rou	und Culvert L= 50.0' Ke= 0.500		
	•		Inlet / Outle	et Invert= 498.00' / 496.00' S= 0.0400 '/' Cc= 0.900		
			n= 0.012, F	Flow Area= 3.14 sf		
#2	Device 1	498.00'		3.5" Vert. Orifice/Grate C= 0.600		
#3	Device 1	evice 1 499.90' 1.6		1.6' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
			0.5' Crest H			
#4	4 Device 1 501.75' 30.0" x 48.0" Horiz. Orific		30.0" x 48.	.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads		

Primary OutFlow Max=20.91 cfs @ 12.46 hrs HW=501.93' TW=490.21' (Dynamic Tailwater)


1=Culvert (Passes 20.91 cfs of 25.91 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.63 cfs @ 9.37 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 16.94 cfs @ 6.98 fps)

-4=Orifice/Grate (Weir Controls 3.34 cfs @ 1.40 fps)

Pond PC2: POND C2

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 502

Summary for Pond PC4: POND C4

Inflow Area = 7.400 ac, 22.70% Impervious, Inflow Depth = 6.75" for 100 year event

Inflow = 41.95 cfs @ 12.21 hrs, Volume= 4.162 af

Outflow = 29.43 cfs @ 12.38 hrs, Volume= 4.031 af, Atten= 30%, Lag= 10.2 min

Primary = 29.43 cfs @ 12.38 hrs, Volume= 4.031 af

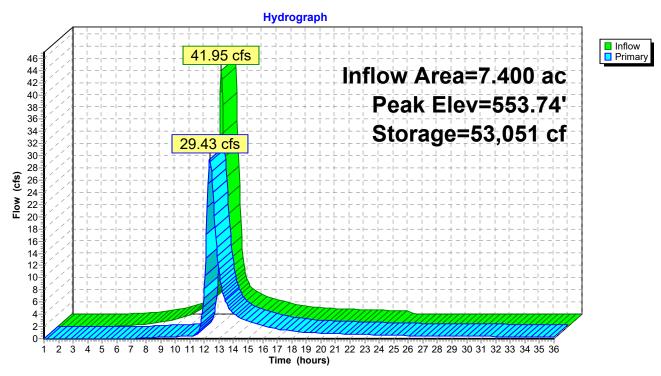
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 553.74' @ 12.38 hrs Surf.Area= 17,874 sf Storage= 53,051 cf

Plug-Flow detention time= 156.5 min calculated for 4.025 af (97% of inflow)

Center-of-Mass det. time= 138.9 min (938.2 - 799.4)

Volume	Inve	ert Avail.Sto	orage Storage	Description		
#1	550.0	00' 57,7	00 cf Custor	n Stage Data (Prismatic)L	isted below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
550.0	00	10,700	0	0		
552.0	00	14,300	25,000	25,000		
554.0	00	18,400	32,700	57,700		
Device	Routing	Invert	Outlet Device	s		
#1	Primary 550.00'		Inlet / Outlet	Culvert L= 40.0' Ke= 0 nvert= 550.00' / 547.50'		
#2 Device 1		550.00'	,	n= 0.012, Flow Area= 4.91 sf 4.0" Vert. Orifice/Grate C= 0.600		
#3	Device 1	551.80'	51.80' 3.0' long Sharp-Crested Rectangular Weir 2 End Cor 1.0' Crest Height		Weir 2 End Contraction(s)	
#4			0.600 Limited to weir flow at low heads			

Primary OutFlow Max=29.34 cfs @ 12.38 hrs HW=553.74' TW=546.49' (Dynamic Tailwater)


1=Culvert (Passes 29.34 cfs of 37.29 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.79 cfs @ 9.10 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 28.55 cfs @ 5.63 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PC4: POND C4

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 504

Summary for Pond PC6: POND C6

Inflow Area = 16.250 ac, 15.08% Impervious, Inflow Depth = 6.51" for 100 year event

Inflow = 94.25 cfs @ 12.18 hrs, Volume= 8.812 af

Outflow = 42.66 cfs @ 12.49 hrs, Volume= 8.691 af, Atten= 55%, Lag= 18.1 min

Primary = 42.66 cfs @ 12.49 hrs, Volume= 8.691 af

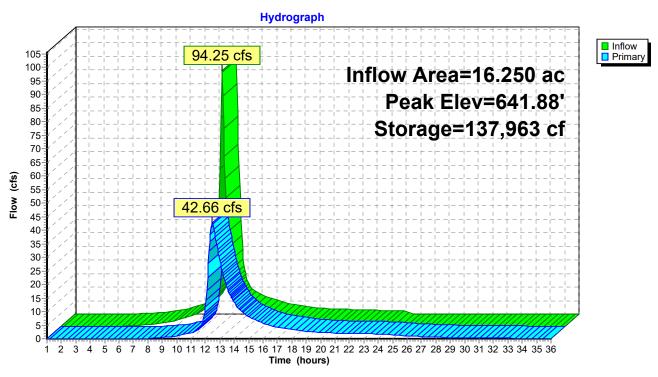
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 641.88' @ 12.49 hrs Surf.Area= 41,608 sf Storage= 137,963 cf

Plug-Flow detention time= 122.8 min calculated for 8.691 af (99% of inflow)

Center-of-Mass det. time= 114.3 min (916.5 - 802.2)

Volume	Inve	rt Avail.Sto	rage Stora	ge Description		
#1	638.0	0' 143,00	00 cf Custo	om Stage Data (Prismatic)Listed below (Recalc)		
Elevation	on :	Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
638.0	00	30,000	0	0		
640.0	00	35,500	65,500	65,500		
642.0	00	42,000	77,500	143,000		
		,	ŕ	,		
Device	Routing	Invert	Outlet Devi	ices		
#1	Primary	638.00'	30.0" Rou	ind Culvert X 2.00		
	,		L= 50.0' C	CPP, square edge headwall, Ke= 0.500		
				et Invert= 638.00' / 634.00' S= 0.0800 '/' Cc= 0.900		
			n= 0.012,	Flow Area= 4.91 sf		
#2	[‡] 2 Device 1 638.00'		10.0" Vert. Orifice/Grate C= 0.600			
#3	Device 1	639.00'	2.3' long S	.3' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
			1.0' Crest H	Height		
#4			30.0" x 48.	.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads		

Primary OutFlow Max=42.55 cfs @ 12.49 hrs HW=641.88' TW=639.39' (Dynamic Tailwater)


1=Culvert (Passes 42.55 cfs of 74.59 cfs potential flow)

2=Orifice/Grate (Orifice Controls 4.14 cfs @ 7.60 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 36.49 cfs @ 7.35 fps)

-4=Orifice/Grate (Weir Controls 1.92 cfs @ 1.17 fps)

Pond PC6: POND C6

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 506

Summary for Pond PC7: POND C7

Inflow Area = 19.700 ac, 20.30% Impervious, Inflow Depth = 6.87" for 100 year event

Inflow = 122.74 cfs @ 12.17 hrs, Volume= 11.280 af

Outflow = 49.29 cfs @ 12.49 hrs, Volume= 10.996 af, Atten= 60%, Lag= 19.5 min

Primary = 49.29 cfs @ 12.49 hrs, Volume= 10.996 af

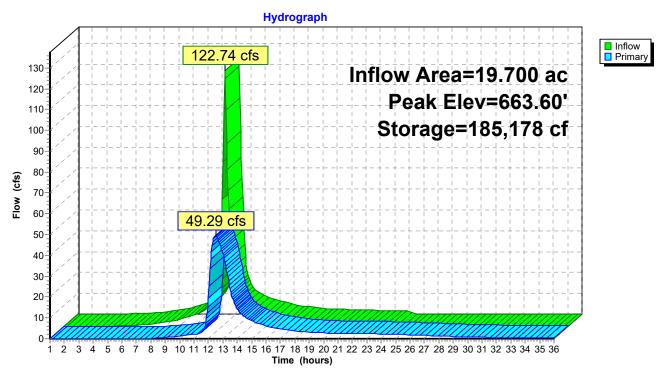
Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 663.60' @ 12.49 hrs Surf.Area= 58,390 sf Storage= 185,178 cf

Plug-Flow detention time= 159.5 min calculated for 10.996 af (97% of inflow)

Center-of-Mass det. time= 144.4 min (938.2 - 793.9)

Volume	Inve	ert Avail.Sto	rage Storag	e Description		
#1	660.0	0' 209,0	00 cf Custo	m Stage Data (Pr	ismatic)Listed below (Recalc)	
Elevation		Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
660.0	00	45,000	0	0		
662.0	00	52,000	97,000	97,000		
664.0	00	60,000	112,000	209,000		
Device	Routing	Invert	Outlet Device	ces		
#1	Primary	660.00'	36.0" Rour	nd Culvert L= 60.	0' Ke= 0.500	
	,		Inlet / Outle	t Invert= 660.00' /	656.00' S= 0.0667 '/' Cc= 0.900	
			n= 0.012, F	low Area= 7.07 sf		
#2	Device 1	660.00'	10.0" Vert.	10.0" Vert. Orifice/Grate C= 0.600		
#3	Device 1	661.30'	6.0' long Sl	narp-Crested Rec	tangular Weir 2 End Contraction(s)	
			0.6' Crest H	•		
#4 Device 1 663.75'		30.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads				

Primary OutFlow Max=49.28 cfs @ 12.49 hrs HW=663.60' TW=661.36' (Dynamic Tailwater)


1=Culvert (Inlet Controls 49.28 cfs @ 6.97 fps)

-2=Orifice/Grate (Passes < 3.92 cfs potential flow)

-3=Sharp-Crested Rectangular Weir (Passes < 92.40 cfs potential flow)

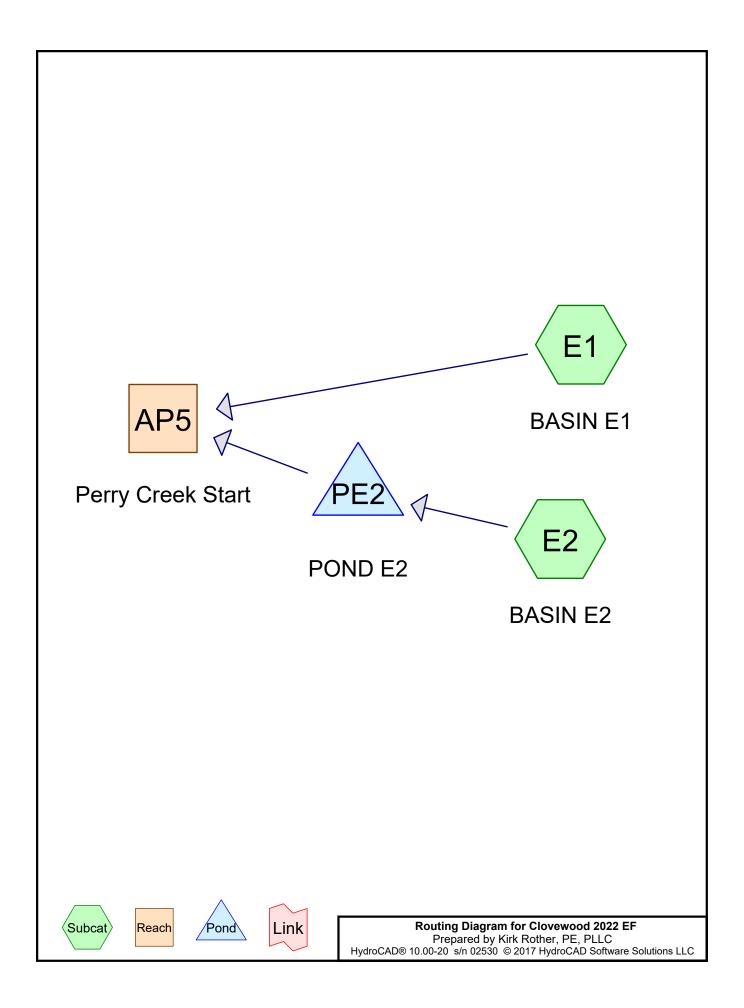
-4=Orifice/Grate (Controls 0.00 cfs)

Pond PC7: POND C7

Page 508

Summary for Pond XP: EXISTING POND

149.800 ac, 14.03% Impervious, Inflow Depth > 6.12" for 100 year event Inflow Area =


527.34 cfs @ 12.34 hrs, Volume= 527.34 cfs @ 12.34 hrs, Volume= Inflow 76.376 af

Primary 76.376 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.05 hrs

Pond XP: EXISTING POND

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
0.800	80	>75% Grass cover, Good, HSG D (E2)
4.750	85	LOTS, D (E2)
0.300	78	Meadow, non-grazed, HSG D (E1)
0.400	98	POND (E2)
1.450	98	ROAD, WALKS (E2)
2.200	85	Res Lot, HSG D (E1)
0.200	98	Well Access Road and Water Tower (E1)
3.300	89	Wetlands (E1)
165.500	77	Woods, Good, HSG D (E1, E2)
178.900	78	TOTAL AREA

Clovewood 2022 EF

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
168.800	HSG D	E1, E2
10.100	Other	E1, E2
178.900		TOTAL AREA

Page 4

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	0.000	0.800	0.000	0.800	>75% Grass cover, Good	E2
0.000	0.000	0.000	0.000	4.750	4.750	LOTS, D	E2
0.000	0.000	0.000	0.300	0.000	0.300	Meadow, non-grazed	E1
0.000	0.000	0.000	0.000	0.400	0.400	POND	E2
0.000	0.000	0.000	0.000	1.450	1.450	ROAD, WALKS	E2
0.000	0.000	0.000	2.200	0.000	2.200	Res Lot	E1
0.000	0.000	0.000	0.000	0.200	0.200	Well Access Road and Water Tower	E1
0.000	0.000	0.000	0.000	3.300	3.300	Wetlands	E1
0.000	0.000	0.000	165.500	0.000	165.500	Woods, Good	E1, E2
0.000	0.000	0.000	168.800	10.100	178.900	TOTAL AREA	

Clovewood 2022 EF

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 5

Pipe Listing (all nodes)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	E2	0.00	0.00	1,060.0	0.1000	0.012	18.0	0.0	0.0
2	PE2	588.00	587.00	50.0	0.0200	0.012	24.0	0.0	0.0

Page 6

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: BASIN E1 Runoff Area=170.100 ac 0.12% Impervious Runoff Depth>0.74"

Flow Length=7,630' Tc=31.9 min CN=77 Runoff=84.58 cfs 10.497 af

Subcatchment E2: BASIN E2 Runoff Area=8.800 ac 21.02% Impervious Runoff Depth>1.25"

Flow Length=1,770' Tc=21.6 min CN=86 Runoff=9.05 cfs 0.916 af

Reach AP5: Perry Creek Start Inflow=85.34 cfs 11.119 af

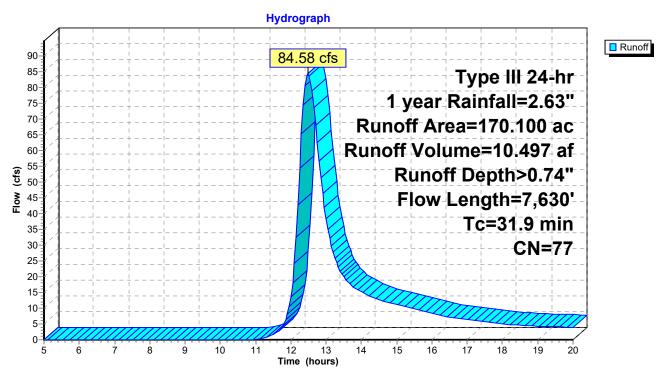
Outflow=85.34 cfs 11.119 af

Pond PE2: POND E2 Peak Elev=589.08' Storage=21,626 cf Inflow=9.05 cfs 0.916 af

Outflow=1.41 cfs 0.622 af

Total Runoff Area = 178.900 ac Runoff Volume = 11.413 af Average Runoff Depth = 0.77" 98.85% Pervious = 176.850 ac 1.15% Impervious = 2.050 ac

Summary for Subcatchment E1: BASIN E1

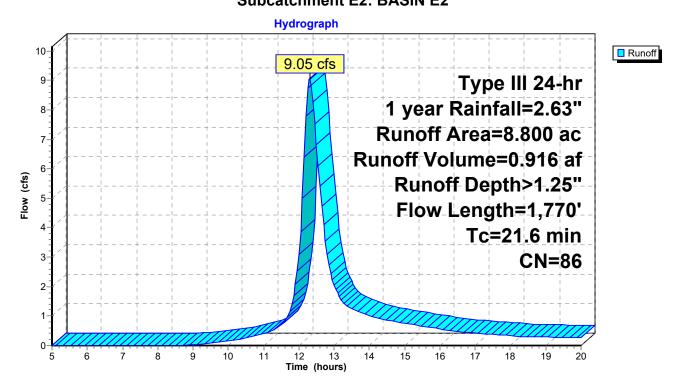

Runoff = 84.58 cfs @ 12.49 hrs, Volume= 10.497 af, Depth> 0.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) (CN De	scription		
	164.	100	77 Wo	ods, Good,	HSG D	
					grazed, HS	G D
*				tlands	g	
*				Lot, HSG	D	
*					oad and Wa	otor Towar
_						alei Towei
	170.			ighted Aver		
	169.			38% Pervio		
	0.	200	0.1	2% Impervi	ous Area	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	20.5	100	0.0200	0.08		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	1.2	630	0.2800	8.52		Shallow Concentrated Flow,
	1.2	000	0.2000	0.02		Unpaved Kv= 16.1 fps
	6.6	2,300	0.1300	5.80		Shallow Concentrated Flow,
	0.0	2,300	0.1300	5.00		
	4.0	4 200	0.4400	04.00	250.26	Unpaved Kv= 16.1 fps
	1.0	1,300	0.1100	21.90	350.36	Parabolic Channel,
						W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.030
	2.6	3,300	0.0700	20.96	335.39	Parabolic Channel,
						W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.025
	31.9	7,630	Total			

Page 8

Subcatchment E1: BASIN E1


Summary for Subcatchment E2: BASIN E2

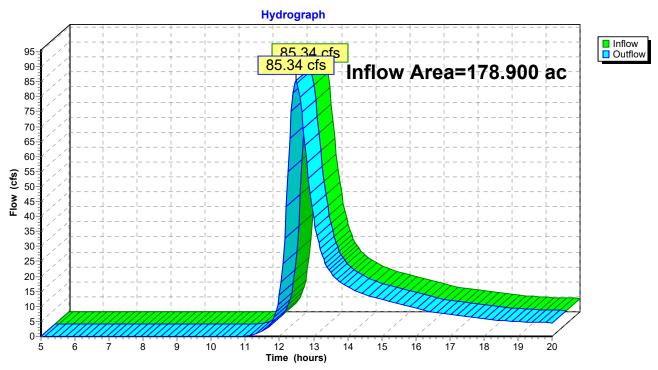
Runoff = 9.05 cfs @ 12.30 hrs, Volume= 0.916 af, Depth> 1.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1 year Rainfall=2.63"

	Area	(ac) (CN	Desc	ription		
*	1.	450	98	ROA	D, WALKS	3	
	1.	400	77	Woo	ds, Good,	HSG D	
*	0.	400	98	PON	D		
*	4.	750	85	LOT	S, D		
	0.	800	80	>75%	⁶ Grass co	over, Good,	HSG D
	8.	800	86	Weig	hted Aver	age	
	6.	950		78.98	8% Pervio	us Area	
	1.	850		21.02	2% Imperv	ious Area	
	Tc	Length		ope	Velocity	Capacity	Description
_	(min)	(feet)		ft/ft)	(ft/sec)	(cfs)	
	18.8	100	0.0	250	0.09		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	1.6	500	0.1	000	5.09		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.3	110	0.1	000	6.42		Shallow Concentrated Flow,
	0.0	4 000		000	00.00	05.00	Paved Kv= 20.3 fps
	0.9	1,060	0.1	000	20.36	35.99	Pipe Channel,
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_	04.0	4 770					n= 0.012
	21.6	1,770	Tot	tal			

Subcatchment E2: BASIN E2

Summary for Reach AP5: Perry Creek Start


Inflow Area = 178.900 ac, 1.15% Impervious, Inflow Depth > 0.75" for 1 year event

85.34 cfs @ 12.49 hrs, Volume= 85.34 cfs @ 12.49 hrs, Volume= Inflow 11.119 af

Outflow 11.119 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach AP5: Perry Creek Start

Clovewood 2022 EF

Prepared by Kirk Rother, PE, PLLC

HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 11

Summary for Pond PE2: POND E2

8.800 ac, 21.02% Impervious, Inflow Depth > 1.25" for 1 year event Inflow Area =

Inflow 0.916 af

9.05 cfs @ 12.30 hrs, Volume= 1.41 cfs @ 13.30 hrs, Volume= Outflow = 0.622 af, Atten= 84%, Lag= 59.8 min

1.41 cfs @ 13.30 hrs, Volume= Primary 0.622 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

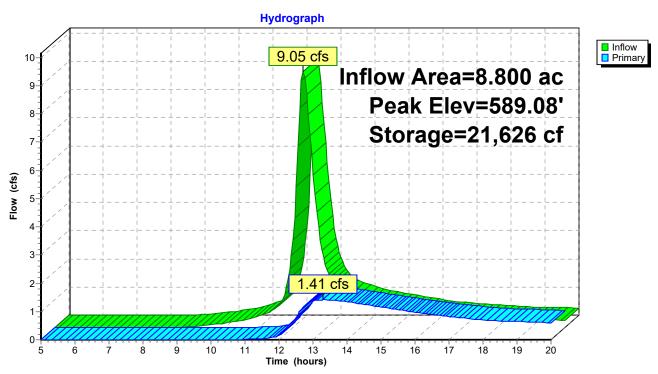
Peak Elev= 589.08' @ 13.30 hrs Surf.Area= 21,154 sf Storage= 21,626 cf

Plug-Flow detention time= 193.5 min calculated for 0.619 af (68% of inflow)

Center-of-Mass det. time= 126.0 min (933.0 - 807.0)

Volume	Inve	rt Avail.Sto	rage Storage	e Description
#1	588.0	0' 93,0	00 cf Custor	m Stage Data (Prismatic)Listed below (Recalc)
Elevation	on :	Surf.Area	Inc.Store	Cum.Store
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)
588.0	00	19,000	0	0
590.0	00	23,000	42,000	42,000
592.0	00	28,000	51,000	93,000
Device	Routing	Invert	Outlet Device	es
#1	#1 Primary 588.00'		Inlet / Outlet	d Culvert L= 50.0' CMP, square edge headwall, Ke= 0.500 Invert= 588.00' / 587.00' S= 0.0200 '/' Cc= 0.900
40	Davidae 4	E00.00I	,	low Area= 3.14 sf
#2	Device 1	588.00'		rifice/Grate C= 0.600
#3	Device 1	588.75' 0.9' long Sharp-Crested Rectangular Weir 2 End Contraction(• • • • • • • • • • • • • • • • • • • •
			0.5' Crest He	3
#4	Device 1	591.75'	36.0" x 36.0	"Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=1.41 cfs @ 13.30 hrs HW=589.08' (Free Discharge)


-1=Culvert (Passes 1.41 cfs of 6.10 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.86 cfs @ 4.38 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 0.55 cfs @ 2.02 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PE2: POND E2

Page 13

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: BASIN E1 Runoff Area=170.100 ac 0.12% Impervious Runoff Depth>2.29"

Flow Length=7,630' Tc=31.9 min CN=77 Runoff=271.24 cfs 32.397 af

Subcatchment E2: BASIN E2 Runoff Area=8.800 ac 21.02% Impervious Runoff Depth>3.10"

Flow Length=1,770' Tc=21.6 min CN=86 Runoff=22.04 cfs 2.272 af

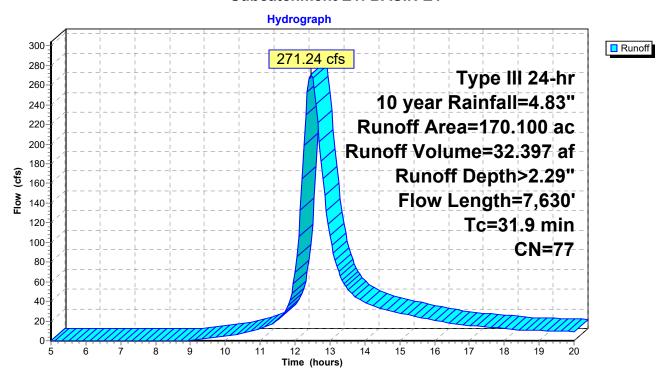
Reach AP5: Perry Creek Start Inflow=276.11 cfs 34.266 af

Outflow=276.11 cfs 34.266 af

Pond PE2: POND E2 Peak Elev=590.26' Storage=48,089 cf Inflow=22.04 cfs 2.272 af

Outflow=6.31 cfs 1.869 af

Total Runoff Area = 178.900 ac Runoff Volume = 34.669 af Average Runoff Depth = 2.33" 98.85% Pervious = 176.850 ac 1.15% Impervious = 2.050 ac

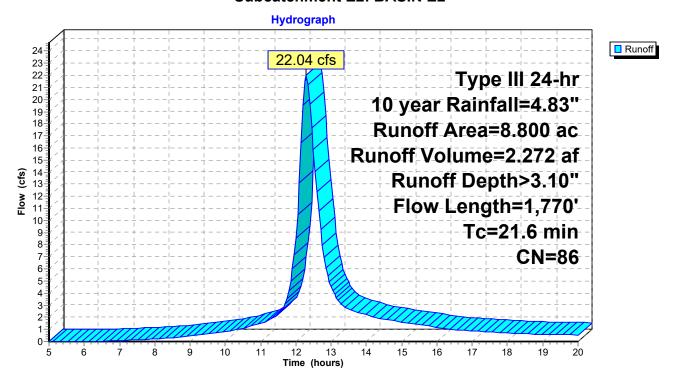

Summary for Subcatchment E1: BASIN E1

Runoff = 271.24 cfs @ 12.45 hrs, Volume= 32.397 af, Depth> 2.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac) (CN	Desc	cription		
	164.	100	77	Woo	ds, Good,	HSG D	
	0.	300				grazed, HS	G D
*					andś	,	
*	_	200			Lot, HSG	D	
*		200			,	oad and Wa	ater Tower
_							ator rower
	170.				ghted Aver		
	169.				8% Pervio		
	0.	200		0.12	% Impervi	ous Area	
	_		-				
	Tc	Length		ope	Velocity	Capacity	Description
_	(min)	(feet)	(1	ft/ft)	(ft/sec)	(cfs)	
	20.5	100	0.0	200	0.08		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	1.2	630	0.2	800	8.52		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	6.6	2,300	0.1	300	5.80		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	1.0	1,300	0.1	100	21.90	350.36	Parabolic Channel,
		.,	-				W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.030
	2.6	3,300	0.0	700	20.96	335.39	Parabolic Channel,
		2,000	3.0		=5.55	220.00	W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.025
_	31.9	7,630	Tot	صــــــــــــــــــــــــــــــــــــ			0.00 _ 0.0002 .0.0 0. 1 01111 10.1 11 01020
	51.9	1,030	100	.aı			

Subcatchment E1: BASIN E1


Summary for Subcatchment E2: BASIN E2

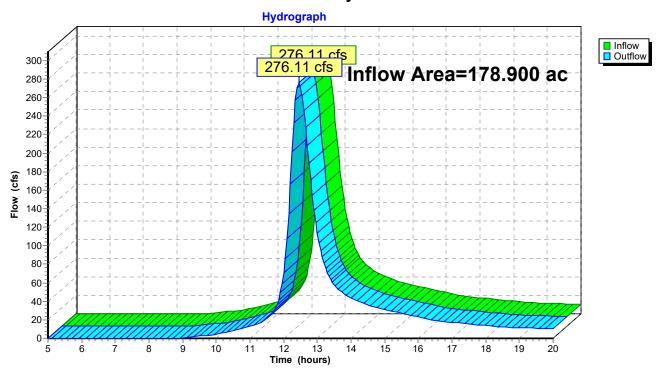
Runoff = 22.04 cfs @ 12.29 hrs, Volume= 2.272 af, Depth> 3.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 year Rainfall=4.83"

	Area	(ac) (CN	Desc	cription		
*	1.	450	98	ROA	D, WALKS	3	
	1.	400	77	Woo	ds, Good,	HSG D	
*	0.	400	98	PON	ID		
*	4.	750	85	LOT	S, D		
	0.	800	80	>75%	% Grass co	over, Good,	HSG D
	8.	800	86	Weig	ghted Aver	age	
	6.	950		78.9	8% Pervio	us Area	
	1.	850		21.0	2% Imperv	ious Area	
	Тс	Length		lope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	18.8	100	0.0	250	0.09		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	1.6	500	0.1	000	5.09		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.3	110	0.1	000	6.42		Shallow Concentrated Flow,
							Paved Kv= 20.3 fps
	0.9	1,060	0.1	000	20.36	35.99	Pipe Channel,
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_							n= 0.012
	21.6	1,770	To	tal			

Subcatchment E2: BASIN E2

Summary for Reach AP5: Perry Creek Start


178.900 ac, 1.15% Impervious, Inflow Depth > 2.30" for 10 year event Inflow Area =

276.11 cfs @ 12.45 hrs, Volume= 276.11 cfs @ 12.45 hrs, Volume= Inflow 34.266 af

Outflow 34.266 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach AP5: Perry Creek Start

Page 18

Summary for Pond PE2: POND E2

Inflow Area = 8.800 ac, 21.02% Impervious, Inflow Depth > 3.10" for 10 year event

Inflow = 22.04 cfs @ 12.29 hrs, Volume= 2.272 af

Outflow = 6.31 cfs @ 12.84 hrs, Volume= 1.869 af, Atten= 71%, Lag= 32.7 min

Primary = 6.31 cfs @ 12.84 hrs, Volume= 1.869 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

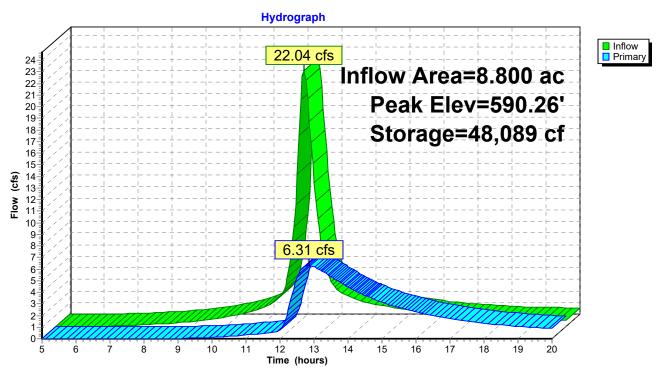
Peak Elev= 590.26' @ 12.84 hrs Surf.Area= 23,653 sf Storage= 48,089 cf

Plug-Flow detention time= 143.3 min calculated for 1.869 af (82% of inflow)

Center-of-Mass det. time= 95.5 min (881.6 - 786.1)

Volume	Inve	ert Avail.Sto	rage Storag	ge Description			
#1	588.0	0' 93,0	00 cf Custo	om Stage Data (Prismatic)Listed below (Recalc)	_		
Elevation		Surf.Area	Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)			
588.0	00	19,000	0	0			
590.0	00	23,000	42,000	42,000			
592.0	00	28,000	51,000	93,000			
Device	Routing	Invert	Outlet Device	ces			
#1	Primary	588.00'	24.0" Rour	nd Culvert L= 50.0' CMP, square edge headwall, Ke= 0.500	_		
	,			et Invert= 588.00' / 587.00' S= 0.0200 '/' Cc= 0.900			
			n= 0.012. F	Flow Area= 3.14 sf			
#2 Device		588.00'	6.0" Vert. Orifice/Grate C= 0.600				
#3	Device 1	588.75'	0.9' long Sharp-Crested Rectangular Weir 2 End Contraction(s)				
			0.5' Crest H	• • • • • • • • • • • • • • • • • • • •			
#4	Device 1	591.75'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads				

Primary OutFlow Max=6.31 cfs @ 12.84 hrs HW=590.26' (Free Discharge)


_1=Culvert (Passes 6.31 cfs of 16.98 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 1.34 cfs @ 6.83 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 4.97 cfs @ 5.50 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond PE2: POND E2

Clovewood 2022 EF

Type III 24-hr 25 year Rainfall=6.09"

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 20

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: BASIN E1 Runoff Area=170.100 ac 0.12% Impervious Runoff Depth>3.30"

Flow Length=7,630' Tc=31.9 min CN=77 Runoff=389.68 cfs 46.724 af

Subcatchment E2: BASIN E2 Runoff Area=8.800 ac 21.02% Impervious Runoff Depth>4.22"

Flow Length=1,770' Tc=21.6 min CN=86 Runoff=29.63 cfs 3.097 af

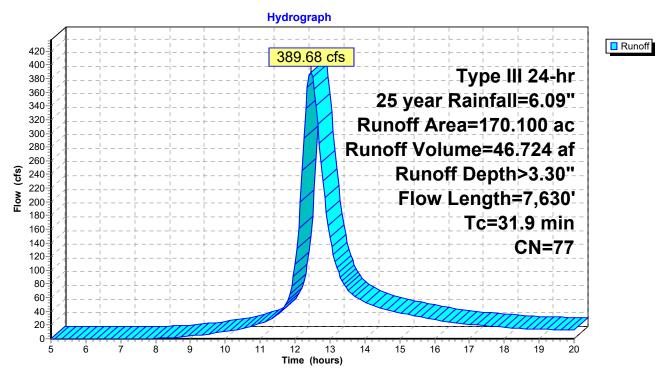
Reach AP5: Perry Creek Start Inflow=397.18 cfs 49.378 af

Outflow=397.18 cfs 49.378 af

Pond PE2: POND E2 Peak Elev=590.90' Storage=63,809 cf Inflow=29.63 cfs 3.097 af

Outflow=8.95 cfs 2.654 af

Total Runoff Area = 178.900 ac Runoff Volume = 49.821 af Average Runoff Depth = 3.34" 98.85% Pervious = 176.850 ac 1.15% Impervious = 2.050 ac

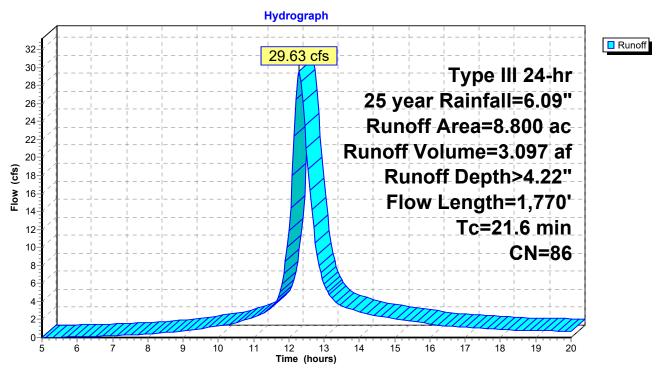

Summary for Subcatchment E1: BASIN E1

Runoff = 389.68 cfs @ 12.44 hrs, Volume= 46.724 af, Depth> 3.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac) (CN De	scription		
	164.	100	77 Wc	ods, Good,	HSG D	
	0.	300			grazed, HS	G D
*	3.	300		tlands	,	
*	2.	200	85 Re	s Lot, HSG	D	
*	0.			•	oad and W	ater Tower
	170.	100	77 We	ighted Ave	rage	
	169.			88% Pervic		
		200		2% Impervi		
	0.		• • • • • • • • • • • • • • • • • • • •	_ / • • •		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)			(cfs)	'
	20.5	100	0.0200	0.08	•	Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	1.2	630	0.2800	8.52		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	6.6	2,300	0.1300	5.80		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	1.0	1,300	0.1100	21.90	350.36	Parabolic Channel,
						W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.030
	2.6	3,300	0.0700	20.96	335.39	Parabolic Channel,
						W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.025
	31.9	7,630	Total			

Subcatchment E1: BASIN E1


Summary for Subcatchment E2: BASIN E2

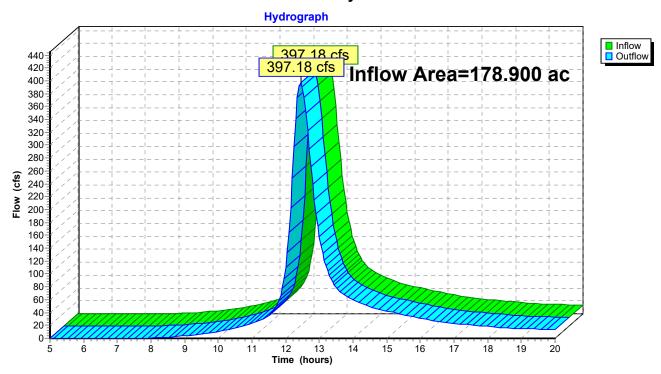
Runoff = 29.63 cfs @ 12.29 hrs, Volume= 3.097 af, Depth> 4.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25 year Rainfall=6.09"

	Area	(ac) (CN	Desc	cription		
*	1.	450	98	ROA	D, WALKS	3	
	1.	400	77	Woo	ds, Good,	HSG D	
*	0.	400	98	PON	ID		
*	4.	750	85	LOT	S, D		
	0.	800	80	>75%	% Grass co	over, Good,	HSG D
	8.	800	86	Weig	ghted Aver	age	
	6.	950		78.9	8% Pervio	us Area	
	1.	850		21.0	2% Imperv	ious Area	
	Тс	Length		lope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	18.8	100	0.0	250	0.09		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	1.6	500	0.1	000	5.09		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.3	110	0.1	000	6.42		Shallow Concentrated Flow,
							Paved Kv= 20.3 fps
	0.9	1,060	0.1	000	20.36	35.99	Pipe Channel,
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_							n= 0.012
	21.6	1,770	To	tal			

Subcatchment E2: BASIN E2

Summary for Reach AP5: Perry Creek Start


Inflow Area = 178.900 ac, 1.15% Impervious, Inflow Depth > 3.31" for 25 year event

Inflow = 397.18 cfs @ 12.45 hrs, Volume= 49.378 af

Outflow = 397.18 cfs @ 12.45 hrs, Volume= 49.378 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach AP5: Perry Creek Start

Page 25

Summary for Pond PE2: POND E2

Inflow Area = 8.800 ac, 21.02% Impervious, Inflow Depth > 4.22" for 25 year event

Inflow = 29.63 cfs @ 12.29 hrs, Volume= 3.097 af

Outflow = 8.95 cfs @ 12.81 hrs, Volume= 2.654 af, Atten= 70%, Lag= 31.2 min

Primary = 8.95 cfs @ 12.81 hrs, Volume= 2.654 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 590.90' @ 12.81 hrs Surf.Area= 25,260 sf Storage= 63,809 cf

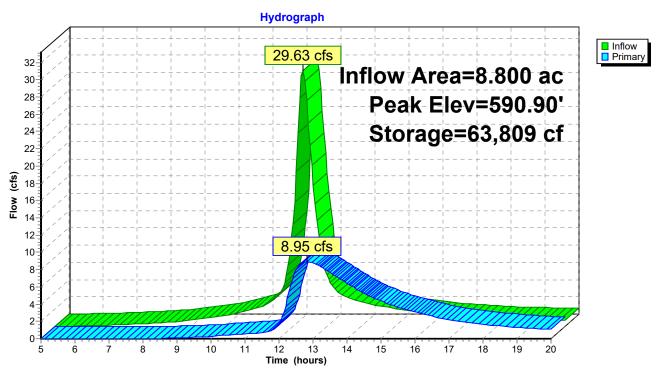
Plug-Flow detention time= 133.4 min calculated for 2.645 af (85% of inflow)

Center-of-Mass det. time= 92.4 min (871.2 - 778.7)

Volume	Inve	ert Avail.Sto	rage Storage	e Description			
#1	588.0	0' 93,0	00 cf Custon	m Stage Data (Prismatic)Listed below (Recalc)			
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
588.0	00	19,000	0	0			
590.0	00	23,000	42,000	42,000			
592.0	00	28,000	51,000	93,000			
Device	Routing	Invert	Outlet Device	ees			
#1	Primary	588.00'	24.0" Round	nd Culvert L= 50.0' CMP, square edge headwall, Ke= 0.500	_		
			Inlet / Outlet	Invert= 588.00' / 587.00' S= 0.0200 '/' Cc= 0.900			
			n= 0.012, Fl	low Area= 3.14 sf			
#2	Device 1	588.00'	6.0" Vert. Orifice/Grate C= 0.600				
#3	Device 1	588.75'	0.9' long Sharp-Crested Rectangular Weir 2 End Contraction(s)				
			0.5' Crest Height				
#4	Device 1	591.75'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads				

Primary OutFlow Max=8.94 cfs @ 12.81 hrs HW=590.90' (Free Discharge)

1=Culvert (Passes 8.94 cfs of 20.87 cfs potential flow)


-2=Orifice/Grate (Orifice Controls 1.54 cfs @ 7.84 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 7.40 cfs @ 7.33 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Page 26

Pond PE2: POND E2

Clovewood 2022 EF

Type III 24-hr 100 year Rainfall=8.68"

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 27

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: BASIN E1 Runoff Area=170.100 ac 0.12% Impervious Runoff Depth>5.51"

Flow Length=7,630' Tc=31.9 min CN=77 Runoff=641.25 cfs 78.050 af

Subcatchment E2: BASIN E2 Runoff Area=8.800 ac 21.02% Impervious Runoff Depth>6.59"

Flow Length=1,770' Tc=21.6 min CN=86 Runoff=45.16 cfs 4.829 af

Reach AP5: Perry Creek Start Inflow=654.92 cfs 82.369 af

Outflow=654.92 cfs 82.369 af

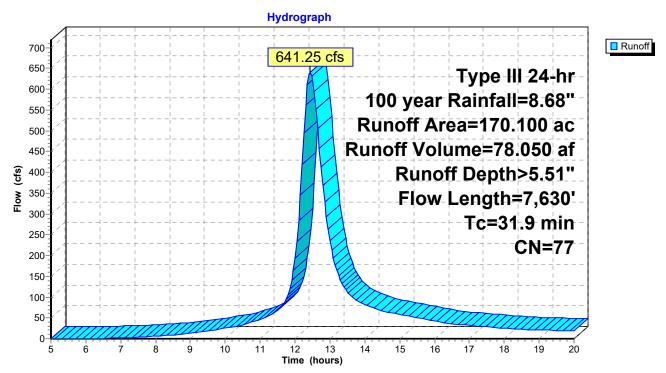
Pond PE2: POND E2 Peak Elev=591.93' Storage=90,965 cf Inflow=45.16 cfs 4.829 af

Outflow=19.55 cfs 4.319 af

Total Runoff Area = 178.900 ac Runoff Volume = 82.879 af Average Runoff Depth = 5.56" 98.85% Pervious = 176.850 ac 1.15% Impervious = 2.050 ac Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 28

Summary for Subcatchment E1: BASIN E1

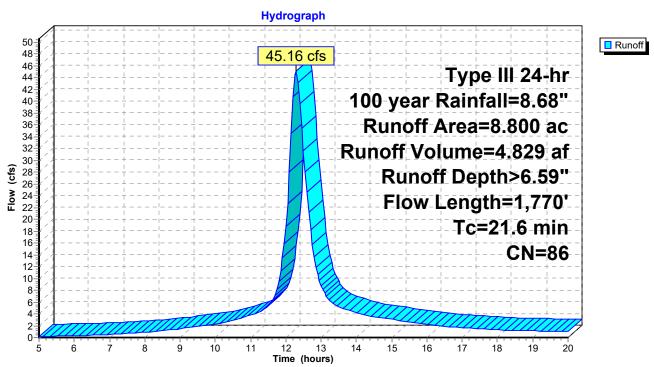

Runoff = 641.25 cfs @ 12.44 hrs, Volume= 78.050 af, Depth> 5.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area	(ac) (CN De	scription		
	164.	100	77 Wo	ods, Good,	HSG D	
	0.	300			grazed, HS	G D
*	3.	300		tlands	,	
*	2.	200	85 Re	s Lot, HSG	D	
*	0.			•	oad and W	ater Tower
	170.	100	77 We	ighted Ave	rage	
	169.			88% Pervic		
		200		2% Impervi		
	0.		• • • • • • • • • • • • • • • • • • • •	_ / • • •		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)			(cfs)	'
	20.5	100	0.0200	0.08	•	Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.50"
	1.2	630	0.2800	8.52		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	6.6	2,300	0.1300	5.80		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	1.0	1,300	0.1100	21.90	350.36	Parabolic Channel,
						W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.030
	2.6	3,300	0.0700	20.96	335.39	Parabolic Channel,
						W=8.00' D=3.00' Area=16.0 sf Perim=10.4' n= 0.025
	31.9	7,630	Total			

Page 29

Subcatchment E1: BASIN E1


Summary for Subcatchment E2: BASIN E2

Runoff = 45.16 cfs @ 12.29 hrs, Volume= 4.829 af, Depth> 6.59"

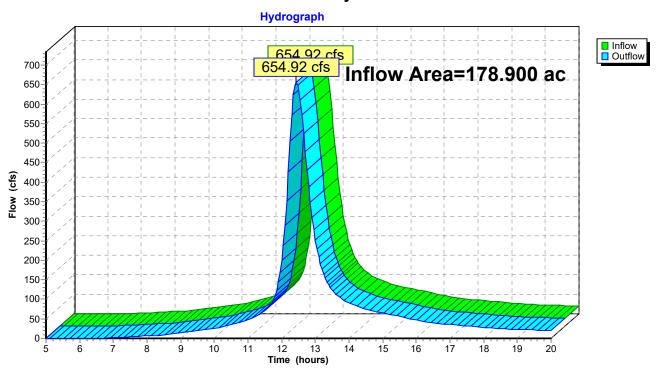
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100 year Rainfall=8.68"

	Area	(ac) (CN	Desc	cription		
*	1.	450	98	ROA	D, WALKS	3	
	1.	400	77		ds, Good,		
*	0.	400	98	PON	ID É		
*	4.	750	85	LOT	S, D		
	0.	800	80	>759	% Grass co	over, Good,	HSG D
	8.	800	86	Weig	hted Aver	age	
	6.	950			8% Pervio		
	1.	850		21.0	2% Imperv	ious Area	
					•		
	Tc	Length	5	Slope	Velocity	Capacity	Description
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
	18.8	100	0.	0250	0.09		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.50"
	1.6	500	0.	1000	5.09		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.3	110	0.	1000	6.42		Shallow Concentrated Flow,
							Paved Kv= 20.3 fps
	0.9	1,060	0.	1000	20.36	35.99	Pipe Channel,
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_							n= 0.012
	21.6	1,770	To	otal			

Subcatchment E2: BASIN E2

Page 31

Summary for Reach AP5: Perry Creek Start


178.900 ac, 1.15% Impervious, Inflow Depth > 5.53" for 100 year event Inflow Area =

Inflow 82.369 af

654.92 cfs @ 12.44 hrs, Volume= 654.92 cfs @ 12.44 hrs, Volume= Outflow 82.369 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach AP5: Perry Creek Start

Prepared by Kirk Rother, PE, PLLC HydroCAD® 10.00-20 s/n 02530 © 2017 HydroCAD Software Solutions LLC

Page 32

Summary for Pond PE2: POND E2

Inflow Area = 8.800 ac, 21.02% Impervious, Inflow Depth > 6.59" for 100 year event

Inflow = 45.16 cfs @ 12.29 hrs, Volume= 4.829 af

Outflow = 19.55 cfs @ 12.68 hrs, Volume= 4.319 af, Atten= 57%, Lag= 23.6 min

Primary = 19.55 cfs @ 12.68 hrs, Volume= 4.319 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 591.93' @ 12.68 hrs Surf.Area= 27,818 sf Storage= 90,965 cf

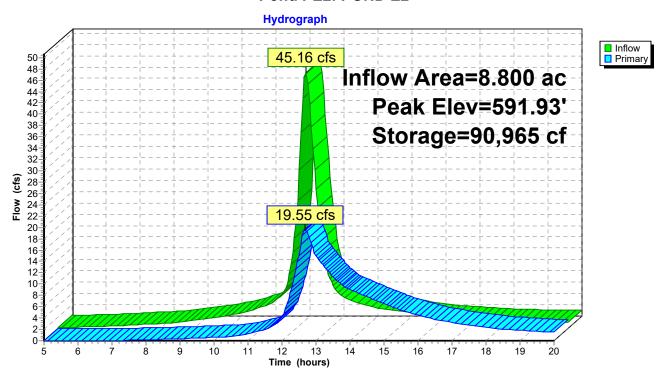
Plug-Flow detention time= 119.2 min calculated for 4.319 af (89% of inflow)

Center-of-Mass det. time= 85.3 min (854.1 - 768.8)

Volume	Inve	ert Avail.Sto	rage Storage	e Description	
#1	588.0	0' 93,0	00 cf Custon	m Stage Data (Prismatic)Listed below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
588.0	00	19,000	0	0	
590.0	00	23,000	42,000	42,000	
592.0	00	28,000	51,000	93,000	
Device	Routing	Invert	Outlet Device	ees	
#1	Primary	588.00'	24.0" Round	nd Culvert L= 50.0' CMP, square edge headwall, Ke= 0.500	_
			Inlet / Outlet	Invert= 588.00' / 587.00' S= 0.0200 '/' Cc= 0.900	
			n= 0.012, Fl	low Area= 3.14 sf	
#2	Device 1	588.00'		rifice/Grate C= 0.600	
#3	Device 1	588.75'	0.9' long Sha	narp-Crested Rectangular Weir 2 End Contraction(s)	
			0.5' Crest He		
#4	Device 1	591.75'	36.0" x 36.0'	" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	3

Primary OutFlow Max=19.48 cfs @ 12.68 hrs HW=591.93' (Free Discharge)

1=Culvert (Passes 19.48 cfs of 25.87 cfs potential flow)


-2=Orifice/Grate (Orifice Controls 1.81 cfs @ 9.23 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 14.79 cfs @ 10.35 fps)

-4=Orifice/Grate (Weir Controls 2.88 cfs @ 1.37 fps)

Page 33

Pond PE2: POND E2

Appendix E

Construction and Maintenance Inspection Checklists;
Sample Construction Site Inspection and Maintenance Log
Book

Stormwater/Wetland Pond Construction Inspection Checklist

Date: Time:		
Inspector:		
	SATISEACTORY	

CONSTRUCTION SEQUENCE	SATISFACTORY/ UNSATISFACTORY	COMMENTS
Pre-Construction/Materials and Equipment		
Pre-construction meeting		
Pipe and appurtenances on-site prior to construction and dimensions checked		
Material (including protective coating, if specified)		
2. Diameter		
Dimensions of metal riser or pre-cast concrete outlet structure		
Required dimensions between water control structures (orifices, weirs, etc.) are in accordance with approved plans		
Barrel stub for prefabricated pipe structures at proper angle for design barrel slope		
Number and dimensions of prefabricated anti-seep collars		
7. Watertight connectors and gaskets		
8. Outlet drain valve		
Project benchmark near pond site		
Equipment for temporary de-watering		

CONSTRUCTION SECUENCE	Satisfactory/ Unsatisfactory	COMMENTS
2. Subgrade Preparation		
Area beneath embankment stripped of all vegetation, topsoil, and organic matter		
3. Pipe Spillway Installation		
Method of installation detailed on plans		
A. Bed preparation		
Installation trench excavated with specified side slopes		
Stable, uniform, dry subgrade of relatively impervious material (If subgrade is wet, contractor shall have defined steps before proceeding with installation)		
Invert at proper elevation and grade		
B. Pipe placement		
Metal / plastic pipe		
Watertight connectors and gaskets properly installed		
Anti-seep collars properly spaced and having watertight connections to pipe		
Backfill placed and tamped by hand under "haunches" of pipe		
Remaining backfill placed in max. 8 inch lifts using small power tamping equipment until 2 feet cover over pipe is reached		

CONSTRUCTION SEQUENCE	SATISFACTORY/ UNSATISFACTORY	COMMENTS
3. Pipe Spillway Installation		
Concrete pipe		
Pipe set on blocks or concrete slab for pouring of low cradle		
Pipe installed with rubber gasket joints with no spalling in gasket interface area		
Excavation for lower half of anti-seep collar(s) with reinforcing steel set		
Entire area where anti-seep collar(s) will come in contact with pipe coated with mastic or other approved waterproof sealant.		
5. Low cradle and bottom half of anti-seep collar installed as monolithic pour and of an approved mix		
Upper half of anti-seep collar(s) formed with reinforcing steel set		
7. Concrete for collar of an approved mix and vibrated into place (protected from freezing while curing, if necessary)		
Forms stripped and collar inspected for honeycomb prior to backfilling. Parge if necessary.		
C. Backfilling		
Fill placed in maximum 8 inch lifts		
Backfill taken minimum 2 feet above top of anti- seep collar elevation before traversing with heavy equipment		

CONSTRUCTION SEQUENCE	SATISFACTORY/ Unsatisfactory	Comments
4. Riser / Outlet Structure Installation		
Riser located within embankment		
A. Metal riser		
Riser base excavated or formed on stable subgrade to design dimensions		
Set on blocks to design elevations and plumbed		
Reinforcing bars placed at right angles and projecting into sides of riser		
Concrete poured so as to fill inside of riser to invert of barrel		
B. Pre-cast concrete structure		
Dry and stable subgrade		
Riser base set to design elevation		
If more than one section, no spalling in gasket interface area; gasket or approved caulking material placed securely		
Watertight and structurally sound collar or gasket joint where structure connects to pipe spillway		
C. Poured concrete structure		
Footing excavated or formed on stable subgrade, to design dimensions with reinforcing steel set		
Structure formed to design dimensions, with reinforcing steel set as per plan		
Concrete of an approved mix and vibrated into place (protected from freezing while curing, if necessary)		
Forms stripped & inspected for "honeycomb" prior to backfilling; parge if necessary		

CONSTRUCTION SEQUENCE	SATISFACTORY/ Unsatisfactory	COMMENTS
5. Embankment Construction		
Fill material		
Compaction		
Embankment		
Fill placed in specified lifts and compacted with appropriate equipment		
Constructed to design cross-section, side slopes and top width		
Constructed to design elevation plus allowance for settlement		
6. Impounded Area Construction		
Excavated / graded to design contours and side slopes		
Inlet pipes have adequate outfall protection		
Forebay(s)		
Pond benches		
7. Earth Emergency Spillway Construction		
Spillway located in cut or structurally stabilized with riprap, gabions, concrete, etc.		
Excavated to proper cross-section, side slopes and bottom width		
Entrance channel, crest, and exit channel constructed to design grades and elevations		

CONSTRUCTION SEQUENCE	SATISFACTORY / UNSATISFACTORY	COMMENTS						
3. Outlet Protection								
A. End section								
Securely in place and properly backfilled								
B. Endwall								
Footing excavated or formed on stable subgrade, to design dimensions and reinforcing steel set, if specified								
Endwall formed to design dimensions with reinforcing steel set as per plan								
Concrete of an approved mix and vibrated into place (protected from freezing, if necessary)								
Forms stripped and structure inspected for "honeycomb" prior to backfilling; parge if necessary								
C. Riprap apron / channel								
Apron / channel excavated to design cross- section with proper transition to existing ground								
Filter fabric in place								
Stone sized as per plan and uniformly place at the thickness specified								
9. Vegetative Stabilization								
Approved seed mixture or sod								
Proper surface preparation and required soil amendments								
Excelsior mat or other stabilization, as per plan								

CONSTRUCTION SEQUENCE	SATISFACTORY/ UNSATISFACTORY	COMMENTS
10. Miscellaneous		
Drain for ponds having a permanent pool		
Trash rack / anti-vortex device secured to outlet structure		
Trash protection for low flow pipes, orifices, etc.		
Fencing (when required)		
Access road		
Set aside for clean-out maintenance		
11. Stormwater Wetlands		
Adequate water balance		
Variety of depth zones present		
Approved pondscaping plan in place Reinforcement budget for additional plantings		
Plants and materials ordered 6 months prior to construction		
Construction planned to allow for adequate planting and establishment of plant community (April-June planting window)		
Wetland buffer area preserved to maximum extent possible		
Comments:		

Actions to be Taken:						

Bioretention Construction Inspection Checklist

Project: Location: Site Status:			
Date:			
Time:			
Inspector:			

CONSTRUCTION SEQUENCE	SATISFACTORY/ UNSATISFACTORY	COMMENTS
1. Pre-Construction		
Pre-construction meeting		
Runoff diverted		
Facility area cleared		
If designed as exfilter, soil testing for permeability		
Facility location staked out		
2. Excavation		
Size and location		
Lateral slopes completely level		
If designed as exfilter, ensure that excavation does not compact susoils.		
Longitudinal slopes within design range		

CONSTRUCTION SEQUENCE	SATISFACTORY / UNSATISFACTORY	COMMENTS		
3. Structural Components				
Stone diaphragm installed correctly				
Outlets installed correctly				
Underdrain				
Pretreatment devices installed				
Soil bed composition and texture				
4. Vegetation				
Complies with planting specs				
Topsoil adequate in composition and placement				
Adequate erosion control measures in place				
5. Final Inspection				
Dimensions				
Proper stone diaphragm				
Proper outlet				
Soil/ filter bed permeability testing				
Effective stand of vegetation and stabilization				
Construction generated sediments removed				
Contributing watershed stabilized before flow is diverted to the practice				

Comments:	
Actions to be Taken:	
totiono to be ruitom	

Open Channel System Construction Inspection Checklist

0	SATISFACTORY /	Community
Inspector:		
Time:		
Date:		
Project: Location: Site Status:		

CONSTRUCTION SEQUENCE	SATISFACTORY / UNSATISFACTORY	COMMENTS			
1. Pre-Construction	1. Pre-Construction				
Pre-construction meeting					
Runoff diverted					
Facility location staked out					
2. Excavation					
Size and location					
Side slope stable					
Soil permeability					
Groundwater / bedrock					
Lateral slopes completely level					
Longitudinal slopes within design range					
Excavation does not compact subsoils					
3. Check dams					
Dimensions					
Spacing					
Materials					

CONSTRUCTION SEQUENCE	SATISFACTORY / UNSATISFACTORY	COMMENTS		
4. Structural Components				
Underdrain installed correctly				
Inflow installed correctly				
Pretreatment devices installed				
5. Vegetation				
Complies with planting specifications				
Topsoil adequate in composition and placement				
Adequate erosion control measures in place				
6. Final inspection				
Dimensions				
Check dams				
Proper outlet				
Effective stand of vegetation and stabilization				
Contributing watershed stabilized before flow is routed to the factility				
Comments:				

Actions to be Taken:		

Stormwater Pond/Wetland Operation, Maintenance and Management Inspection Checklist

Project Location: Site Status:	
Ono Otatao.	
Date: Time:	
Time:	
Inspector:	

Maintenance Item	Satisfactory/ Unsatisfactory	Comments		
Embankment and emergency spillway (Annual, After Major Storms)				
Vegetation and ground cover adequate				
2. Embankment erosion				
3. Animal burrows				
4. Unauthorized planting				
5. Cracking, bulging, or sliding of dam				
a. Upstream face				
b. Downstream face				
c. At or beyond toe				
downstream				
upstream				
d. Emergency spillway				
6.Pond, toe & chimney drains clear and functioning				
7.Seeps/leaks on downstream face				
8.Slope protection or riprap failure				
9. Vertical/horizontal alignment of top of dam "As-Built"				

Maintenance Item	Satisfactory/ Unsatisfactory	Comments
10. Emergency spillway clear of obstructions and debris		
11. Other (specify)		
2. Riser and principal spillway (Annual)		
Type: Reinforced concrete Corrugated pipe Masonry 1. Low flow orifice obstructed		
Low flow trash rack. a. Debris removal necessary		
b. Corrosion control		
Weir trash rack maintenance a. Debris removal necessary		
b. corrosion control		
4. Excessive sediment accumulation insider riser		
Concrete/masonry condition riser and barrels a. cracks or displacement		
b. Minor spalling (<1")		
c. Major spalling (rebars exposed)		
d. Joint failures		
e. Water tightness		
6. Metal pipe condition		
7. Control valve a. Operational/exercised		
b. Chained and locked		
Pond drain valve a. Operational/exercised		
b. Chained and locked		
9. Outfall channels functioning		
10. Other (specify)		

Maintenance Item	Satisfactory/ Unsatisfactory	Comments
3. Permanent Pool (Wet Ponds) (monthl	y)	
1. Undesirable vegetative growth		
2. Floating or floatable debris removal required		
3. Visible pollution		
4. Shoreline problem		
5. Other (specify)		
4. Sediment Forebays		
1.Sedimentation noted		
2. Sediment cleanout when depth < 50% design depth		
5. Dry Pond Areas		
1. Vegetation adequate		
2. Undesirable vegetative growth		
3. Undesirable woody vegetation		
4. Low flow channels clear of obstructions		
5. Standing water or wet spots		
6. Sediment and / or trash accumulation		
7. Other (specify)		
6. Condition of Outfalls (Annual , After Major Storms)	
1. Riprap failures		
2. Slope erosion		
3. Storm drain pipes		
4.Endwalls / Headwalls		
5. Other (specify)		
7. Other (Monthly)		
1. Encroachment on pond, wetland or easement area		

Maintenance Item	Satisfactory/ Unsatisfactory	Comments
2. Complaints from residents		
Aesthetics a. Grass growing required		
b. Graffiti removal needed		
c. Other (specify)		
4. Conditions of maintenance access routes.		
5. Signs of hydrocarbon build-up		
6. Any public hazards (specify)		
8. Wetland Vegetation (Annual)		
 Vegetation healthy and growing Wetland maintaining 50% surface area coverage of wetland plants after the second growing season. (If unsatisfactory, reinforcement plantings needed) 		
Dominant wetland plants: Survival of desired wetland plant species Distribution according to landscaping plan?		
3. Evidence of invasive species		
4. Maintenance of adequate water depths for desired wetland plant species		
5. Harvesting of emergent plantings needed		
6. Have sediment accumulations reduced pool volume significantly or are plants "choked" with sediment		
7. Eutrophication level of the wetland.		
8. Other (specify)		
Comments:		

Actions to be Taken:		

Bioretention Operation, Maintenance and Management Inspection Checklist

Project: Location: Site Status:			
Date:			
Time:			
Inspector:			

MAINTENANCE ITEM	SATISFACTORY / UNSATISFACTORY	COMMENTS
1. Debris Cleanout (Monthly)		
Bioretention and contributing areas clean of debris		
No dumping of yard wastes into practice		
Litter (branches, etc.) have been removed		
2. Vegetation (Monthly)		
Plant height not less than design water depth		
Fertilized per specifications		
Plant composition according to approved plans		
No placement of inappropriate plants		
Grass height not greater than 6 inches		
No evidence of erosion		
3. Check Dams/Energy Dissipaters/S	umps (Annual, Afte	er Major Storms)
No evidence of sediment buildup		

MAINTENANCE ITEM	SATISFACTORY / UNSATISFACTORY	COMMENTS
Sumps should not be more than 50% full of sediment		
No evidence of erosion at downstream toe of drop structure		
4. Dewatering (Monthly)		
Dewaters between storms		
No evidence of standing water		
5. Sediment Deposition (Annu	al)	
Swale clean of sediments		
Sediments should not be > 20% of swale design depth		
6. Outlet/Overflow Spillway (Annua	ıl, After Major Storn	ns)
Good condition, no need for repair		
No evidence of erosion		
No evidence of any blockages		
7. Integrity of Filter Bed (Annual)		
Filter bed has not been blocked or filled inappropriately		

Comments:		
Actions to be Taken:		

Open Channel Operation, Maintenance, and Management Inspection Checklist

Project: Location: Site Status:			
Date:			
Time:			
Inspector:			

Maintenance Item	SATISFACTORY/ UNSATISFACTORY	COMMENTS
1. Debris Cleanout (Monthly)		
Contributing areas clean of debris		
2. Check Dams or Energy Dissipator	s (Annual, After N	Major Storms)
No evidence of flow going around structures		
No evidence of erosion at downstream toe		
Soil permeability		
Groundwater / bedrock		
3. Vegetation (Monthly)		
Mowing done when needed		
Minimum mowing depth not exceeded		
No evidence of erosion		
Fertilized per specification		
4. Dewatering (Monthly)		
Dewaters between storms		

MAINTENANCE ITEM	SATISFACTORY/ Unsatisfactory	COMMENTS
5. Sediment deposition (Annua	al)	
Clean of sediment		
6. Outlet/Overflow Spillway (Ann	ual)	
Good condition, no need for repairs		
No evidence of erosion		
Actions to be Taken:		

CONSTRUCTION SITE INSPECTION AND MAINTENANCE LOG BOOK

STATE POLLUTANT DISCHARGE ELIMINATION SYSTEM FOR CONSTRUCTION ACTIVITIES

SAMPLE CONSTRUCTION SITE LOG BOOK

Table of Contents

- I. Pre-Construction Meeting Documents
 - a. Preamble to Site Assessment and Inspections
 - b. Pre-Construction Site Assessment Checklist
- II. Construction Duration Inspections
 - a. Directions
 - b. Modification to the SWPPP

I. PRE-CONSTRUCTION MEETING DOCUMENTS Project Name _________ Date of Authorization ________ Name of Operator _________ Prime Contractor

a. Preamble to Site Assessment and Inspections

The Following Information To Be Read By All Person's Involved in The Construction of Stormwater Related Activities:

The Operator agrees to have a qualified inspector¹ conduct an assessment of the site prior to the commencement of construction² and certify in this inspection report that the appropriate erosion and sediment controls described in the SWPPP have been adequately installed or implemented to ensure overall preparedness of the site for the commencement of construction.

Prior to the commencement of construction, the Operator shall certify in this site logbook that the SWPPP has been prepared in accordance with the State's standards and meets all Federal, State and local erosion and sediment control requirements. A preconstruction meeting should be held to review all of the SWPPP requirements with construction personnel.

When construction starts, site inspections shall be conducted by the qualified inspector at least every 7 calendar days. The Operator shall maintain a record of all inspection reports in this site logbook. The site logbook shall be maintained on site and be made available to the permitting authorities upon request.

Prior to filing the Notice of Termination or the end of permit term, the Operator shall have a qualified inspector perform a final site inspection. The qualified inspector shall certify that the site has undergone final stabilization³ using either vegetative or structural stabilization methods and that all temporary erosion and sediment controls (such as silt fencing) not needed for long-term erosion control have been removed. In addition, the Operator must identify and certify that all permanent structures described in the SWPPP have been constructed and provide the owner(s) with an operation and maintenance plan that ensures the structure(s) continuously functions as designed.

¹ Refer to "Qualified Inspector" inspection requirements in the current SPDES General Permit for Stormwater Discharges from Construction Activity for complete list of inspection requirements.

^{2 &}quot;Commencement of construction" means the initial removal of vegetation and disturbance of soils associated with clearing, grading or excavating activities or other construction activities.

^{3 &}quot;Final stabilization" means that all soil-disturbing activities at the site have been completed and a uniform, perennial vegetative cover with a density of eighty (80) percent has been established or equivalent stabilization measures (such as the use of mulches or geotextiles) have been employed on all unpaved areas and areas not covered by permanent structures.

b. Pre-construction Site Assessment Checklist (NOTE: Provide comments below as necessary) 1. Notice of Intent, SWPPP, and Contractors Certification: Yes No NA [] [] Has a Notice of Intent been filed with the NYS Department of Conservation? [] [] Is the SWPPP on-site? Where?_ [] [] Is the Plan current? What is the latest revision date? [] [] Is a copy of the NOI (with brief description) onsite? Where? [] [] Have all contractors involved with stormwater related activities signed a contractor's certification? 2. Resource Protection Yes No NA [] [] Are construction limits clearly flagged or fenced? [] [] Important trees and associated rooting zones, on-site septic system absorption fields, existing vegetated areas suitable for filter strips, especially in perimeter areas, have been flagged for protection. [] [] Creek crossings installed prior to land-disturbing activity, including clearing and blasting. 3. Surface Water Protection Yes No NA [] [] Clean stormwater runoff has been diverted from areas to be disturbed. [] [] Bodies of water located either on site or in the vicinity of the site have been identified and protected. [] [] Appropriate practices to protect on-site or downstream surface water are installed. [] [] Are clearing and grading operations divided into areas <5 acres? 4. Stabilized Construction Access Yes No NA [] [] A temporary construction entrance to capture mud and debris from construction vehicles before they enter the public highway has been installed. [] [] Other access areas (entrances, construction routes, equipment parking areas) are stabilized immediately as work takes place with gravel or other cover. [] [] Sediment tracked onto public streets is removed or cleaned on a regular basis. 5. Sediment Controls Yes No NA [] [] Silt fence material and installation comply with the standard drawing and specifications. [] [] Silt fences are installed at appropriate spacing intervals [] [] Sediment/detention basin was installed as first land disturbing activity. [] [] Sediment traps and barriers are installed. 6. Pollution Prevention for Waste and Hazardous Materials Yes No NA

[] [] The Operator or designated representative has been assigned to implement the spill prevention

[] [] Appropriate materials to control spills are onsite. Where?

avoidance and response plan.
[] [] The plan is contained in the SWPPP on page _

a. Directions:

Inspection Forms will be filled out during the entire construction phase of the project.

Required Elements:

- 1) On a site map, indicate the extent of all disturbed site areas and drainage pathways. Indicate site areas that are expected to undergo initial disturbance or significant site work within the next 14-day period;
- 2) Indicate on a site map all areas of the site that have undergone temporary or permanent stabilization:
- 3) Indicate all disturbed site areas that have not undergone active site work during the previous 14-day period;
- 4) Inspect all sediment control practices and record the approximate degree of sediment accumulation as a percentage of sediment storage volume (for example, 10 percent, 20 percent, 50 percent);
- 5) Inspect all erosion and sediment control practices and record all maintenance requirements such as verifying the integrity of barrier or diversion systems (earthen berms or silt fencing) and containment systems (sediment basins and sediment traps). Identify any evidence of rill or gully erosion occurring on slopes and any loss of stabilizing vegetation or seeding/mulching. Document any excessive deposition of sediment or ponding water along barrier or diversion systems. Record the depth of sediment within containment structures, any erosion near outlet and overflow structures, and verify the ability of rock filters around perforated riser pipes to pass water; and
- 6) Immediately report to the Operator any deficiencies that are identified with the implementation of the SWPPP.

CONSTRUCTION DURATION INSPECTIONS Page 1 of _____ SITE PLAN/SKETCH **Inspector (print name) Date of Inspection Qualified Inspector (print name) Qualified Inspector Signature** The above signed acknowledges that, to the best of his/her knowledge, all information provided on the forms is accurate and complete.

New York State Standards and Specifications

For Erosion and Sediment Control

Page 2 of _____

Maintaining Water Quality

Ye	s No	NA
[]	[]	[] Is there an increase in turbidity causing a substantial visible contrast to natural conditions at the outfalls?
[]	[]	[] Is there residue from oil and floating substances, visible oil film, or globules or grease at the outfalls?
	[]	[] All disturbance is within the limits of the approved plans.
		[] Have receiving lake/bay, stream, and/or wetland been impacted by silt from project?
Ho	usek	keeping
		neral Site Conditions
		NA
[]	[]	[] Is construction site litter, debris and spoils appropriately managed?[] Are facilities and equipment necessary for implementation of erosion and sediment control in working order and/or properly maintained?
		[] Is construction impacting the adjacent property?
[]	[]	[] Is dust adequately controlled?
		mporary Stream Crossing
		NA
		[] Maximum diameter pipes necessary to span creek without dredging are installed.
		[] Installed non-woven geotextile fabric beneath approaches.
		[] Is fill composed of aggregate (no earth or soil)?
	[]	[] Rock on approaches is clean enough to remove mud from vehicles & prevent sediment from entering stream during high flow.
3.	Stal	bilized Construction Access
Ye	s No	NA
[]	[]	[] Stone is clean enough to effectively remove mud from vehicles.
[]	[]	[] Installed per standards and specifications?
[]	[]	[] Does all traffic use the stabilized entrance to enter and leave site?
[]	[]	[] Is adequate drainage provided to prevent ponding at entrance?
Ru	noff	Control Practices
		cavation Dewatering
		NA
		[] Upstream and downstream berms (sandbags, inflatable dams, etc.) are installed per plan.
		[] Clean water from upstream pool is being pumped to the downstream pool.
	[]	[] Sediment laden water from work area is being discharged to a silt-trapping device.
1	[]	[] Constructed upstream berm with one-foot minimum freeboard.

Page 3 of _____

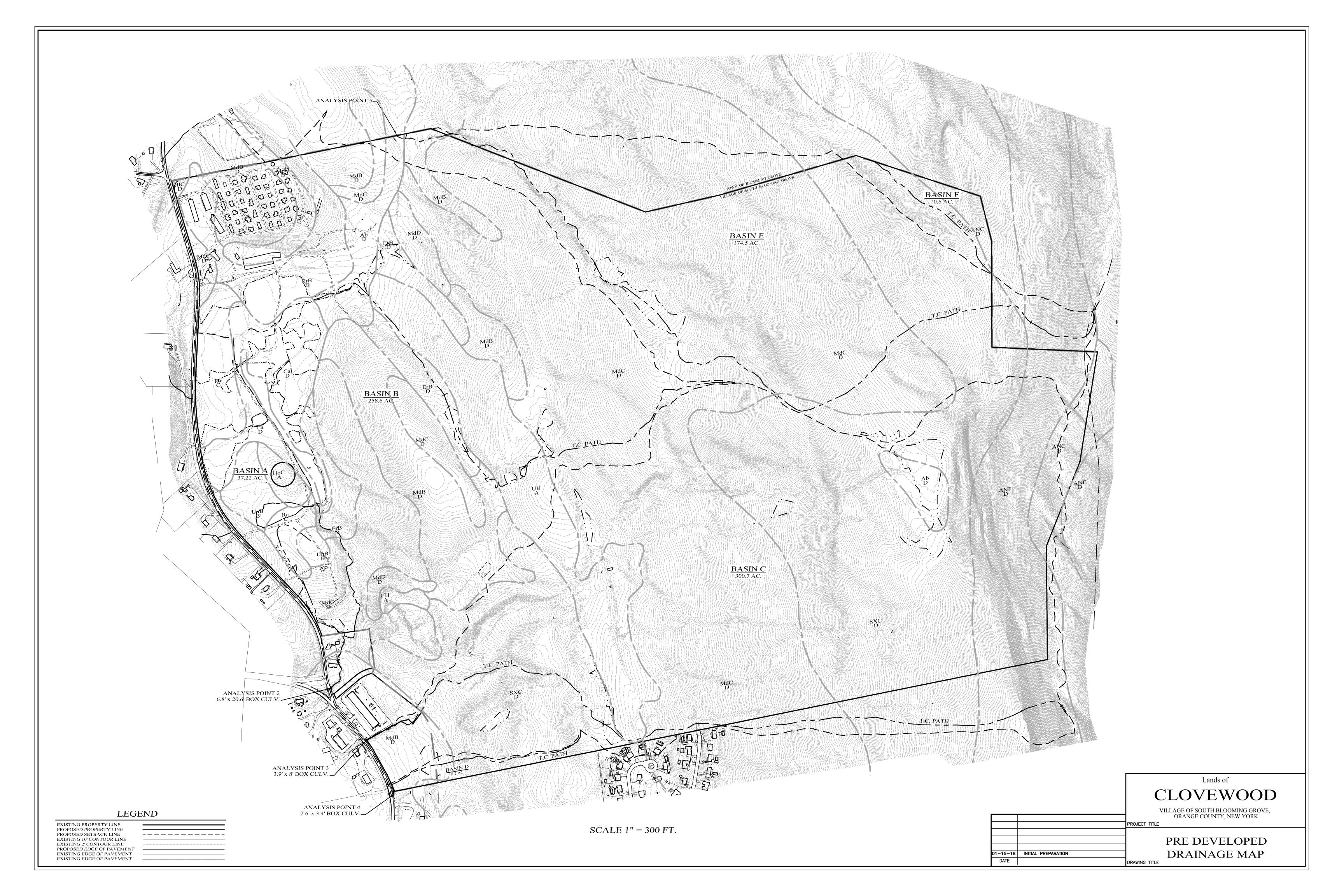
Runoff Control Practices (continued)

2. Flow Spreader	
Yes No NA	
 [] [] Installed per plan. [] [] Constructed on undisturbed soil, not on fill, receiving only clear, non-sediment laden flow [] [] Flow sheets out of level spreader without erosion on downstream edge. 	·
3. Interceptor Dikes and Swales	
Yes No NA	
[] [] Installed per plan with minimum side slopes 2H:1V or flatter. [] [] Stabilized by geotextile fabric, seed, or mulch with no erosion occurring. [] [] Sediment-laden runoff directed to sediment trapping structure	
4. Stone Check Dam	
Yes No NA	
 [] [] Is channel stable? (flow is not eroding soil underneath or around the structure). [] [] Check is in good condition (rocks in place and no permanent pools behind the structure). [] [] Has accumulated sediment been removed?. 	
5. Rock Outlet Protection	
Yes No NA	
[] [] Installed per plan. [] [] Installed concurrently with pipe installation.	
Soil Stabilization	
1. Topsoil and Spoil Stockpiles	
Yes No NA	
[] [] Stockpiles are stabilized with vegetation and/or mulch. [] [] Sediment control is installed at the toe of the slope.	
2. Revegetation	
Yes No NA	
[] [] Temporary seedings and mulch have been applied to idle areas. [] [] 4 inches minimum of topsoil has been applied under permanent seedings	
Sediment Control Practices	
1. Silt Fence and Linear Barriers	
Yes No NA	
 [] [] Installed on Contour, 10 feet from toe of slope (not across conveyance channels). [] [] Joints constructed by wrapping the two ends together for continuous support. [] [] Fabric buried 6 inches minimum. [] [] Posts are stable, fabric is tight and without rips or frayed areas. 	
Sediment accumulation is% of design capacity.	

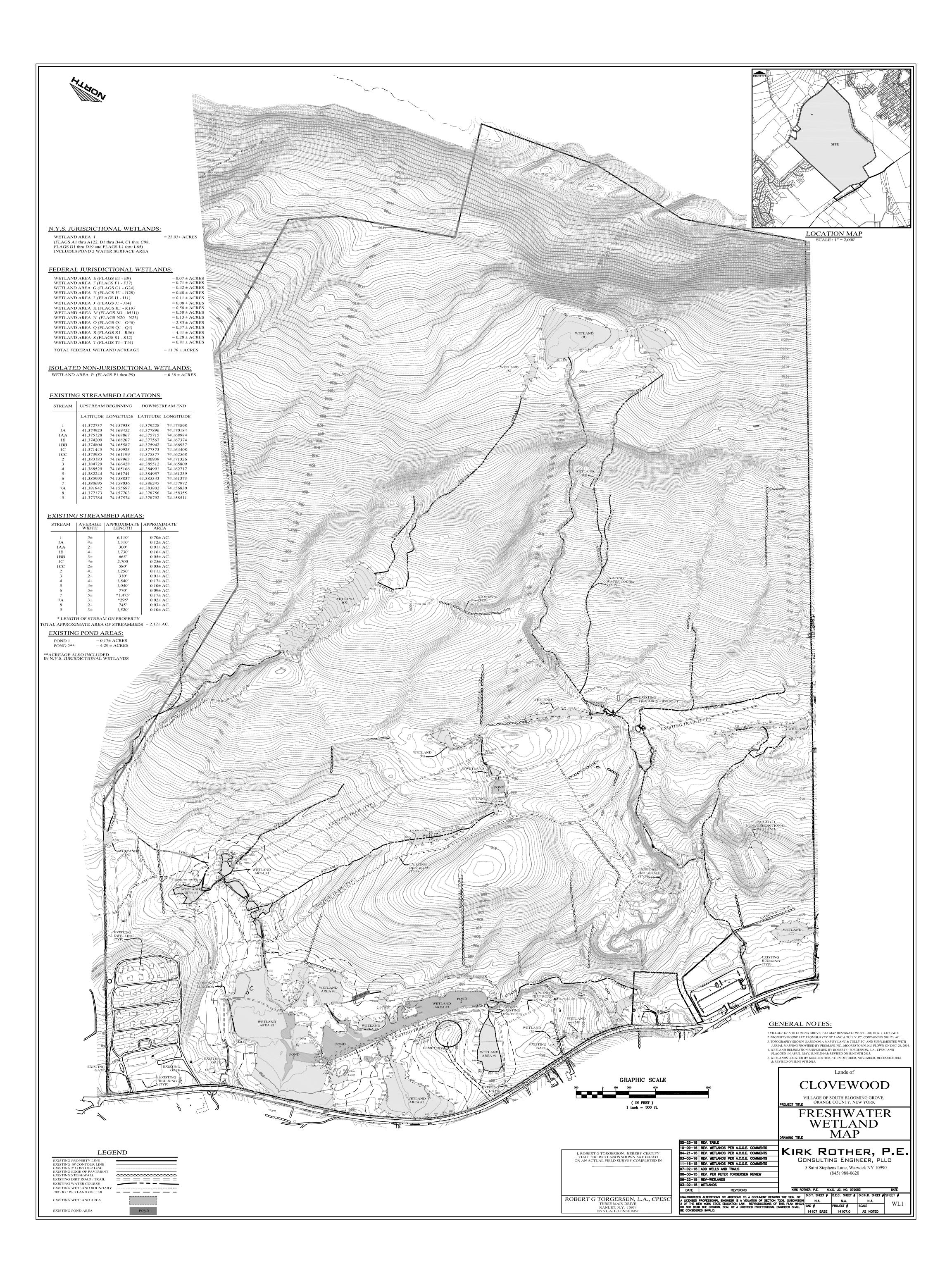
Page 4 of _____

Sediment Control Practices (continued)

	Maı	rm Drain Inlet Protection (Use for Stone & Block; Filter Fabric; Curb; or, Excavated; Filter Sock or nufactured practices)
Ye	s No	NA
[]	[]	[] Installed concrete blocks lengthwise so open ends face outward, not upward. [] Placed wire screen between No. 3 crushed stone and concrete blocks.
		[] Drainage area is 1 acre or less.
L J	ΓJ	[] Every atad area is 000 cubic feet
		[] Excavated area is 900 cubic feet.
		[] Excavated side slopes should be 2:1.
		[] 2" x 4" frame is constructed and structurally sound.
		[] Posts 3-foot maximum spacing between posts.
		[] Fabric is embedded 1 to 1.5 feet below ground and secured to frame/posts with staples at max 8-inch spacing.
[]	[]	[] Posts are stable, fabric is tight and without rips or frayed areas.
[]	[]	[] Manufactured insert fabric is free of tears and punctures.
[]	[]	[] Filter Sock is not torn or flattened and fill material is contained within the mesh sock.
Sec	lime	nt accumulation% of design capacity.
3.	Ten	nporary Sediment Trap
	s No	
[]	[]	[] Outlet structure is constructed per the approved plan or drawing.
		[] Geotextile fabric has been placed beneath rock fill.
		[] Sediment trap slopes and disturbed areas are stabilized.
		nt accumulation is% of design capacity.
~ •		
4	Ten	nporary Sediment Basin
	s No	
		[] Basin and outlet structure constructed per the approved plan.
		[] Basin side slopes are stabilized with seed/mulch.
		[] Drainage structure flushed and basin surface restored upon removal of sediment basin facility.
		[] Sediment basin dewatering pool is dewatering at appropriate rate.
Sec	ııme	nt accumulation is% of design capacity.
No	<u>te</u> :	Not all erosion and sediment control practices are included in this listing. Add additional pages
		to this list as required by site specific design. All practices shall be maintained in accordance
		with their respective standards.
		Construction inspection checklists for post-development stormwater management practices can
		be found in Appendix F of the New York Stormwater Management Design Manual.


b. Modifications to the SWPPP (To be completed as described below)

The Operator shall amend the SWPPP whenever:


- 1. There is a significant change in design, construction, operation, or maintenance which may have a significant effect on the potential for the discharge of pollutants to the waters of the United States and which has not otherwise been addressed in the SWPPP; or
- 2. The SWPPP proves to be ineffective in:
 - a. Eliminating or significantly minimizing pollutants from sources identified in the SWPPP and as required by this permit; or
 - b. Achieving the general objectives of controlling pollutants in stormwater discharges from permitted construction activity; and
- 3. Additionally, the SWPPP shall be amended to identify any new contractor or subcontractor that will implement any measure of the SWPPP. **Modification & Reason:**

Appendix F

Pre and Post Developed Drainage Basin Maps; Freshwater Wetlands Map

