

Draft Environmental Impact Statement

Appendix M Phase II: Environmental Site Assessment

Remedial Closure Report Remedial Action Work Plan, Phase II Subsurface Investigation Report

P.O. Box 2020, Monroe New York 10949 Tel: (845) 774 · 8000 | cpcnynj@gmail.com

CLOVEWOOD

Remedial Closure Report (505 Clove Road) Tax Lots S/B/L: 208-1-2 and 208-1-3 Village of South Blooming Grove Orange County, New York

Prepared For: Simon Gelb, CPC P.O. Box 2020 Monroe, NY 10949

Prepared by: Matthew M. Carroll, P.E. &

Tenen Environmental, LLC 121 West 27th Street, Suite 702 New York, NY 10001

September 30, 2016

TABLE OF CONTENTS

1.0 IN7	TRODUCTION	. 1
2.0 BA	CKGROUND	. 2
2.1	Prior Site Investigations	. 2
2.2	Topography and Geology	. 3
2.3	Hydrogeology	
3.0 REN	MEDIAL ACTIONS	. 4
3.1	Removal of Aboveground Fuel Oil Tank	. 4
3.2	Post-Removal Soil Screening	
3.3	Solid Waste and Scrap Metal Removal and Disposal	
3.4	Soil Capping	
3.5	Non-Hazardous Solid Wastes	
4.0 CO	NCLUSIONS	. 6

FIGURES

FIGURE 1	– Site L	location	Map
----------	----------	----------	-----

APPENDICES

- **APPENDIX A** Remedial Action Work Plan (RAWP)
- APPENDIX B NYSDEC PBS Certificate
- **APPENDIX C** Disposal Manifests
- **APPENDIX D** Photo Log Documenting Tank Removal Activities
- APPENDIX E Receipts from the Disposal Facility and Scrap Yard
- **APPENDIX F** Fill Material Analytical Results

CERTIFICATION

I, Matthew Carroll, am currently a registered professional engineer licensed by the State of New York. I had primary direct responsibility for implementation of the remedial program for the Clovewood Site in the Village of South Blooming Grove, Orange County, New York.

I, Mohamed Ahmed, am a qualified Environmental Professional. I had primary direct responsibility for implementation of the remedial program for the Clovewood Site in the Village of South Blooming Grove, Orange County, New York.

We certify that the Remedial Action Work Plan dated August 23, 2015 related to the removal of one 4,900gallon fuel oil tank, one 550-gallon water tank, scrap metal and surface solid waste was implemented and that all requirements in this document has been substantively complied with. We certify one 4,900-gallon fuel oil tank, one 550-gallon water tank, scrap metal and surface solid waste from the Clovewood Site were taken to facilities licensed to accept this material in full compliance with applicable laws and regulations.

Matthew M. Carroll, PE

091629 PE License Number

MAA M CM

Signature

 $\frac{9/21/2016}{\text{Date}}$

Mohamed Ahmed, CPG, Ph.D. QEP Name

mohamed almed

QEP Signature

09/21/16

Date

1.0 INTRODUCTION

Tenen Environmental (Tenen), on behalf of CPC, has overseen remedial actions at the Clovewood Site, in the Village of South Blooming Grove, Orange County, New York (the Site), including the remediation of the area at the former workshop, the removal of the out-of-service fuel oil tank, as well as the water tank, and the removal of scrap metals and surface solid waste.

A Phase I Environmental Site Assessment (dated 12/8/14) and a Phase II Subsurface Investigation (dated 6/15/15) were performed to compile and evaluate data and information necessary to develop a Remedial Action Work Plan (RAWP) for the Site, which was completed on August 23, 2015. The performed remedial actions described in this Remedial Closure Report (RCR) fulfilled the remedial objectives defined in the RAWP, complied with applicable environmental standards, criteria and guidance, conformed to applicable laws and regulations.

The Phase I, Phase II, and the RAWP were submitted on August 27, 2015 to both the New York State Department of Environmental Conservation (NYSDEC) and the Village of South Blooming Grove for review. On November 17, 2015 the NYSDEC responded with recommendations and stated that, "None of the spills have any significant impacts remaining."; On June 7, 2016, the NYSDEC issued the PBS Certificate noting that the fuel oil tank is to be removed (Appendix B): the tank was removed on June 23, 2016. This RCR was prepared to document the remedial actions that were completed in accordance with the NYSDEC applicable regulations., however, as there were no remedial actions proposed that required a written RAWP, a no further action letter was not required by NYSDEC, and no further approval or documentation is needed from NYSDEC..

The Clovewood Site is located on the east side of NYS Route 208 and County Route 27 (with a physical address of 505 Clove Road, Monroe, NY 10950) in the Village of South Blooming Grove, Orange County, New York. The Site is comprised of two Tax Map parcels: Section 208, Block 1, Lots 2 & 3, totaling 708.2-acres in size. The Site is in the Blaggs Clove area of South Blooming Grove.

Lot 3 (208-1-3) is 670.3 acres and is occupied by unused farming buildings, vacant bungalow-type residences, a single-family home, an abandoned garage structure and other small utility buildings. Lot 2 (208-1-2) is an undeveloped 37.9-acre parcel completely surrounded by Lot 3 that is predominantly forested. A site location map is provided as **Figure 1**.

All remedial action described in this RCR were performed in accordance with a Sitespecific Health and Safety Plan (HASP) presented in the RAWP. The HASP addressed the Site-specific hazards, identified contaminants of concern and safety requirements associated with the removal of the ASTs and disposal and off-site disposal of solid waste in accordance with NYSDEC regulations.

2.0 BACKGROUND

2.1 **Prior Site Investigations**

A Phase I Environmental Site Assessment (Phase I ESA) was performed by Tenen Environmental in December 2014. During the Phase I ESA Site visit, piles of solid waste and debris; discarded petroleum storage tanks, including an excavated tank with evidence of a release; and unmarked drums and containers were observed. The 2014 Phase I ESA identified the following Recognized Environmental Conditions (RECS):

- piles of waste and debris;
- petroleum storage tanks, including an excavated UST with evidence of a release;
- unmarked drums and pails;
- historic uses of the Site, including a mine, golf course, debris disposal, farmland and orchard; and,
- the multiple spill cases on the Site that have been closed by NYSDEC; these are considered *historical recognized environmental conditions*.

A Phase II subsurface investigation was conducted to address the recommendations contained in the Phase I ESA. The purpose of this investigation was to assess the soil conditions at the former Lake Anne golf course area, former workshop and near the discarded underground tanks and drums, and to determine the extent of solid waste identified in the Phase I ESA.

The Phase II subsurface investigation performed on May 20, 2015, included excavation of 17 test pits and soil sampling. Four of seventeen test pits were excavated in the vicinity of the discarded tanks, one at the former repair shop, one in the former golf course area, and eleven near the solid waste piles. A hydrogeological study including the installation of groundwater wells is underway. Groundwater samples will be collected and analyzed to verify if groundwater on the Site has been impacted.

A total of four soil samples were analyzed for full scan volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs). The soil samples collected from the solid waste pile areas (TP-8 and TP-11) were also analyzed for Target Analyte List (TAL) metals. The soil sample collected from the former golf course area (TP-16) was only analyzed for pesticides.

A tank inventory was also performed to determine the total number of tanks at the Site. A total of nineteen 275-gallon ASTs associated with the existing bungalow-type residences and other buildings, one 550-gallon AST and one 4,900-gallon AST were present at the Site. Note, the 4,900-gallon AST was mistakenly identified in the Phase II report and RAWP as a 10,000-gallon AST. See Sections 3.1 and 3.3 for further detail.

The subsurface investigation concluded the following:

- No VOCs were detected in any soil sample at concentrations above the New York State Part 375 Unrestricted Use soil cleanup objectives (SCOs);
- SVOCs, specifically polyaromatic hydrocarbons (PAHs), were detected in one soil sample at levels exceeding the Part 375 Restricted Residential Use SCOs. This area was capped pursuant to applicable regulations (see Section 3.4 below);
- Several metals typical of fill material, including copper, iron, and zinc, were detected above the Unrestricted or Residential Use SCOs (see remedial process in Section 3.3 below);
- Two pesticides, 4,4'-DDE and 4,4'-DDT, were detected above the Unrestricted Use SCOs but below the Residential Use SCOs in the former golf course area (see remedial process in Section 3.3 below); and
- Non-hazardous solid waste was observed in ten test pits but is confined to a small area of less than two acres that is not proposed for development (see remedial in Section 4.2 below).

2.2 Topography and Geology

The Site lies at elevations ranging from approximately 1,350 feet along the eastern boundary to approximately 450 feet in the southwest corner of the Site. The eastern border is the base of Shunnemunk Mountain. Groundwater is present at depths ranging from approximately at the surface to several hundred feet below grade.

2.3 Hydrogeology

According to the December 2014 Phase I ESA, groundwater flow is assumed to be westsouthwest. Groundwater is used as a source of potable water in this area of New York. A hydrological study is currently being completed at the Site.

3.0 REMEDIAL ACTIONS

3.1 Removal of Aboveground Fuel Oil Tank

One 4,900-gallon out-of-service #2 fuel oil AST was removed from the property in accordance with the RAWP. The AST decommissioning and removal was conducted by American Environmental Assessment of Wyandanch, New York (American) on June 1, 2016. Oversight during tank removal was provided by Tenen Environmental. A Tenen's field geologist preformed the oversight during the tank removal activities.

Prior to removal, the AST was registered with the New York State Department of Environmental Conservation (NYSDEC) Petroleum Bulk Storage (PBS) Unit and NYSDEC was advised regarding the tank removal start date (a copy of the NYSDEC PBS certificate is included in Appendix B).

Oily water found in the AST was pumped into a 55-gallon drum. The interior of the AST was accessed by cutting a large opening on the side and cleaned using a Butterworth jettool and detergent. After the evacuation of any residual vapors, a worker entered the tank and, using a shovel, scraped any residual petroleum sludge from the interior of the tank. Oily water, sludge and absorbent material from the cleaning process were contained into three 55-gallon drums.

A total of three 55-gallon drums of petroleum-contaminated liquid, sludge and absorbent material were removed and transported to Clean Water of New York, Staten Island, NY for disposal. A copy of the disposal manifest is provided in Appendix C. Visual inspection of the AST did not indicate holes or leaks. The tank was then hoisted from the ground, crushed, and hauled off-site for disposal. A photo log documenting the tank removal activities is included in Appendix D.

3.2 Post-Removal Soil Screening

Following the removal of the AST, Tenen's on-site representative inspected the soil below the tanks for evidence of petroleum impacts. A photoionization detector (PID) was used to identify the presence of any petroleum contamination in the soil. No staining soil, petroleum odor, or elevated PID readings were observed under the tank. Therefore, no soil samples were collected from under the tank. A photo log documenting the soil conditions under the AST is included as Appendix E.

3.3 Solid Waste and Scrap Metal Removal and Disposal

Solid waste and scrap metal, including one 550-gallon water tank, were removed and disposed off-site. Solid waste was disposed at Taylor-Montgomery facility of Montgomery, New York. Scrap metal was shipped to Middletown Auto Wreckers of Middletown, New York.

A licensed excavation contractor was retained to handle the solid waste removal and disposal. Solid waste was collected from different areas on the Site and piled near the Site entrance on Clove Road. A backhoe was used to load a 20-yard dump truck with the solid waste. A total of four trucks loads were removed and sent to Taylor-Montgomery facility for disposal. Tenen's field geologist preformed the oversight during the removal of scrap metals and surface solid waste activities.

Scrap metal, including discarded tanks, were collected from different areas on the Site and loaded to a 20-yard container. A total of 6.74 tons of metal were received by Middletown Auto Wreckers. Copies of the receipts from the disposal facility and scrap yard are provided in Appendix F.

3.4 Soil Capping

Soil with elevated levels of SVOCs was encountered in the workshop area located approximately at coordinates 41deg, 23'13"N 74deg, 9'39" W. The soil in the workshop area with elevated levels of SVOCs capped with at least two feet of clean fill material and was used as a cover to prevent the direct contact with the impacted soil as indicated in the NYSDEC Commissioner Policy (CP-51), October 21, 2010. Material used to cover the soil was brought from another part of the Site where it had been stored to be used in the former golf course. A demarcation layer composed of plastic orange material was placed below the imported fill material. Tenen collected one composite sample from the fill material and analyzed VOCs, SVOCs, pesticides, PCBs, and metals.

The fill material results were compared to the New York State Department of Environmental Conservation (NYSDEC) Unrestricted Use SCOs as listed in 6 NYCRR Part 375-6.8(a) and the Restricted Commercial Use SCOs as listed in 6 NYCRR Part 375-6.8(b) and the NYSDEC DEC Policy CP-51.

No VOCs, SVOCs, pesticides, PCBs, or metals were detected in the fill material samples at concentrations above any of the regulatory thresholds. A copy of the fill material analytical results is provided in Appendix G.

3.5 Non-Hazardous Solid Wastes

This RCR was prepared to document the remedial actions that were completed and does not include remediation of buried solid waste confined to an area of less than two acres that is not proposed for building. Likewise it does not include removal of the ASTs associated with the bungalow type buildings identified on the Site during the Phase II investigation. ASTs associated with the bungalow-type buildings (all of which are 275 gallons or less in size) will be removed in accordance with the local and state regulations prior to the demolition of those buildings.

4.0 CONCLUSIONS

Based on the implementation of the remedial actions described in Section 3, Tenen has the following conclusions:

- One 4,900-gallon out-of-service aboveground fuel oil tank was removed and disposed off-site in accordance with the NYSDEC PBS requirements and the tank was administratively closed in NYSDEC's records.
- One 550-gallon water tank was removed and disposed off-site.
- Solid waste at the Site was collected, removed and disposed off-site.
- Scrap metal, including discarded tanks, were removed and disposed off-site.
- Soil with elevated levels of SVOCs was capped with two-feet of material that meets the NYSDEC Unrestricted Use SCOs to prevent the direct contact.
- A no further action letter was not required by NYSDEC.

FIGURES

APPENDIX A

Remedial Action Work Plan (RAWP)

Remedial Action Work Plan Clovewood 505 Clove Road Tax Lots 208-1-2 and 208-1-3 Village of South Blooming Grove, New York

Prepared For: CPC LLC P.O. Box 2020 Monroe, NY 10949

AGE AUG 2.7 201 AECEIVED

Prepared by:

Tenen Environmental, LLC 121 West 27th Street, Suite 1004 New York, NY 10001

August 23, 2015

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND	2
2.1		
2.2	2 TOPOGRAPHY AND GEOLOGY	3
2.3	B Hydrogeology	3
3.0	PROPOSED REMEDIAL ACTION	4
3.1	REMOVAL OF ASTS	4
3.2	2 POST-EXCAVATION SOIL SAMPLES	4
3.3	3 Solid Waste Removal and Disposal	4
Ch	HARACTERIZATION OF EXCAVATED MATERIALS	5
So	IL WASTE EXCAVATION, LOAD-OUT AND DEPARTURE	5
OF	FF-SITE TRANSPORT OF MATERIALS	5
	FF-SITE DISPOSAL OF MATERIALS.	
3.4	4 Soil Removal	6
3.5	5 Work Schedule	5
4.0	REMEDIAL ACTION REPORT	7

FIGURES

FIGURE 1 – Site Location Map FIGURE 2 – Site Plan

APPENDICES

APPENDIX A – Health and Safety Plan APPENDIX B – Phase II Subsurface Investigation Report

1.0 INTRODUCTION

Tenen Environmental (Tenen) has prepared this Remedial Action Work Plan (RAWP) for Clovewood, located at 505 Clove Road, Village of South Blooming Grove, Orange County, New York (the Site). The 708.2-acres Site is comprised of two Lots (2 and 3), both located on Section 208, Block 1 of the Orange County Tax Map. The Site is in the Blaggs Clove area of South Blooming Grove.

Lot 3 (208-1-3) is 655.7 acres and is occupied by unused farming buildings, vacant bungalow-type residences, a single-family home, an abandoned garage structure and several small utility buildings. Lot 2 (208-1-2) is an undeveloped 38.8-acre parcel completely surrounded by Lot 3 that is predominantly forested. A site location map is provided as **Figure 1**. A site plan has been included as **Figure 2**.

This RAWP has been prepared for submittal to the Village of South Blooming Grove, New York and provides a description of the solid waste handling and disposal activities that will be implemented prior to the planned development of the property. The RAWP also describes the procedures that will be used during the removal of the aboveground storage tanks (ASTs). This RAWP includes health and safety procedures that will be used during the removal of the ASTs and excavation and disposal of the solid waste present at the Site.

The Site-specific Health and Safety Plan (HASP) in Appendix A addresses Site-specific hazards, identified contaminants of concern and safety requirements associated with the removal of the ASTs and excavation and off-site disposal of solid waste in accordance with ASTM and OSHA guidelines.

2.0 BACKGROUND

2.1 **Prior Site Investigations**

A Phase I Environmental Site Assessment (Phase I ESA) was performed by Tenen Environmental in December 2014. During the Phase I ESA site visit, piles of waste and debris; discarded petroleum storage tanks, including an excavated tank with evidence of a release; and unmarked drums and containers were observed. The 2014 Phase I ESA identified the following Recognized Environmental Conditions (RECS):

- piles of waste and debris;
- petroleum storage tanks, including an excavated UST with evidence of a release;
- unmarked drums and pails;
- historic uses of the Site, including a mine, golf course, debris disposal, farmland and orchard; and,
- the multiple spill cases on the Site that have been closed by NYSDEC; these are considered *historical recognized environmental conditions*.

A Phase II subsurface investigation was conducted to address the recommendations contained in the Phase I ESA. The purpose of this investigation was to assess the soil conditions at the former golf course area, former repair shop and near the discarded underground tanks and drums, and to determine the extent of solid waste identified in the Phase I ESA.

The Phase II subsurface investigation performed on May 20, 2015, included excavation of 17 test pits and soil sampling. Four of seventeen test pits were excavated in the vicinity of the discarded tanks, one at the former repair shop, one in the former golf course area, and eleven near the solid waste piles. Groundwater was not sampled in this investigation.

A total of four soil samples were analyzed for full scan volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs). The soil samples collected from the solid waste pile areas (TP-8 and TP-11) were also analyzed for Target Analyte List (TAL) metals. The soil sample collected from the former golf course area (TP-16) was only analyzed for pesticides. A copy of the Phase II Subsurface Investigation Report is included in Appendix B.

A tank inventory was also performed to determine the total number of tanks at the Site. A total of nineteen 275-gallon aboveground storage tanks (ASTs), one 550-gallon AST and one 10,000-gallon AST were present at the Site.

The subsurface investigation concluded the following:

• No VOCs were detected in any soil sample at concentrations above the New York State Part 375 Unrestricted Use soil cleanup objectives (SCOs).

- SVOCs, specifically polyaromatic hydrocarbons (PAHs), were detected in one soil sample at levels exceeding the Part 375 Restricted Residential Use SCOs.
- Several metals typical of fill material, including copper, iron, and zinc, were detected above the Unrestricted or Residential Use SCOs.
- Two pesticides, 4,4'-DDE and 4,4'-DDT, were detected above the Unrestricted Use SCOs but below the Residential Use SCOs in the former golf course area.
- Solid waste including household refuse consisting of bottles, tires, plastic bags, old cloth, and roof shingles were observed in ten test pits; these materials extended to depths ranging between three and eleven feet below grade.

2.2 Topography and Geology

The Site lies at elevations ranging from approximately 1,100 feet along the eastern boundary to approximately 500 feet in the southwest corner of the Site, as measured from the National Geodetic Vertical Datum of 1929 (an approximation of mean sea level). The eastern border is the base of Shunnemunk Mountain. Groundwater is present at depths ranging from the surface to several hundred feet below grade.

2.3 Hydrogeology

According to the December 2014 Phase I ESA, groundwater flow is assumed to be westsouthwest. Groundwater is used as a source of potable water in this area of New York. A hydrological study is currently being completed at the Site.

3.0 PROPOSED REMEDIAL ACTION

3.1 Removal of ASTs

A total of nineteen 275-gallon ASTs, one 550-gallon AST and one 10,000-gallon AST are present at the Site.

Prior to the removal of the ASTs, they will be registered with the NYSDEC Petroleum Bulk Storage (PBS) Unit.

The removal of the ASTs will follow the standard industry practices. The remaining product and/or water will be first pumped from the tanks, and the lines will be drained. Next, vapors inside the UST systems will be evacuated. After the evacuation of any residual vapors, the tanks will be properly decommissioned, then cleaned, and hauled off-site for disposal.

All field work activities including tanks removal will be performed by a licensed tank removal contractor in accordance with federal, state, and local regulations and with a site-specific health and safety plan (HASP).

3.2 Post-excavation Soil Samples

Following the removal of the ASTs, Tenen's on-site representative, will inspect the soil below the tanks for evidence of free-product contamination. A photoionization detector (PID) will be used to identify the presence of any petroleum contamination in the soil. At all locations where soil is stained, exhibits petroleum odors, or has above-background organic vapor readings, soil will be excavated until the sides and bottom of the excavation no longer show evidence of petroleum contamination. Excavated soil will be stockpiled on and covered with plastic sheeting on the Site until offsite disposal is arranged. One post-excavation soil sample will be collected at the bottom of the excavation.

If evidence of soil contamination from petroleum is not found in the areas underneath the ASTs, post-excavation soil samples will not be collected. Any soil samples collected will be analyzed for VOCs using the EPA Method 8260 and SVOCs using the EPA Method 8270.

3.3 Solid Waste Removal and Disposal

Solid waste removal and disposal procedures will be implemented to excavate, remove, load, and dispose of solid waste to appropriate disposal facilities in accordance with applicable federal, state, and local laws and regulations.

Characterization of Excavated Materials

Solid waste that is transported off-Site for disposal will be describe and/or sampled, if required by the receiving facility, in compliance with applicable laws and regulations.

Solid Waste Excavation, Load-Out and Departure

A licensed excavation contractor will be retained to handle the solid waste removal and disposal. Excavation equipment such as an excavator and/or backhoe will be used to direct loading the solid waste into containers and truck trailers for off-site disposal.

A professional engineer (PE) or qualified environmental professional (QEP) will oversee the remedial action and will include the following:

- oversee remedial work and the excavation and load-out of excavated material;
- ensure that the presence of utilities and easements on the Site have been investigated by the excavation contractor;
- ensure that all loaded outbound trucks are inspected and cleaned if necessary before leaving the Site;
- ensure that all egress points for truck and equipment transport from the Site will be kept clean of Site-derived materials during the solid waste removal and disposal.

Off-Site Transport of Materials

Loaded vehicles leaving the Site will comply with all applicable materials transportation requirements (including appropriate covering, manifests, and placards) in accordance with applicable laws and regulations, including use of licensed haulers in accordance with 6 NYCRR Part 364. If loads contain wet material capable of causing leakage from trucks, truck liners will be used.

Off-Site Disposal of Materials

The following documentation will be established and reported by the PE/QEP for each disposal destination used in this project to document that the disposal of solid waste material exported from the Site conforms with applicable laws and regulations: (1) a letter from the PE/QEP or Applicant to each disposal facility describing the material to be disposed and requesting written acceptance of the material. This letter will state that material to be disposed is regulated material. The letter will provide the project identity and the name and phone number of the PE/QEP or Applicant; and (2) a letter from the disposal facility stating it is in receipt of the correspondence (1, above) and is approved to accept the material. These documents will be included in the Remedial Action Report (RAR).

The RAR will include an itemized account of the destination of all materials removed from the Site during this remedial action. Documentation associated with disposal of all material will include records and approvals for receipt of the material. This information will be presented in the RAR.

All impacted soil/fill or other waste excavated and removed from the Site will be managed as regulated material and will be disposed in accordance with applicable laws and regulations.

Waste characterization will be performed for off-site disposal in a manner required by the receiving facility and in conformance with its applicable permits. A manifest system for off-Site transportation of exported materials will be employed. Manifest information will be reported in the RAR.

3.4 Soil Removal

Soil with elevated levels of SVOCs was encountered in the workshop area located southeast of Lake Ann Drive, accessible by a service road, approximately at coordinates 41deg, 23'13"N 74deg, 9'39" W. The soil will be excavated and disposed off-site if the area is redeveloped. If this area is landscaped and the impacted soil is not removed, at least two feet of clean fill material will be used as a cover to prevent the direct contact with the impacted soil.

3.5 Work Schedule

The tentative schedule for implementation and completion of the proposed remedial action has been estimated at a total of approximately ten to fifteen days. Removal of the ASTs is estimated to take about five to seven days. Solid waste excavation, removal and disposal is estimated to take approximately five to eight days.

4.0 REMEDIAL ACTION REPORT

A Remedial Action Report (RAR) will be prepared following implementation of the remedial action defined in this RAP. The RAR will describe the field activities, ASTs removal, waste disposal manifests, and analytical results (if soil or/and solid waste characterization samples are collected). The RAR will also will document that the remedial work required under this RAP has been completed and has been performed in compliance with this plan.

FIGURES

APPENDIX A Health and Safety Plan

Appendix A Site-Specific Construction Health and Safety Plan

For

Clovewood Remedial Action Plan

505 CloveRoad Tax Lots 208-1-2 and 208-1-3 Village of South Blooming Grove, New York

Prepared for: CPC LLC P.O. Box 2020 Monroe, NY 10949

Prepared by:

121 West 27th Street, Suite 303 New York, NY 10001

August 2015

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Scope of HASP	1
2.0	PROJECT SAFETY AUTHORITY	2
2.1	Designated Personnel	2
3.0	HAZARD ASSESSMENT AND CONTROL MEASURES	3
3.1	Human Exposure Pathways	3
3.2	Chemical Hazards	3
3.3	Physical Hazards	4
4.0	COMMUNITY AIR MONITORING PROGRAM	7
5.0	PERSONAL PROTECTIVE EQUIPMENT	9
6.0	EXPOSURE MONITORING 10	0
7.0	SITE ACCESS1	1
8.0	WORK AREAS	2
9.0	DECONTAMINATION PROCEDURES 1	3
10.0	GENERAL SAFE WORK PRACTICES14	4
11.0	EMERGENCY PROCEDURES1	5
11.1	Route to Hospital10	6
11.2	Emergency Contacts1	7
12.0	TRAINING	8
13.0	MEDICAL SURVEILLANCE1	9

Figures

Figure 1 – Route to Hospital (page 16)

Tables

Table 1 – Emergency Contact Information (page 17)

Appendices

Appendix A – Acknowledgement of HASP
Appendix B – Injury Reporting Form (OSHA Form 300)
Appendix C – Material Safety Data Sheets

1.0 INTRODUCTION

This Site-Specific Construction Health and Safety Plan (HASP) has been prepared in conformance with the Occupational Safety and Health Administration (OSHA) standards and guidance that govern site investigation activities, other applicable regulations, and Tenen Environmental LLC (Tenen) health and safety policies and procedures. The purpose of this HASP is the protection of Tenen field personnel and others during the implementation of the Site Characterization Work Plan.

The 708.2-acres Site is comprised of two Lots (2 and 3), both located on Section 208, Block 1 of the Orange County Tax Map. The Site is in the Blaggs Clove area of South Blooming Grove.

Lot 3 (208-1-3) is 655.7 acres and is occupied by unused farming buildings, vacant bungalowtype residences, a single-family home, an abandoned garage structure and several small utility buildings. Lot 2 (208-1-2) is an undeveloped 38.8-acre parcel completely surrounded by Lot 3 that is predominantly forested

1.1 Scope of HASP

This HASP includes safety procedures to be used by Tenen staff during the following activities:

- Removal of aboveground storage tanks;
- Excavation and removal of impacted soil in the workshop area; and
- Excavation and removal of solid waste.

2.0 **PROJECT SAFETY AUTHORITY**

The following personnel are responsible for project health and safety under this HASP.

Tenen Environmental

Tenen Project Manager, Mohamed Ahmed Tenen HSO, Matthew Carroll Tenen HSO Alternate, Mark Accetturi

In addition, each individual working at the Site will be responsible for compliance with this HASP and general safe working practices. All Site workers will have the authority to stop work if a potentially hazardous situation or event is observed.

2.1 Designated Personnel

The Project Manager is responsible for the overall operation of the project, including compliance with the HASP and general safe work practices. The Project Manager may also act as the Health and Safety Officer (HSO) for this project.

Tenen will appoint one of its on-site personnel as the on-site HSO. This individual will be responsible for the implementation of the HASP. The HSO will have a 4-year college degree in occupational safety or a related science/engineering field, and at least two (2) years of experience in implementation of air monitoring and hazardous materials sampling programs. The HSO will have completed a 40-hour training course that meets OSHA requirements of 29 CFR Part 1910, Occupational Safety and Health Standards.

The HSO will be present on-site during all field operations involving drilling or other subsurface disturbance, and will be responsible for all health and safety activities and the delegation of duties to the field crew. The HSO has stop-work authorization, which he/she will execute on his/her determination of an imminent safety hazard, emergency situation, or other potentially dangerous situation. If the HSO must be absent from the field, a replacement who is familiar with the health and safety plan, air monitoring and personnel protective equipment (PPE) will be designated.

3.0 HAZARD ASSESSMENT AND CONTROL MEASURES

The Site was occupied, in part, since at least 1902. The Site was used for farming, including orchards, since at least 1940. By the mid 1950's, the northern portion of the property appeared to be used for bungalows. A mining operation was also present in the southern portion by the 1950's. Additional bungalows and structures were added between 1958 and 1984, by which time, the majority of the Site had transitioned from farmland to a golf course. The Site has also been used as a rod and gun club. The areas adjacent to the Site are vacant wooded land, farmland or developed with residential or commercial buildings.

Findings of historical usage of the site and Phase II sampling performed in May 2015 indicate the following:

- A total of nineteen 275-gallon ASTs, one 550-gallon AST and one 10,000-gallon AST are either discarded or abandoned at the Site.
- SVOCs, specifically PAHs, were detected in one soil sample at levels exceeding the Restricted Residential Use SCOs.
- Several metals typical of fill material, including copper, iron, and zinc, were detected above the Unrestricted or Residential Use SCOs.
- Solid waste including household refuse consisting of bottles, tires, plastic bags, old cloth, and roof shingles were observed in ten test pits; these materials extended to depths ranging between three and eleven feet below grade.

3.1 Human Exposure Pathways

The media of concern at the Site include potentially-impacted soil, discarded aboveground storage tanks, and unregulated solid waste. Potential exposure pathways include dermal contact, incidental ingestion and inhalation of vapors. The risk of dermal contact and incidental ingestion will be minimized through general safe work practices, a personal hygiene program and the use of PPE. The risk of inhalation will be minimized through the use of an air monitoring program for volatile organic compounds, particulates, and methane.

3.2 Chemical Hazards

Based on historic research and sampling data, the following contaminants of concern are anticipated:

Polyaromatic hydrocarbons (PAHs)

- Benzo(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(k)fluoranthene
- Chrysene
- Dibenzo(a,h)anthracene

• Indeno(1,2,3-cd)pyrene

Metals

- Arsenic
- Barium
- Beryllium
- Cadmium
- Chromium
- Copper
- Iron
- Lead
- Magnesium
- Manganese
- Mercury
- Nickel
- Silver
- Zinc

Organic Compounds

• Methane

Material Safety Data Sheets (MSDSs) for each contaminant of concern are included in Appendix C. All personnel are required to review the MSDSs included in this HASP.

3.3 Physical Hazards

The physical hazards associated with the field activities likely present a greater risk of injury than the chemical constituents at the Site. Activities within the scope of this project shall comply with New York State and Federal OSHA construction safety standards.

Head Trauma

To minimize the potential for head injuries, field personnel will be required to wear National Institutes of Occupational Safety and Health (NIOSH)-approved hard hats during field activities. Hats must be worn properly and not altered in any way that would decrease the degree of protection provided.

Foot Trauma

To avoid foot injuries, field personnel will be required to wear steel-toed safety shoes while field activities are being performed. To afford maximum protection, all safety shoes must meet American National Standards Institute (ANSI) standards.

Eye Trauma

Field personnel will be required to wear eye protection (safety glasses with side shields) while

field activities are being performed to prevent eye injuries caused by contact with chemical or physical agents.

Noise Exposure

Field personnel will be required to wear hearing protection (ear plugs or muffs) in high noise areas (noise from heavy equipment) while field activities are being performed.

Buried Utilities and Overhead Power Lines

Prior to intrusive activities, the excavation subcontractor will contact the One Call Center to arrange for a utility mark-out, in accordance with New York State requirements. Protection from overhead power lines will be accomplished by maintaining safe distances of at least 15 feet at all times.

Thermal Stress

The effects of ambient temperature can cause physical discomfort, personal injury, and increase the probability of accidents. In addition, heat stress due to lack of body ventilation caused by protective clothing is an important consideration. Heat-related illnesses commonly consist of heat stroke and heat exhaustion.

The symptoms of heat stroke include: sudden onset; change in behavior; confusion; dry, hot and flushed skin; dilated pupils; fast pulse rate; body temperature reaching 105° or more; and/or, deep breathing later followed by shallow breathing.

The symptoms of heat exhaustion include: weak pulse; general weakness and fatigue; rapid shallow breathing; cold, pale and clammy skin; nausea or headache; profuse perspiration; unconsciousness; and/or, appearance of having fainted.

Heat-stress monitoring will be conducted if air temperatures exceed 70 degrees Fahrenheit. The initial work period will be set at 2 hours. Each worker will check his/her pulse at the wrist for 30 seconds early in each rest period. If the pulse rate exceeds 110 beats per minute, the next work period will be shortened by one-third.

One or more of the following precautions will reduce the risk of heat stress on the Site:

- Provide plenty of liquids to replace lost body fluids; water, electrolytic drinks, or both will be made available to minimize the risk of dehydration and heat stress
- Establish a work schedule that will provide appropriate rest periods
- Establish work regimens consistent with the American Conference of Governmental Industrial Hygienists (ACGIH) guidelines
- Provide adequate employee training on the causes of heat stress and preventive measures

In the highly unlikely event of extreme low temperatures, reasonable precautions will be made to avoid risks associated with low temperature exposure.

Traffic

Field activities will occur near public roadways. As a result, vehicular traffic will be a potential hazard during these activities and control of these areas will be established using barricades or traffic cones. Additional staff will be assigned, as warranted, for the sole purpose of coordinating traffic. Personnel will also be required to wear high-visibility traffic vests while working in the vicinity of the public roadways and local requirements for lane closure will be observed as needed. All work in public rights-of-way will be coordinated with local authorities and will adhere to their requirements for working in traffic zones.

Hazardous Weather Conditions

All Site workers will be made aware of hazardous weather conditions, specifically including extreme heat, and will be requested to take the precautions described herein to avoid adverse health risks. All workers are encouraged to take reasonable, common sense precautions to avoid potential injury associated with possible rain or high wind. Conditions of sleet, snow or freezing are extremely unlikely.

Slip, Trip and Fall

Areas at the Site may be slippery from mud or water. Great care should be taken by all Site workers to avoid slip, trip and fall hazards. Workers shall not enter areas that not have adequate lighting. Additional portable lighting will be provided at the discretion of the HSO.

Biological Hazards

Drugs and alcohol are prohibited from the Site. Any on-site personnel violating this requirement will be immediately expelled from the Site.

It is the responsibility of any worker or oversight personnel with a medical condition that may require attention should inform the HSO of such condition. The HSO will describe appropriate measures to be taken if the individual should become symptomatic.

Due to the Site location in a rural area, it is likely that poisonous snakes, ticks, spiders, plants, and insects will be encountered. However, other animals (dogs, cats, etc.) may be encountered, and care should be taken to avoid contact.

4.0 COMMUNITY AIR MONITORING PROGRAM

The NYSDOH Generic Community Air Monitoring Plan (CAMP), included as Appendix 1A of DER-10, and methane monitoring will be implemented during all ground-intrusive activities.

VOC Monitoring, Response Levels and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring should be performed using equipment appropriate for the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- 1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- 2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- 3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shut down.
- 4. All 15-minute readings must be recorded and be available for State (NYSDEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels and Actions

Particulate concentrations should be monitored continuously at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis and once at the upwind perimeter at start of each work day or as otherwise specified. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. In addition, fugitive dust migration should be visually assessed during all work activities.

- 1. If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m3) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- 2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.
- 3. All readings must be recorded and be available for State (NYSDEC and NYSDOH) personnel to review.

Methane Monitoring, Response Levels and Actions

Methane must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring should be performed using a meter capable of calculating the percentge methane of the Lower Explosive Limit (LEL).

- 1. If methane is present at 10% of the LEL in ambient air, work activities must be temporarily halted and monitoring continued. If the methane level readily decreases (per instantaneous readings) below 5% of the LEL, work activities can resume with continued monitoring.
- 2. If methane levels persist in excess of 10% LEL, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions and monitoring continued. After these steps, work activities can resume provided that the methane levels decrease below 10% of LEL.
- 3. All readings must be recorded and be available for review.

5.0 PERSONAL PROTECTIVE EQUIPMENT

The personal protection equipment required for various kinds of site investigation tasks is based on 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, "General Description and Discussion of the Levels of Protection and Protective Gear."

Tenen field personnel and other site personnel will wear Level D personal protective equipment. During activities such as soil excavation, tanks removal, and solid waste excavation and removal where there is a chance of contact with contaminated materials, modified Level D equipment will be worn. The protection will be upgraded to Level C if warranted by the results of the air monitoring. A description of the personnel protective equipment for Levels D and C is provided below.

Level D Respiratory Protection: Protective Clothing:	None Hard hat, steel-toed shoes, long pants, nitrile gloves
Modified Level D Respiratory Protection: Protective Clothing:	None Hard hat, steel-toed shoes, coveralls/tyvek, nitrile gloves
Level C Respiratory Protection: Protective Clothing:	Air purifying respirator with organic vapor cartridges and filters. Same as modified Level D

6.0 EXPOSURE MONITORING

Selective monitoring of workers in the exclusion area may be conducted, as determined by the HSO, if sources of hazardous materials are identified. Personal monitoring may be conducted in the breathing zone at the discretion of the Project Manager or HSO and, if workers are wearing respiratory protective equipment, outside the face-piece.

7.0 SITE ACCESS

Access to the Site during the remedial activities will be controlled by the Project Manager or HSO. Unauthorized personnel will not be allowed access to the Site.

8.0 WORK AREAS

During any activities involving subsurface disturbance, the work area must be divided into various zones to prevent the spread of contamination, clarify the type of protective equipment needed, and provide an area for decontamination.

The Exclusion Zone is defined as the area where potentially contaminated materials are generated as the result of excavation activities. The Contamination Reduction Zone (CRZ) is the area where decontamination procedures take place and is located adjacent to the Exclusion Zone. The Support Zone is the area where support facilities such as vehicles, a field phone, fire extinguisher and/or first aid supplies are located. The emergency staging area (part of the Support Zone) is the area where all Site workers will assemble in the event of an emergency. These zones shall be designated daily, depending on that day's activities. All field personnel will be informed of the location of these zones before work begins.

Control measures such as "Caution" tape and traffic cones will be placed around the perimeter of the work area when work is being done in the areas of concern (i.e., areas with exposed soil) to prevent unnecessary access.

9.0 DECONTAMINATION PROCEDURES

Personnel Decontamination

Personnel decontamination (decon), if deemed necessary by the HSO, will take place in the designated decontamination area delineated for each work location. Personnel decontamination will consist of the following steps:

- Soap and potable water wash and potable water rinse of gloves;
- Tyvek removal;
- Glove removal;
- Disposable clothing removal; and
- Field wash of hands and face.

Equipment Decontamination

Excavation equipment, such as excavator buckets, will be decontaminated, if needed, in accordance with U.S. Environmental Protection Agency methodologies, as described in the work plan. Because site soil is considered essentially non-hazardous, there is no need to decontaminate vehicles used for transporting equipment and personnel over the Site.

Disposal of Materials

Water used to decontaminate any equipment will be containerized and disposed off-site in accordance with federal, state and local regulations.

10.0 GENERAL SAFE WORK PRACTICES

To protect the health and safety of the field personnel, all field personnel will adhere to the guidelines listed below during activities involving subsurface disturbance.

- Eating, drinking, chewing gum or tobacco, and smoking are prohibited, except in designated areas on the site. These areas will be designated by the HSO.
- Workers must wash their hands and face thoroughly on leaving the work area and before eating, drinking, or any other such activity. The workers should shower as soon as possible after leaving the site.
- Removal of potential contamination from PPE and equipment by blowing, shaking or any means that may disperse materials into the air is prohibited.
- Contact with contaminated or suspected surfaces should be avoided.
- The buddy system should always be used; each buddy should watch for signs of fatigue, exposure, and heat stress.
- Personnel will be cautioned to inform each other of symptoms of chemical exposure such as headache, dizziness, nausea, and irritation of the respiratory tract and heat stress.
- No excessive facial hair that interferes with a satisfactory fit of the face-piece of the respirator to the face will be allowed on personnel required to wear respiratory protective equipment.
- On-site personnel will be thoroughly briefed about the anticipated hazards, equipment requirements, safety practices, emergency procedures, and communications methods.

11.0 EMERGENCY PROCEDURES

The field crew will be equipped with emergency equipment, such as a first aid kit and disposable eye washes. In the case of a medical emergency, the HSO will determine the nature of the emergency and will have someone call for an ambulance, if needed. If the nature of the injury is not serious—i.e., the person can be moved without expert emergency medical personnel—on-site personnel should drive him to a hospital. The nearest emergency room is at Orange Regional Medical Center (707 East Main Street, Middletown, NY 10940). The route to the hospital is shown and detailed on the next page.

Heights 53 Rock Tavern (17M) 84 83 207 Galleria at Crystal Run 78 211 96 Campbell Hall 33 Middletown 707 E Main St 🔘 208 78 Hamptonburgh 49 (17M) 83 Washingtonville Blooming 51 Grove 50 84 208 New Hampton 49 84 Goshen (17M) S **26 min** Mounta Hill 0505 Clove Rd Ridgebury 100 31 37 (17A) 94 outh looming Grove 42 51 Chester 44 (17A) **22 min** 18.5 miles 94 25 6 Kiryas Jo (17M 105 105 Florida CEN 6 Monroe 41 95 45 40

11.1 Route to Hospital

- 1. Head southwest on Clove Rd toward Lake Anne Dr
- 2. Slight left onto NY-208 S
- 3. Turn left to merge onto NY-17 W/US-6 W
- 4. Merge onto NY-17 W/US-6 W
- 5. Continue onto NY-17 W
- 6. Take exit 122 for Crystal Run Crossing
- 7. Turn right onto Crystal Run Rd
- 8. Continue onto E Main St
- 9. Turn right
- 10. Turn right
- 11. Turn left
- 12. Turn left
- 13. Turn left
- 14. Turn right

15. Emergency room entrance on the right (845) 333-1300.

11.2 Emergency Contacts

There will be an on-site field phone. Emergency and contact telephone numbers are listed below:

Table 1 – Emergency Contacts

Ambulance	911
Emergency Room	(845) 333-1300.
NYSDEC Spill Hotline	(800) 457-7362
Tenen Project Manager, Mohamed Ahmed	(917) 612-6018
Tenen HSO, Matthew Carroll	(646) 827-1061
Tenen HSO Alternate, Mark Accetturi	TBD
CPC LLC, Client, Simon Gelb	(845) 500-1111

12.0 TRAINING

All personnel performing the field activities described in this HASP will have received the initial safety training required by 29 CFR, 1910.120. Current refresher training status also will be required for all personnel engaged in field activities.

All those who enter the work area while intrusive activities are being performed must recognize and understand the potential hazards to health and safety. All field personnel must attend a training program covering the following areas:

- potential hazards that may be encountered;
- the knowledge and skills necessary for them to perform the work with minimal risk to health and safety;
- the purpose and limitations of safety equipment; and
- protocols to enable field personnel to safely avoid or escape from emergencies.

Each member of the field crew will be instructed in the above objectives before he/she goes onto the site. The HSO will be responsible for conducting the training program.

13.0 MEDICAL SURVEILLANCE

All Tenen and direct subcontractor personnel performing field work involving soil contact at the site are required to have passed a complete medical surveillance examination in accordance with 29 CFR 1910.120 (f). The medical examination for Tenen employees will, at a minimum, be provided annually and upon termination of hazardous waste site work.

Appendix A Acknowledgement of HASP

ACKNOWLEDGMENT OF HASP

Below is an affidavit that must be signed by all Tenen Environmental employees who enter the site. A copy of the HASP must be on-site at all times and will be kept by the HSO.

AFFIDAVIT

I, ________(name), of (company name), have read the Health and Safety Plan (HASP) for the Clovewood site. I agree to conduct all on-site work in accordance with the requirements set forth in this HASP and understand that failure to comply with this HASP could lead to my removal from the site.

Signature:	Date:
Signature:	Date:

Appendix B Injury Reporting Form (OSHA Form 300)

How to Fill Out the Log

(A)

Case

The Log of Work-Related Injuries and Illnesses is used to classify work-related injuries and illnesses and to note the extent and severity of each case. When an incident occurs, use the Log to record specific details about what happened and how it happened.

If your company has more than one establishment or site, you must keep separate records for each physical location that is expected to remain in operation for one year or longer.

We have given you several copies of the Log in this package. If you need more than we provided, you may photocopy and use as many as you need.

The *Summary* — a separate form shows the work-related injury and illness totals for the year in each category. At the end of the year, count the number of incidents in each category and transfer the totals from the Log to the Summary. Then post the Summary in a visible location so that your employees are aware of injuries and illnesses occurring in their workplace.

You don't post the Log. You post only the Summary at the end of the year.

OSHA's Form 300 (Rev. 01/2004) Log of Work-Related Injuries and Illnesses

Attention: This form contains information relating to employee health and must be used in a manner that protects the confidentiality of employees to the extent possible while the information is being used for occupational safety and health purposes

You must record information about every work-related death and about every work-related injury or illness that involves loss of consciousness, restricted work activity or job transfe
days away from work, or medical treatment beyond first aid. You must also record significant work-related injuries and illnesses that are diagnosed by a physician or licensed heal
care professional. You must also record work-related injuries and illnesses that meet any of the specific recording criteria listed in 29 CFR Part 1904.8 through 1904.12. Feel free to
use two lines for a single case if you need to. You must complete an Injury and Illness Incident Report (OSHA Form 301) or equivalent form for each injury or illness recorded on the
form. If you're not sure whether a case is recordable, call your local OSHA office for help.

Classify the case Identify the person Describe the case CHECK ONLY ONE box for each case Enter the nun (C) (D) (E) (B) (F) hased on the most serious of come fo days the injured or ill worker was: Check the "Injury" column Employee's name Job title Date of injury Where the event occurred Describe injury or illness, parts of body affected, choose one type of illness: (e.g. Welder) (e.g. Loading dock north end) and object/substance that directly injured or onset or made person ill Away On iob of illness from work transfer of (e.g. Second degree burns on right forearm from acetylene torch) Days away (G) (K) (L) (H) (I) (J) (3) (1) (2) (4) (6) 1 5 / 25 fracture, left arm and left leg, fell from ladder 12 days <u>15</u> days Mark Bagin Welder basement Ŭ 7/2pouring deck days 30 days Shana Alexander Foundry man poisoning from lead fumes 7 days *30* days 8 / 5 2nd floor storeroom broken left foot, fell over box Sam Sander Electrician 5 9 /17 Back strain lifting boxes Ralph Boccella davs packaging dept đ Jarrod Daniels Machine opr. 10/23 production floor dust in eye days days П /п п п ____ days ____ days ____days ____days ___ days days

> Be as specific as possible. You can use two lines if you need more room.

> > Revise the log if the injury or illness progresses and the outcome is more serious than you originally recorded for the case. Cross out, erase, or white-out the original entry.

Choose ONLY ONE of these categories. Classify the case

by recording the most

serious outcome of the case,

with column G (Death) being

the most serious and column

J (Other recordable cases)

being the least serious.

Note whether the case involves an injury or an illness.

Year 20

Establishment name __XYZ Company

{City}<u>A</u>nywhere

U.S. Department of Labor

Form approved OMB no. 1218-0176

State MA

Occupational Safety and Health Administratio

ab

of

tment

and

fety

OSHA's Form 300 (Rev. 01/2004)

Log of Work-Related Injuries and Illnesses

Attention: This form contains information relating to employee health and must be used in a manner that protects the confidentiality of employees to the extent possible while the information is being used for occupational safety and health purposes.

Form approved OMB no. 1218-0176

U.S. Department of Labor Occupational Safety and Health Administration

State

You must record information about every work-related death and about every work-related injury or illness that involves loss of consciousness, restricted work activity or job transfer,
days away from work, or medical treatment beyond first aid. You must also record significant work-related injuries and illnesses that are diagnosed by a physician or licensed health
care professional. You must also record work-related injuries and illnesses that meet any of the specific recording criteria listed in 29 CFR Part 1904.8 through 1904.12. Feel free to
ise two lines for a single case if you need to. You must complete an Injury and Illness Incident Report (OSHA Form 301) or equivalent form for each injury or illness recorded on this
orm. If you're not sure whether a case is recordable, call your local OSHA office for help.

Establishment name

City

Ident	ify the person		Describe t	he case			sify the ca									
(A) Case	(B) Employee's name	(C) Job title	(D) Date of injury	(E) Where the event occurred	(F) Describe injury or illness, parts of body affected,		on the mos	box for eac serious out		Enter ti days th ill work	ne number of e injured or er was:		k the ' se one			
no.		(e.g., Welder)	or onset of illness	(e.g., Loading dock north end)	and object/substance that directly injured or made person ill (e.g., Second degree burns on			Remaine	ed at Work	Away	On job	(M)	order	бы д	e loss	
					right forearm from acetylene torch)	Death		Job transfer or restriction	Other record- able cases	from work	transfer or restriction	Injury	Skin dis	condition	Hearing	All other illnesses
						(G)	(H)	(I)	(J)	(K)	(L)	(1)	(2) (3) (4) (5)	(6)
			/ month/day							days	days					
			 month/day							days	days					
			 month/day							days	days					
			/							days	days					
			month/day /							days	days					
			month/day /							days						
			month/day							days						
			month/day													
			 month/day			-				days	days					
			 month/day			-				days	days					
			/ month/day			-				days	days					
			/ month/day			-				days	days					
			/							days	days					
			month/day /							days						
			month/day		Page totals					,						
												~	<u> </u>	<u> </u>	<u> </u>	

Public reporting burden for this collection of information is estimated to average 14 minutes per response, including time to review the instructions, search and gather the data needed, and complete and review the collection of information. Persons are not required to respond to the collection of information unless it displays a currently valid OMB control number. If you have any comments about these estimates or any other aspects of this data collection, contact: US Department of Labor, OSHA Office of Statistical Analysis, Room N-3644, 200 Constitution Avenue, NW, Washington, DC 20210. Do not send the completed forms to this office. Be sure to transfer these totals to the Summary page (Form 300A) before you post it.

Skin e

Inju

(1) (2) (3) (4) (5)

(6)

Appendix C Material Safety Data Sheets (MSDS)

Health	2
Fire	1
Reactivity	0
Personal Protection	E

Material Safety Data Sheet Copper MSDS

Section 1: Chemical Product and Company Identification

Product Name: Copper

Catalog Codes: SLC4939, SLC2152, SLC3943, SLC1150, SLC2941, SLC4729, SLC1936, SLC3727, SLC5515

CAS#: 7440-50-8

RTECS: GL5325000

TSCA: TSCA 8(b) inventory: Copper

Cl#: Not available.

Synonym:

Chemical Name: Not available.

Chemical Formula: Cu

Contact Information:

Sciencelab.com, Inc. 14025 Smith Rd. Houston, Texas 77396

US Sales: 1-800-901-7247 International Sales: 1-281-441-4400

Order Online: ScienceLab.com

CHEMTREC (24HR Emergency Telephone), call: 1-800-424-9300

International CHEMTREC, call: 1-703-527-3887

For non-emergency assistance, call: 1-281-441-4400

Section 2: Composition and Information on Ingredients

Composition:

Name	CAS#	% by Weight
Copper	7440-50-8	100

Toxicological Data on Ingredients: Copper LD50: Not available. LC50: Not available.

Section 3: Hazards Identification

Potential Acute Health Effects:

Very hazardous in case of ingestion. Hazardous in case of eye contact (irritant), of inhalation. Slightly hazardous in case of skin contact (irritant).

Potential Chronic Health Effects:

CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance is toxic to lungs, mucous membranes. Repeated or prolonged exposure to the substance can produce target organs damage.

Section 4: First Aid Measures

Eye Contact: Check for and remove any contact lenses. Do not use an eye ointment. Seek medical attention.

Skin Contact:

After contact with skin, wash immediately with plenty of water. Gently and thoroughly wash the contaminated skin with running water and non-abrasive soap. Be particularly careful to clean folds, crevices, creases and groin. Cover the irritated skin with an emollient. If irritation persists, seek medical attention. Wash contaminated clothing before reusing.

Serious Skin Contact: Not available.

Inhalation: Allow the victim to rest in a well ventilated area. Seek immediate medical attention.

Serious Inhalation: Not available.

Ingestion:

Do not induce vomiting. Loosen tight clothing such as a collar, tie, belt or waistband. If the victim is not breathing, perform mouth-to-mouth resuscitation. Seek immediate medical attention.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: May be combustible at high temperature.

Auto-Ignition Temperature: Not available.

Flash Points: Not available.

Flammable Limits: Not available.

Products of Combustion: Some metallic oxides.

Fire Hazards in Presence of Various Substances: Not available.

Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available.

Fire Fighting Media and Instructions:

SMALL FIRE: Use DRY chemical powder. LARGE FIRE: Use water spray, fog or foam. Do not use water jet.

Special Remarks on Fire Hazards: Not available.

Special Remarks on Explosion Hazards: Not available.

Section 6: Accidental Release Measures

Small Spill:

Use appropriate tools to put the spilled solid in a convenient waste disposal container. Finish cleaning by spreading water on the contaminated surface and dispose of according to local and regional authority requirements.

Large Spill:

Use a shovel to put the material into a convenient waste disposal container. Finish cleaning by spreading water on the contaminated surface and allow to evacuate through the sanitary system. Be careful that the product is not present at a concentration level above TLV. Check TLV on the MSDS and with local authorities.

Section 7: Handling and Storage

Precautions:

Keep away from heat. Keep away from sources of ignition. Empty containers pose a fire risk, evaporate the residue under a fume hood. Ground all equipment containing material. Do not breathe dust. Avoid contact with eyes Wear suitable protective clothing In case of insufficient ventilation, wear suitable respiratory equipment If you feel unwell, seek medical attention and show the label when possible.

Storage:

Keep container dry. Keep in a cool place. Ground all equipment containing material. Keep container tightly closed. Keep in a cool, well-ventilated place. Combustible materials should be stored away from extreme heat and away from strong oxidizing agents.

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Use process enclosures, local exhaust ventilation, or other engineering controls to keep airborne levels below recommended exposure limits. If user operations generate dust, fume or mist, use ventilation to keep exposure to airborne contaminants below the exposure limit.

Personal Protection:

Splash goggles. Lab coat. Dust respirator. Be sure to use an approved/certified respirator or equivalent. Gloves.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Dust respirator. Boots. Gloves. A self contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

Exposure Limits:

TWA: 1 (mg/m3) from ACGIH [1990] Consult local authorities for acceptable exposure limits.

Section 9: Physical and Chemical Properties

Physical state and appearance: Solid.

Odor: Not available.

Taste: Not available.

Molecular Weight: 63.54 g/mole

Color: Not available.

pH (1% soln/water): Not applicable.

Boiling Point: 2595°C (4703°F)

Melting Point: 1083°C (1981.4°F)

Critical Temperature: Not available.

Specific Gravity: 8.94 (Water = 1)

Vapor Pressure: Not applicable.

Vapor Density: Not available.

Volatility: Not available.

Odor Threshold: Not available.

Water/Oil Dist. Coeff.: Not available.

lonicity (in Water): Not available.

Dispersion Properties: Not available.

Solubility: Insoluble in cold water.

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of Instability: Not available.

Incompatibility with various substances: Not available.

Corrosivity: Non-corrosive in presence of glass.

Special Remarks on Reactivity: Not available.

Special Remarks on Corrosivity: Not available.

Polymerization: No.

Section 11: Toxicological Information

Routes of Entry: Absorbed through skin. Eye contact. Inhalation. Ingestion.

Toxicity to Animals:

LD50: Not available. LC50: Not available.

Chronic Effects on Humans: The substance is toxic to lungs, mucous membranes.

Other Toxic Effects on Humans:

Very hazardous in case of ingestion. Hazardous in case of inhalation. Slightly hazardous in case of skin contact (irritant).

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans: Human: passes through the placenta, excreted in maternal milk.

Special Remarks on other Toxic Effects on Humans: Not available.

Section 12: Ecological Information

Ecotoxicity: Not available.

BOD5 and COD: Not available.

Products of Biodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The products of degradation are as toxic as the original product.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:

Section 14: Transport Information

DOT Classification: Not a DOT controlled material (United States).

Identification: Not applicable.

Special Provisions for Transport: Marine Pollutant

Section 15: Other Regulatory Information

Federal and State Regulations:

Pennsylvania RTK: Copper Massachusetts RTK: Copper TSCA 8(b) inventory: Copper CERCLA: Hazardous substances.: Copper

Other Regulations: OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200).

Other Classifications:

WHMIS (Canada): CLASS D-2A: Material causing other toxic effects (VERY TOXIC).

DSCL (EEC): R36- Irritating to eyes.

HMIS (U.S.A.):

Health Hazard: 2

Fire Hazard: 1

Reactivity: 0

Personal Protection: E

National Fire Protection Association (U.S.A.):

Health: 2

Flammability: 1

Reactivity: 0

Specific hazard:

Protective Equipment:

Gloves. Lab coat. Dust respirator. Be sure to use an approved/certified respirator or equivalent. Wear appropriate respirator when ventilation is inadequate. Splash goggles.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/09/2005 04:58 PM

Last Updated: 05/21/2013 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

ZINC METAL MATERIAL SAFETY DATA SHEET

SECTION 1. PRODUCT AND COMPANY IDENTIFICATION

Product Identity: Zinc Metal

NOTE: In the form in which it is sold this product is not regulated. This Material Safety Data Sheet is provided for information purposes only.

Manufacturer:Supplier:Teck Metals Ltd.Teck MetalsTrail Operations1500-120Trail, British ColumbiaToronto, CV1R 4L8M5H 1T1Emergency Telephone:250-364-4214

Supplier: Teck Metals Ltd. 1500-120 Adelaide Street, W. Toronto, Ontario M5H 1T1 MSDS Preparer: Teck Metals Ltd. 3300 – 550 Burrard Street Vancouver, British Columbia V6C 0B3

Date of Last Revision/Edit: June 1, 2009.

Product Use: Zinc metal is used to coat steel for corrosion protection (galvanizing, electroplating, electrogalvanizing), as an alloying element in bronze, brass, aluminum and other metal alloys, for zinc die casting alloys, for zinc dry cell and zinc/air batteries, for the production of zinc sheet for architectural and coinage applications, as a reducing agent in organic chemistry and for other chemical applications.

SECTION 2. COMPOSITION / INFORMATION ON INGREDIENTS

Ingredient	Approximate Percent by Weight	CAS Number		ll Exposure Limits OELs)	LD ₅₀ / LC ₅₀ Species and Route
Zinc	99+%	7440-66-6	OSHA PEL ACGIH TLV NIOSH REL	None established None established None established	No Data

NOTE: OELs for individual jurisdictions may differ from OSHA PELs. Check with local authorities for the applicable OELs in your jurisdiction. OSHA - Occupational Safety and Health Administration. ACGIH - American Conference of Governmental Industrial Hygienists. NIOSH - National Institute for Occupational Safety and Health. OEL – Occupational Exposure Limit. PEL – Permissible Exposure Limit. TLV – Threshold Limit Value. REL – Recommended Exposure Limit.

NOTE: While there is no established OEL for zinc as such, there are OELs for zinc oxide which may be formed during burning, welding or other fuming processes.

The OSHA PEL final rule limits for zinc oxide dust are 10 mg/m³ (total) and 5 mg/m³ (respirable); the OSHA PEL final rule limit for zinc oxide fume is 5 mg/m³. Note that the OSHA PEL final rule limits are currently non-enforceable due to a court decision. The OSHA PEL transitional limits therefore remain in force at present. They are 15 mg/m³ (total) and 5 mg/m³ (respirable) while the transitional PEL for zinc oxide fume is 5 mg/m³. The ACGIH TLV for zinc oxide is 2 mg/m³ (respirable fraction) with a Short Term Exposure Limit (STEL) of 10 mg/m³ (respirable fraction). The NIOSH REL for zinc oxide (dust or fume) is 5 mg/m³ 10 hr TWA with a 15 mg/m³ ceiling limit (15 minute sample) for zinc oxide dust and a 10 mg/m³ STEL for zinc oxide fume (15 minute sample).

Trade Names and Synonyms: High Grade Zinc; Special High Grade Zinc; TADANAC® Zinc; C-CAST® Zinc; Zn

SECTION 3. HAZARDS IDENTIFICATION

Emergency Overview: A lustrous bluish-silver metal that does not burn but may form explosive mixtures if dispersed in air as a fine powder. Contact with acids or alkalis generates flammable hydrogen gas which can accumulate in poorly-ventilated areas. Do NOT use water or foam in fire fighting. Apply dry chemical, sand or special powder extinguishing media. Zinc is relatively non-toxic and poses little immediate health hazard to personnel or the environment in an emergency situation.

Potential Health Effects: Pure zinc dust is relatively non-toxic to humans by inhalation. However, acute over-exposure to zinc oxide fume may cause metal fume fever, characterized by flu-like symptoms such as chills, fever, nausea, and vomiting. Ingestion of soluble salts may cause abdominal irritation resulting in nausea and vomiting. In most cases, dermal exposure to zinc or zinc compounds does not result in any noticeable toxic effects. Zinc is not listed as a carcinogen by OSHA, NTP, IARC, ACGIH or the EU. (see Toxicological Information, Section 11)

Potential Environmental Effects: In the form in which the product is sold, zinc metal does not represent a significant threat to the environment. However, extended exposure in the aquatic or terrestrial environments may lead to the release of zinc in a bioavailable form. (see Ecological Information, Section 12)

EU Risk Phrase(s): Not applicable - zinc is not listed as a dangerous substance.

SECTION 4. FIRST AID MEASURES

Eye Contact: Do not allow victim to rub eye(s). Let the eye(s) water naturally for a few minutes. If particle/dust does not dislodge, flush with lukewarm, gently flowing water for 5 minutes or until particle/dust is removed, while holding eyelid(s) open. If irritation persists, obtain medical attention. DO NOT attempt to manually remove anything stuck to the eye.

Skin Contact: No health effects expected. If irritation does occur, flush with lukewarm, gently flowing water for 5 minutes. If irritation persists, obtain medical advice. *Molten Metal:* Flush contact area to solidify and cool but do not attempt to remove encrusted material or clothing. Cover burns and seek medical attention immediately.

Inhalation: If symptoms are experienced remove source of contamination or move victim to fresh air. Obtain medical advice. NOTE: Metal fume fever may develop 3-10 hours after exposure. If symptoms of metal fume fever (flu-like symptoms) develop, obtain medical attention.

Ingestion: If swallowed, no specific intervention is indicated as this material is not likely to be hazardous by ingestion. However, if irritation or discomfort occurs, obtain medical advice.

SECTION 5. FIRE FIGHTING MEASURES

Fire and Explosion Hazards: Massive metal is not considered a fire or explosion hazard. However, finely divided metallic dust or powder may form flammable or explosive dust clouds when dispersed in the air at high concentrations and exposed to heat, flame, or other ignition sources. Bulk dust in a damp state may heat spontaneously and ignite on exposure to air. Contact with acids and alkali hydroxides results in evolution of hydrogen gas which is potentially explosive. Mixtures with potassium chlorate or ammonium nitrate may explode on impact.

Extinguishing Media: Apply dry chemical, dry sand, or special powder extinguishing media. Do NOT use water, carbon dioxide or foam on molten metals. Water may be ineffective for extinguishing a fire but should be used to keep fire-exposed containers cool.

Fire Fighting: If possible, move material from fire area and cool material exposed to flame. Apply dry chemical, sand, or special powder extinguishing media. Zinc oxide fumes may evolve in fires. Fire fighters should be fully trained and wear full protective clothing including an approved, self-contained breathing apparatus which supplies a positive air pressure within a full face-piece mask.

Flashpoint and Method: Not Applicable.

Upper and Lower Flammable Limit: Lower Flammable Limit (Zinc Dust): 500 g/m³; Upper Flammable Limit: Not Applicable.

Autoignition Temperature: Approximately 680°C (dust cloud in air), 460°C (dust layer).

SECTION 6. ACCIDENTAL RELEASE MEASURES

Procedures for Cleanup: Solid metal is recyclable. Vacuuming recommended for accumulated metal dust. Molten metal should be allowed to solidify prior to clean-up. Return uncontaminated spilled material to the process if possible. Place contaminated and non-recyclable material in suitable labeled containers for later disposal. Treat or dispose of waste material in accordance with all local, regional and national requirements, as applicable.

Personal Precautions: Protective clothing, gloves, and a respirator are recommended for persons responding to an accidental release (see also Section 8). Close-fitting safety goggles may be necessary in some circumstances to prevent eye contact with zinc dust or powder. Where molten metal is involved, wear heat-resistant gloves and suitable clothing for protection from hot-metal splash.

Environmental Precautions: Zinc in the metallic form has limited bioavailability and poses no immediate ecological risk. However, contamination of water and soil should be prevented.

SECTION 7. HANDLING AND STORAGE

Store zinc in a DRY covered area, separate from incompatible materials. Zinc ingots suspected of containing moisture should be THOROUGHLY DRIED before being added to a molten bath. Ingots may contain cavities that collect moisture. Entrained moisture will expand explosively when immersed in a molten bath. Always practice good personal hygiene. Refrain from eating, drinking, or smoking in work areas. Thoroughly wash hands before eating, drinking, or smoking in appropriate designated areas. No special packaging materials are required.

EU Safety Phrase(s): Not applicable - zinc in ingot form is not listed as a dangerous substance.

SECTION 8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Protective Clothing: Gloves and coveralls or other work clothing are recommended to prevent prolonged or repeated direct skin contact when zinc is processed. Eye protection should be worn where fume or dust is generated. Respiratory protection may be required where zinc oxide fume is generated. Where hot or molten metal is handled, heat resistant gloves, face shield, and clothing to protect from hot metal splash should be worn. Safety type boots are recommended.

Ventilation: Use adequate local or general ventilation to maintain the concentration of zinc oxide fumes in the working environment well below recommended occupational exposure limits. Supply sufficient replacement air to make up for air removed by the exhaust system. Where metallic dust particles of zinc metal are being collected and transported by a ventilation system, use a non-sparking, grounded ventilation system separate from other exhaust ventilation systems. Locate dust collectors and fans outdoors if possible and provide dust collectors with explosion vents or blow out panels.

Respirators: Where zinc oxide dust or fumes are generated and cannot be controlled to within acceptable levels, use appropriate NIOSH-approved respiratory protection equipment (a 42CFR84 Class N, R or P-95 particulate filter cartridge).

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance: Bluish-silver lustrous metal	Odour: None	Physical State: Solid	pH : Not Applicable
Vapour Pressure: 1 mm at 487ºC Negligible at 20ºC	Vapour Density: Not Applicable	Boiling Point/Range: 908º C	Freezing/Melting Point/Range: 420° C
Specific Gravity: 7.1	Evaporation Rate: Not Applicable	Coefficient of Water/Oil Distribution: Not Applicable	Odour Threshold: None
Solubility: Insoluble in Water			

SECTION 10. STABILITY AND REACTIVITY

Stability & Reactivity: Massive metal is stable under normal temperatures and pressures. It slowly becomes covered with a white coating of a hydrated basic zinc carbonate on exposure to moist air. Fine, condensed zinc dust or powder may heat spontaneously and ignite on exposure to air when damp. Zinc metal will react with acids and strong alkalis to generate hydrogen gas. A violent, explosive reaction may occur when powdered zinc is heated with sulphur. Powdered zinc will become incandescent or ignite in the presence of fluorine, chlorine or bromine. Powdered zinc can also react explosively with halogenated hydrocarbons if heated. Mixtures with potassium chlorate or ammonium nitrate may explode on impact.

Incompatibilities: Contact with acids and alkalis will generate highly flammable hydrogen gas. Contact with acidic solutions of arsenic and antimony compounds may evolve highly toxic ARSINE or STIBINE gas. Incompatible with strong oxidizing agents such as chlorine, bromine, sodium potassium or barium peroxide, sodium or potassium chlorate, chromium trioxide and fused ammonium nitrate. Also incompatible with elemental sulphur dust, halogenated hydrocarbons or chlorinated solvents and chlorinated rubber.

Hazardous Decomposition Products: High temperature operations such as oxy-acetylene cutting, electric arc welding or overheating a molten bath will generate zinc oxide fume which, on inhalation in sufficient quantity, can produce metal fume fever, a transient influenza-like illness.

SECTION 11. TOXICOLOGICAL INFORMATION

General: Zinc, especially in the metal form, is relatively non-toxic. However, it can react with other materials, such as oxygen or acids, to form compounds that can be potentially toxic. The primary route of exposure would be through the generation and inhalation of zinc oxide fume from welding or burning or overheated melting pots.

Acute:

Skin/Eye: In most cases, dermal exposure to zinc or zinc compounds does not result in any noticeable toxic effects. Zinc metal is not chemically irritating to the eyes.

Inhalation: If excessive quantities of zinc oxide fume are inhaled, it can result in the condition called metal fume fever. The symptoms of metal fume fever will occur within 3 to 10 hours, and include immediate dryness and irritation of the throat, tightness of the chest and coughing, which may later be followed by flu-like symptoms of fever, malaise, perspiration, frontal headache, muscle cramps, low back pain, occasionally blurred vision, nausea, and vomiting. The symptoms are temporary and generally disappear, without medical intervention, within 24 to 48 hours of onset. There are no recognized complications, after affects, or chronic affects that result from this condition.

Ingestion: When ingested in excessive quantities, zinc can irritate the stomach resulting in nausea and vomiting.

Chronic: There is no chronic form of metal fume fever but in rare instances an acute incident may be followed by complaints such as bronchitis or pneumonia. Some workers may develop a short-term immunity (resistance) so that repeated exposure to zinc oxide fumes does not cause metal fume fever. This immunity (resistance) however is quickly lost after short absences from work (weekends or vacations). Workers exposed to finely-divided metallic zinc for up to 35 years revealed no acute or chronic illnesses attributable to zinc. Prolonged or repeated skin contact with zinc dust or powder may cause dryness, irritation and cracking (dermatitis) since zinc is astringent and may tend to draw moisture from the skin. Zinc dust is not listed as a human carcinogen by the Occupational Safety and Health Administration (OSHA), the National Toxicology Program (NTP), the International Agency for Research on Cancer (IARC), the American Conference of Governmental Industrial Hygienists (ACGIH) or the European Union (EU).

SECTION 12. ECOLOGICAL INFORMATION

Zinc in the metallic form has limited bioavailability and poses no immediate ecological risk. However, its processing or extended exposure in the environment may result in the formation of bioavailable zinc compounds. In aquatic systems, zinc bioaccumulates in both plants and animals. In terrestrial systems, the mobility of zinc in soil is dependent on soil conditions, such as cation exchange capacity, pH, redox potential, and chemical species present in the soil. Zinc also bioaccumulates in terrestrial plants, vertebrates, and mammals, with plant uptake from soil dependent on the plant species, soil pH, and soil composition.

SECTION 13. DISPOSAL CONSIDERATIONS

If material cannot be returned to process or salvage, dispose of in accordance with applicable regulations.

SECTION 14. TRANSPORT INFORMATION

PROPER SHIPPING NAME	Not applicable - not regulated.
U.S. DOT AND TRANSPORT CANADA HAZARD CLASSIFICATION	
U.S. DOT AND TRANSPORT CANADA PID	
MARINE POLLUTANT	
IMO CLASSIFICATION	Not regulated
	J

SECTION 15. REGULATORY INFORMATION

U.S.

HAZARDOUS UNDER HAZARD COMMUNICATION STANDARD No

EPCRA SECTION 302 EXTREMELY HAZARDOUS SUBSTANCE No

EPCRA SECTION 311/312 HAZARD CATEGORIES No Hazard Categories Apply

EPCRA SECTION 313 Toxic Release Inventory:	This product does not contain any toxic chemicals subject to the Toxic Release reporting requirements. However, potential by-products from working with this product - "Zinc (Fume or Dust)" CAS 7440-66-6 <u>are</u> reportable.
CANADIAN: INGREDIENTS LISTED ON DOMESTIC SUBSTANCES LIST WHMIS CLASSIFICATION:	
EUROPEAN UNION: LISTED ON THE EUROPEAN INVENTORY OF EXISTING COMMERCIAL CHEMICAL SUBSTANCES (EINECS) EU CLASSIFICATION:	

SECTION 16. OTHER INFORMATION

The information in this Material Safety Data Sheet is based on the following references:

- American Conference of Governmental Industrial Hygienists, 2004, Documentation of the Threshold Limit Values and Biological Exposure Indices, Seventh Edition.
- American Conference of Governmental Industrial Hygienists, 2006, Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices.
- American Conference of Governmental Industrial Hygienists, 2005, Guide to Occupational Exposure Values.
- Bretherick's Handbook of Reactive Chemical Hazards, 20th Anniversary Edition. (P. G. Urben, Ed), 1995.
- Canadian Centre for Occupational Health and Safety (CCOHS) Hamilton, Ontario, CHEMINFO Record No. 239 Zinc (Last Revision 2006-01).
- European Economic Community, Commission Directives 91/155/EEC and 67/548/EEC.
- Industry Canada, SOR/88-66, Controlled Products Regulations, as amended.
- Merck & Co., Inc., 2001, The Merck Index, An Encyclopedia of Chemicals, Drugs, and Biologicals, Thirteenth Edition.
- National Library of Medicine, National Toxicology Information Program, 2003, Hazardous Substance Data Bank. (on-line version).
- Oak Ridge National Laboratory, Oak Ridge, Tennessee Toxicity Summary for Zinc and Zinc Compounds, April 1992.
- Patty's Toxicology, Fifth Edition, 2001 E. Bingham, B. Cohrssen & CH Powell (Eds.).
- U.S. Department of Health and Human Services, National Institute for Occupational Safety and Health, NIOSH Pocket Guide to Chemical Hazards. CD-ROM Edition (September 2005).
- U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, August 2005, Toxicological Profile for Zinc.
- U.S. Occupational Safety and Health Administration, 1989, Code of Federal Regulations, Title 29, Part 1910.

Notice to Reader

Although reasonable precautions have been taken in the preparation of the data contained herein, it is offered solely for your information, consideration and investigation. Teck Metals Ltd. extends no warranty and assumes no responsibility for the accuracy of the content and expressly disclaims all liability for reliance thereon. This material safety data sheet provides guidelines for the safe handling and processing of this product; it does not and cannot advise on all possible situations; therefore, your specific use of this product should be evaluated to determine if additional precautions are required. Individuals exposed to this product should read and understand this information and be provided pertinent training prior to working with this product.

MATERIAL SAFETY DATA SHEET

Polyaromatic Hydrocarbons

SECTION 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION				
IDENTITY		DATE PREPARED		
Decanter Tank Tar Sludge Polyaro		February 7, 2007		
name - Toxic Solid, organic NOS (
SYNONYMS, CHEMICAL NAM	MES, COMMON NAMES	USE:		
Aromatics, PAH, Yellow Sludge		Waste Sludge		
MANUFACTURER'S NAME	EMERGENCY TELEPHO	ONE NUMBER (Health)		
Cancarb Ltd.	(403) 502-6614			
ADDRESS		- TECHNICALINFORMATION		
P.O. Box 1000, Station M	(403)-527-1121			
Calgary, Alberta				
Canada, T2P 4K5				

SECTION 2 - COMPOSITION, INFORMATION ON INGREDIENTS					
HAZARDOUS COMPONENTS		OSHA PEL	AC	GIH TLV	%/wt
Variable blend of Polynuclear	ons (PAHs) plus inert solid	ls in water.	Concentrations	will vary	
depending upon the extent of	product dryness. Ha	zardous ingredients may	include:		,
Pyrene (CAS# 129-00-0)		0.2 mg m ^{3*}	None e	established	<7%
Benzo (g,h,i) Fluoroanthrene		None established	None e	stablished	<6%
Fluoroanthene (CAS# 206-44	/	None established	None e	stablished	<4%
Phenanthrene (CAS# 85-01-8)		0.2 mg/m³⁺	None e	established	<2%
Cyclopenta(d,e,f)Phenanthrene (CAS#203-64-5)		None established	None e	established	<2%
Anthracene (CAS# 120-12-7)		0.2 mg/m³ [•]	None e	stablished	<1%
Benzo(a)Pyrene (CAS# 50-32	, .		None e	stablished	<0.1%
Benzo(a)Anthracene (CAS# 5	6-55-3)	0.2 mg/m ^{3*}	None e	stablished	<0.1%
Benzo(b)Fluoroanthene CAS # 205-99-2)		None established	None e	stablished	<0.1%
Benzo(j)Fluoroanthene (CAS# 205-82-3)		None established	None e	stablished	<0.1%
Benzo(k)Fluoroanthene (CAS# 207-08-9)		None established	None e	stablished	<0.1%
Indeno(1,2,3)Pyrene (CAS# 193-39-5)		None established	None e	stablished	<0.1%
		None established			
*Coal Tar Pitch Volatile. Rem	aining components ar	e not hazardous.			
	EMERG	ENCY OVERVIEW	in a fair an		
	Black, brow	n or yellow aqueous slud	qe		

Black, brown or yellow aqueous sludge May cause skin and eye irritation Suspected carcinogenic components.

SECTION 3 -HAZARDS IDENTIFICATION

PRIMARY ROUTE(s) OF EXPOSURE: Skin; Eyes. Inhalation if Sludge is Dry

IRRITATION DATA: May cause irritation to skin and eyes and burns to skin with sunlight..

INHALATION:

ACUTE: Not a likely route of exposure in sludge state. Mist may cause respiratory irritation.

CHRONIC: Repeated and prolonged exposure may cause toxicity to the liver and blood. Suspected carcinogenicity.

Page 2 of 5 Waste Type 97 3/22/02

SKIN CONTACT:

ACUTE: Prolonged and repeated contact may cause irritation. Contact in the presence of sunlight may enhance irritant effects leading to skin burns..

CHRONIC: Systemic toxicity. Suspected carcinogenicity.

EYE CONTACT:

ACUTE: May be irritating, resulting in tearing, reddening, and swelling.

CHRONIC: None known.

INGESTION:

- ACUTE : May cause gastric irritation and disturbance.
- CHRONIC: Chronic effects of phenanthrene ingestion include liver effects; chronic effects of pyrene ingestion include muscle contraction or spasticity and blood changes; effects of chronic fluoranthene ingestion include kidney, urethra, and bladder effects.

MEDICAL CONDITIONS GENERALLY AGGRAVATED BY EXPOSURE

Persons with pre-existing skin disorders may be at increased risk from exposure.

SECTION 4 - EMERGENCY AND FIRST AID PROCEDURES

INHALATION:	Remove from exposure to fresh air immediately. If breathing has stopped, give artificial respiration. Oxygen may be given if breathing is difficult. Get medical attention.
SKIN CONTACT:	Remove contaminated clothing and shoes immediately. Wash affected area with soap and
EYE CONTACT:	water until no evidence of the chemical remains. Get medical attention if irritation develops. Flush thoroughly with water for at least 15 minutes, occasionally lifting the upper and lower lids, until no evidence of the chemical remains. Get medical attention if irritation develops.
INGESTION:	Do not induce vomiting. Treat symptomatically and supportively. Get medical attention if irritation develops.

SECTION 5 - FIRE FIGHTING MEASURES

 FLASH POINT: None
 FLAMMABLE LIMITS:
 LEL: Not applicable
 UEL: Not applicable

 AUTOIGNITION TEMPERATURE:
 Will not ignite as aqueous solution. If dried, will support combustion.
 EXTINGUISHING MEDIA

Water spray, foam, or dry chemical powder. Carbon dioxide may be ineffective on large fires.

SPECIAL FIRE FIGHTING PROCEDURES

Firefighters should wear full protective NIOSH approved self-contained breathing apparatus.

UNUSUAL FIRE AND EXPLOSION HAZARDS

None Known.

SECTION 6 - ACCIDENTAL RELEASE MEASURES

Stop discharge and control spill to avoid discharge to the environment. Use wet vacuum to limit spreading and place in suitable container for further handling and disposal. For dry material avoid generation of dust, use limited wetting to prevent spreading and use wet vacuum. Place in metal drum for disposal.

SECTION 7 - HANDLING AND STORAGE

Handling: KEEP WET. Do not allow to dry. Place wet vacuum discharge in metal drum. Empty drum into settling pond tanks. Avoid prolonged or repeated skin contact. Observe good personal and industrial hygiene practices.

Storage: Do not freeze.

SECTION 8 – EXPOSURE CONTROLS, PERSONAL PROTECTION

RESPIRATORY PROTECTION

Where airborne concentrations may exceed guidelines for permissible air concentrations, choose a respirator in accordance with OSHA Respirator Standard 29 CFR 1910.134. (i.e. organic vapor and P100 cartridges, powered air hoods.

VENTILATION

Use general dilution or local exhaust ventilation to maintain exposure below the exposure limits. **PROTECTIVE GLOVES**

Choose appropriate gloves in accordance with OSHA Personal Protective Equipment Standard 29 CFR 1910.132.

EYE PROTECTION:

Safety glasses with side shields or choose in accordance with OSHA 29 CFR 1910.133.

OTHER PROTECTIVE CLOTHING OR EQUIPMENT

Appropriate protective clothing to minimize repeated and prolonged skin contact. (i.e. Sarnex or Coated Sarnex).

RECOMMENDED EXPOSURE LIMITS

OH&S, OSHA and ACGIH have not set exposure limits for this waste mixture. See Section 2 for exposure guidelines for the components of this waste.

SECTION 9 - PHYSICAL AND	CHEMICAL PR	ROPERTIES	
BOILING POINT	100°C	SPECIFIC GRAVITY	>1
рН	Not available	FREEZING POINT	0° C
VAPOR PRESSURE (mm Hg)	Same as Water	SOFTENING POINT	Not applicable
VAPOR DENSITY (Air = 1)	Not available	EVAPORATION RATE	Not applicable
SOLUBILITY IN WATER	PAHs low solubility		
SOLUBILITY	Dry material soluble in hydrocarbon solvents		
COEFFICIENT OF WATER/OIL DISTRIBUTION: Not available .			
APPEARANCE AND ODOR:	APPEARANCE AND ODOR: Black, Brown or Yellow Sludge.		

SECTION 10 - STABILITY AND REACTIVITY					
STABILITY	Unstab	le	Conditions to Avoid		
	Stable	X	None Known. Stable under normal temperature and pressure.		
INCOMPATIBILITY (Materials to Avoid)					
Strong oxidizing agents.					
HAZARDOUS DECOMPOSITION PRODUCTS					
Thermal decomposition may release toxic and/or hazardous gases from dried sludge.					
HAZARDOUS		May Occur			Conditions to Avoid
POLYMERIZA	TION	Will Not O	ccur	Х	None known.

Page 4 of 5 Waste Type 97 3/22/02

SECTION 11 - TOXICOLOGICAL INFORMATION

This waste sludge has not been tested for acute or chronic toxicity. The following data is for its components >1%:

Pyrene	Oral LD ₅₀ (mouse): 800 mg/kg
	Inhalation LC ₅₀ (rat): 170 mg/m ³
Fluoranthene	Oral LD₅₀ (rat):̈́2 gḿ/kg
	Dermal LD ₅₀ (rabbit): 3180 mg/kg
Phenanthrene	Oral LD₅₀ (mouse): 700 mg/kg

TARGET ORGANS: Skin and eyes

- **CARCINOGENICITY:** Some low level PAH components have been identified as suspected carcinogens by IARC and ACGIH. These include benzo(a)anthracene, benzo(a)pyrene, benz(b,j&k)fluoranthene, and indeno(1,2,3-cd) pyrene.
- **TUMORIGENIC DATA (RTECS):** Phenanthrene, Clclopenta (def) phenanthrene, Benzo fluoranthrene, Pyrene, and fluoranthene.
- MUTAGEN DATA (RTECS): Phenanthrene, Cyclopenta (def) phenanthrene, Pyrene, Benzo fluoroanthrene, Fluoranthene, Benzo (ghi) fluoranthene.

OTHER EFFECTS:

PAHs contained in the sludge have the property of photoallergenicity. In the presence of sunlight, these materials have the capacity to irritate the skin to a much greater degree, possibility leading to skin burns, than exposure without sunlight.

SECTION 12 - ECOLOGICAL INFORMATION

Sludge has not been tested for ecotoxicity.

SECTION 13 - DISPOSAL CONSIDERATIONS

Dispose in accordance with all applicable federal, provincial, and local environmental regulations. Residual solids may be present in any containers used to handle this sludge. Do not reuse for food, clothing or products for human or animal consumption.

SECTION 14 - TRANSPORT INFORMATION

PROPER SHIPPING NAME Waste Type 97 Decantar Tank Tar Sludge TDG CLASSIFICATION 6.1 PG II

TDG UN/NA UN 9397

SECTION 15 - REGULATORY INFORMATION

OSHA: This material is classified as hazardous under OSHA regulations.

WHMS: This material is considered a D2A, D2B Controlled Product.

This material has been classified in accordance with the hazard criteria of the CPR and the MSDS contains all the information required by the CPR.

计上述 医管肌

States.

IDL: The following components are on the Canadian Ingredient Disclosure List: Pyrene Fluoranthene Benzanthracene Phenanthrene Indeno (1,2,3-cd) pyrene

Benzopyrene Naphthalene

Anthacene

SARA Title III - Toxic chemicals list 40 CFR 372.65:

Pyrene Naphthalene Anthracene

CERCLA Toxic Chemicals List 40 CFR 302:

Pyrene	RQ: 5000 pounds
Fluoranthene	RQ: 100 pounds
Benzanthrcene	RQ: 10 pounds
Phenanthrene	RQ: 5000 pounds
Indeno (1,2,3-cd) pyrene	RQ: 100 pounds
Benzopyrene	RQ: 1 pound
Naphthalene	i i di i o o poditao
Anthracene	RQ: 5000 pounds

RCRA Hazardous Waste Codes 40 CFR 261.24, 261.33 :

Fluoranthene	U120
Benzanthracene	U108
Indeno(1,2,3-cd)pyrene	U137
Benzopyrene	U022
Naphthalene	U165

SECTION 16 - OTHER INFORMATION

HMIS Ratings:

Health 2* Flammability 1 Reactivity 0 where 0=minimal, 1=slight, 2=moderate, 3=serious, 4=severe

This MSDS was prepared by: CANCARB Health, Safety & Environment Department Telephone Number (403) 527-1121

R: 45; 36/37/38 S: 36/37/39

The information and recommendations set forth herein are made in good faith and are believed to be accurate as of the date of preparation. CANCARB makes no warranty, either express or implied, with respect to this information and disclaims all liability from reliance thereon.

He a lt h	1
Fire	0
Reactivity	0
Personal Protection	E

Material Safety Data Sheet Lead MSDS

Section 1: Chemical Product and Company Identification

Product Name: Lead

Catalog Codes: SLL1291, SLL1669, SLL1081, SLL1459, SLL1834

CAS#: 7439-92-1

RTECS: OF7525000

TSCA: TSCA 8(b) inventory: Lead

Cl#: Not available.

Synonym: Lead Metal, granular; Lead Metal, foil; Lead Metal, sheet; Lead Metal, shot

Chemical Name: Lead

Chemical Formula: Pb

Contact Information:

Sciencelab.com, Inc. 14025 Smith Rd. Houston, Texas 77396

US Sales: 1-800-901-7247 International Sales: 1-281-441-4400

Order Online: ScienceLab.com

CHEMTREC (24HR Emergency Telephone), call: 1-800-424-9300

International CHEMTREC, call: 1-703-527-3887

For non-emergency assistance, call: 1-281-441-4400

Section 2: Composition and Information on Ingredients

Composition:

Name	CAS #	% by Weight
Lead	7439-92-1	100

Toxicological Data on Ingredients: Lead LD50: Not available. LC50: Not available.

Section 3: Hazards Identification

Potential Acute Health Effects: Slightly hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation.

Potential Chronic Health Effects:

Slightly hazardous in case of skin contact (permeator). CARCINOGENIC EFFECTS: Classified A3 (Proven for animal.) by ACGIH, 2B (Possible for human.) by IARC. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance may be toxic to blood, kidneys, central nervous system (CNS). Repeated or prolonged exposure to the substance can produce target organs damage.

Section 4: First Aid Measures

Eye Contact:

Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Get medical attention if irritation occurs.

Skin Contact: Wash with soap and water. Cover the irritated skin with an emollient. Get medical attention if irritation develops.

Serious Skin Contact: Not available.

Inhalation:

If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

Serious Inhalation: Not available.

Ingestion:

Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. If large quantities of this material are swallowed, call a physician immediately. Loosen tight clothing such as a collar, tie, belt or waistband.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: May be combustible at high temperature.

Auto-Ignition Temperature: Not available.

Flash Points: Not available.

Flammable Limits: Not available.

Products of Combustion: Some metallic oxides.

Fire Hazards in Presence of Various Substances: Non-flammable in presence of open flames and sparks, of shocks, of heat.

Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available.

Fire Fighting Media and Instructions:

SMALL FIRE: Use DRY chemical powder. LARGE FIRE: Use water spray, fog or foam. Do not use water jet.

Special Remarks on Fire Hazards: When heated to decomposition it emits highly toxic fumes of lead.

Special Remarks on Explosion Hazards: Not available.

Section 6: Accidental Release Measures

Small Spill:

Use appropriate tools to put the spilled solid in a convenient waste disposal container. Finish cleaning by spreading water on the contaminated surface and dispose of according to local and regional authority requirements.

Large Spill:

Use a shovel to put the material into a convenient waste disposal container. Finish cleaning by spreading water on the contaminated surface and allow to evacuate through the sanitary system. Be careful that the product is not present at a concentration level above TLV. Check TLV on the MSDS and with local authorities.

Section 7: Handling and Storage

Precautions:

Keep locked up.. Keep away from heat. Keep away from sources of ignition. Empty containers pose a fire risk, evaporate the residue under a fume hood. Ground all equipment containing material. Do not ingest. Do not breathe dust. Wear suitable

protective clothing. If ingested, seek medical advice immediately and show the container or the label. Keep away from incompatibles such as oxidizing agents.

Storage: Keep container tightly closed. Keep container in a cool, well-ventilated area.

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Use process enclosures, local exhaust ventilation, or other engineering controls to keep airborne levels below recommended exposure limits. If user operations generate dust, fume or mist, use ventilation to keep exposure to airborne contaminants below the exposure limit.

Personal Protection: Safety glasses. Lab coat. Dust respirator. Be sure to use an approved/certified respirator or equivalent. Gloves.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Dust respirator. Boots. Gloves. A self contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

Exposure Limits:

TWA: 0.05 (mg/m3) from ACGIH (TLV) [United States] TWA: 0.05 (mg/m3) from OSHA (PEL) [United States] TWA: 0.03 (mg/m3) from NIOSH [United States] TWA: 0.05 (mg/m3) [Canada]Consult local authorities for acceptable exposure limits.

Section 9: Physical and Chemical Properties

Physical state and appearance: Solid. (Metal solid.)

Odor: Not available.

Taste: Not available.

Molecular Weight: 207.21 g/mole

Color: Bluish-white. Silvery. Gray

pH (1% soln/water): Not applicable.

Boiling Point: 1740°C (3164°F)

Melting Point: 327.43°C (621.4°F)

Critical Temperature: Not available.

Specific Gravity: 11.3 (Water = 1)

Vapor Pressure: Not applicable.

Vapor Density: Not available.

Volatility: Not available.

Odor Threshold: Not available.

Water/Oil Dist. Coeff.: Not available.

lonicity (in Water): Not available.

Dispersion Properties: Not available.

Solubility: Insoluble in cold water.

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of Instability: Incompatible materials, excess heat

Incompatibility with various substances: Reactive with oxidizing agents.

Corrosivity: Non-corrosive in presence of glass.

Special Remarks on Reactivity:

Can react vigorously with oxidizing materials. Incompatible with sodium carbide, chlorine trifluoride, trioxane + hydrogen peroxide, ammonium nitrate, sodium azide, disodium acetylide, sodium acetylide, hot concentrated nitric acid, hot concentrated hydrochloric acid, hot concentrated sulfuric acid, zirconium.

Special Remarks on Corrosivity: Not available.

Polymerization: Will not occur.

Section 11: Toxicological Information

Routes of Entry: Absorbed through skin. Inhalation. Ingestion.

Toxicity to Animals:

LD50: Not available. LC50: Not available.

Chronic Effects on Humans:

CARCINOGENIC EFFECTS: Classified A3 (Proven for animal.) by ACGIH, 2B (Possible for human.) by IARC. May cause damage to the following organs: blood, kidneys, central nervous system (CNS).

Other Toxic Effects on Humans: Slightly hazardous in case of skin contact (irritant), of ingestion, of inhalation.

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans: Not available.

Special Remarks on other Toxic Effects on Humans:

Acute Potential: Skin: Lead metal granules or dust: May cause skin irritation by mechanical action. Lead metal foil, shot or sheets: Not likely to cause skin irritation Eyes: Lead metal granules or dust: Can irritate eyes by mechanical action. Lead metal foil, shot or sheets: No hazard. Will not cause eye irritation. Inhalation: In an industrial setting, exposure to lead mainly occurs from inhalation of dust or fumes. Lead dust or fumes: Can irritate the upper respiratory tract (nose, throat) as well as the bronchi and lungsby mechanical action. Lead dust can be absorbed through the respiratory system. However, inhaled lead does not accumulate in the lungs. All of an inhaled dose is eventually absorbed or transferred to the gastrointestinal tract. Inhalation effects of exposure to fumes or dust of inorganic lead may not develop quickly. Symptoms may include metallic taste, chest pain, decreased physical fitness, fatigue, sleep disturbance, headache, irritability, reduces memory, mood and personality changes, aching bones and muscles, constipation, abdominal pains, decreasing appetite. Inhalation of large amounts may lead to ataxia, deliriuim, convulsions/seizures, coma, and death. Lead metal foil, shot, or sheets: Not an inhalation hazard unless metal is heated. If metal is heated, fumes will be released. Inhalation of these fumes may cause "fume metal fever", which is characterized by flu-like symptoms. Symptoms may include metallic taste, fever, nausea, vomiting, chills, cough, weakness, chest pain, generalized muscle pain/aches, and increased white blood cell count. Ingestion: Lead metal granules or dust: The symptoms of lead poisoning include abdominal pain or cramps (lead cholic), spasms, nausea, vomiting, headache, muscle weakness, hallucinations, distorted perceptions, "lead line" on the gums, metallic taste, loss of appetite, insomnia, dizziness and other symptoms similar to that of inhalation. Acute poisoning may result in high lead levels in the blood and urine, shock, coma and death in extreme cases. Lead metal foil, shot or sheets: Not an ingestion hazard for usual industrial handling.

Section 12: Ecological Information

Ecotoxicity: Not available.

BOD5 and COD: Not available.

Products of Biodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The products of degradation are less toxic than the product itself.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:

Waste must be disposed of in accordance with federal, state and local environmental control regulations.

Section 14: Transport Information

DOT Classification: Not a DOT controlled material (United States).

Identification: Not applicable.

Special Provisions for Transport: Not applicable.

Section 15: Other Regulatory Information

Federal and State Regulations:

California prop. 65: This product contains the following ingredients for which the State of California has found to cause cancer, birth defects or other reproductive harm, which would require a warning under the statute: Lead California prop. 65: This product contains the following ingredients for which the State of California has found to cause reproductive harm (female) which would require a warning under the statute: Lead California prop. 65: This product contains the following ingredients for which the State of California prop. 65: This product contains the following ingredients for which the State of California prop. 65: This product contains the following ingredients for which the State of California prop. 65 (no significant risk level): Lead: 0.0005 mg/day (value) California prop. 65: This product contains the following ingredients for which the State of California has found to cause birth defects which would require a warning under the statute: Lead California prop. 65: This product contains the following ingredients for which the State of California has found to cause birth defects which would require a warning under the statute: Lead California prop. 65: This product contains the following ingredients for which the State of California has found to cause birth defects which would require a warning under the statute: Lead California prop. 65: This product contains the following ingredients for which the State of California has found to cause cancer which would require a warning under the statute: Lead Connecticut hazardous material survey.: Lead Illinois toxic substances disclosure to employee act: Lead Illinois chemical safety act: Lead New York release reporting list: Lead Rhode Island RTK hazardous substances: Lead Pennsylvania RTK: Lead

Other Regulations:

OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200). EINECS: This product is on the European Inventory of Existing Commercial Chemical Substances.

Other Classifications:

WHMIS (Canada): CLASS D-2A: Material causing other toxic effects (VERY TOXIC).

DSCL (EEC):

R20/22- Harmful by inhalation and if swallowed. R33- Danger of cumulative effects. R61- May cause harm to the unborn child. R62- Possible risk of impaired fertility. S36/37- Wear suitable protective clothing and gloves. S44- If you feel unwell, seek medical advice (show the label when possible). S53- Avoid exposure - obtain special instructions before use.

HMIS (U.S.A.):

Health Hazard: 1

Fire Hazard: 0

Reactivity: 0

Personal Protection: E

National Fire Protection Association (U.S.A.):

Health: 1

Flammability: 0

Reactivity: 0

Specific hazard:

Protective Equipment:

Gloves. Lab coat. Dust respirator. Be sure to use an approved/certified respirator or equivalent. Wear appropriate respirator when ventilation is inadequate. Safety glasses.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/10/2005 08:21 PM

Last Updated: 11/01/2010 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

Health	1
Fire	2
Reactivity	1
Personal Protection	E

Material Safety Data Sheet Iron Metal MSDS

Section 1: Chemical Product and Company Identification

Product Name: Iron Metal Catalog Codes: SLI2047, SLI1996 CAS#: 7439-89-6 RTECS: NO4565500 TSCA: TSCA 8(b) inventory: Iron Metal CI#: Not applicable. Synonym: Chemical Name: Iron

Chemical Formula: Fe

Contact Information:

Sciencelab.com, Inc. 14025 Smith Rd. Houston, Texas 77396

US Sales: 1-800-901-7247 International Sales: 1-281-441-4400

Order Online: ScienceLab.com

CHEMTREC (24HR Emergency Telephone), call: 1-800-424-9300

International CHEMTREC, call: 1-703-527-3887

For non-emergency assistance, call: 1-281-441-4400

Section 2: Composition and Information on Ingredients

Composition:

Name	CAS #	% by Weight
Iron Metal, powder	7439-89-6	100

Toxicological Data on Ingredients: Not applicable.

Section 3: Hazards Identification

Potential Acute Health Effects: Slightly hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation.

Potential Chronic Health Effects:

CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance may be toxic to liver, cardiovascular system, upper respiratory tract, pancreas. Repeated or prolonged exposure to the substance can produce target organs damage.

Section 4: First Aid Measures

Eye Contact:

Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Get medical attention if irritation occurs.

Skin Contact: Wash with soap and water. Get medical attention if irritation develops.

Serious Skin Contact: Not available.

Inhalation:

If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

Serious Inhalation: Not available.

Ingestion:

Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. Loosen tight clothing such as a collar, tie, belt or waistband. Get medical attention if symptoms appear.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: Flammable.

Auto-Ignition Temperature: Not available.

Flash Points: Not available.

Flammable Limits: Not available.

Products of Combustion: Some metallic oxides.

Fire Hazards in Presence of Various Substances: Flammable in presence of heat.

Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact: Not available. Explosive in presence of open flames and sparks, of heat.

Fire Fighting Media and Instructions:

SMALL FIRE: Use DRY chemical powder. LARGE FIRE: Use water spray, fog or foam. Do not use water jet.

Special Remarks on Fire Hazards:

Chlorine Trifluoride reacts with iron with incandescence. Powdered iron reacts with fluorine below redness with incandescence. Reduced iron decomposes with nitrogen dioxide @ ordinary temperature with incandescence. Reacting mass formed by mixture of phosphorus and iron can become incandescent when heated. This material is flammable in powder form only.

Special Remarks on Explosion Hazards: Material in powdered form can explode when exposed to heat or flame

Section 6: Accidental Release Measures

Small Spill:

Use appropriate tools to put the spilled solid in a convenient waste disposal container. Finish cleaning by spreading water on the contaminated surface and dispose of according to local and regional authority requirements.

Large Spill:

Use a shovel to put the material into a convenient waste disposal container. Finish cleaning by spreading water on the contaminated surface and allow to evacuate through the sanitary system.

Section 7: Handling and Storage

Precautions:

Do not ingest. Do not breathe dust. If ingested, seek medical advice immediately and show the container or the label. Keep away from incompatibles such as oxidizing agents, acids.

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Use process enclosures, local exhaust ventilation, or other engineering controls to keep airborne levels below recommended exposure limits. If user operations generate dust, fume or mist, use ventilation to keep exposure to airborne contaminants below the exposure limit.

Personal Protection: Safety glasses. Lab coat. Dust respirator. Be sure to use an approved/certified respirator or equivalent. Gloves.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Dust respirator. Boots. Gloves. A self contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

Exposure Limits: Not available.

Section 9: Physical and Chemical Properties

Physical state and appearance: Solid. (Solid metallic powder.)

Odor: Odorless.

Taste: Tasteless.

Molecular Weight: 55.85 g/mole

Color: Black to Grey.

pH (1% soln/water): Not applicable.

Boiling Point: 3000°C (5432°F)

Melting Point: 1535°C (2795°F)

Critical Temperature: Not available.

Specific Gravity: Density: 7.86 (Water = 1)

Vapor Pressure: Not applicable.

Vapor Density: Not available.

Volatility: Not available.

Odor Threshold: Not available.

Water/Oil Dist. Coeff.: Not available.

lonicity (in Water): Not available.

Dispersion Properties: Not available.

Solubility: Insoluble in cold water, hot water, diethyl ether.

Section 10: Stability and Reactivity Data

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of Instability: Excess heat, ignition sources, incompatible materials, water/moisture, air, dust generation.

Incompatibility with various substances:

Reactive with oxidizing agents, acids. Slightly reactive to reactive with moisture.

Corrosivity: Not considered to be corrosive for metals and glass.

Special Remarks on Reactivity:

Hot iron(wire) burns in Chlorine gas. Violent decompositon of hydrogen peroxide (53% by weight or greater) may be caused by contact with iron. Readily oxidizes in moist air forming rust. Reactive with halogens. Incompatible with acetaldehyde, ammonium peroxodisulfate, chloroformamidinum, chloric acid, ammonium nitrate, dinitorgen tetroxide, nitryl fluoride, polystyrene, sodium acetylide, potassium dichromate, peroxyformic acid, sulfuric acid, sodium carbide. Readily attacked by dilute mineral acids and or attacked or dissolved by organic acids. Not appreciably attacked by cold sulfuric acid, or nitric acid, but is attacked by hot acids.

Special Remarks on Corrosivity: Not available.

Polymerization: Will not occur.

Section 11: Toxicological Information

Routes of Entry: Inhalation. Ingestion.

Toxicity to Animals: Acute oral toxicity (LD50): 30000 mg/kg [Rat].

Chronic Effects on Humans: May cause damage to the following organs: liver, cardiovascular system, upper respiratory tract, pancreas.

Other Toxic Effects on Humans: Slightly hazardous in case of skin contact (irritant), of ingestion, of inhalation.

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans: Not available.

Special Remarks on other Toxic Effects on Humans:

Acute Potential Health Effects: Skin: Iron metal filings or dust: May cause skin irritation by mechanical action. Iron metal wire: Not likely to cause skin irritation Eyes: Iron metal filings or dust: Can irritate eyes by mechanical action. Iron metal wire: No hazard. Will not cause eye irritation. Inhalation: Iron dust: Can irritate the respiratory tract by mechanical action. Iron metal wire or filings: Not an inhalation hazard unless metal is heated. If metal is heated, fumes will be released. Inhalation of these fumes may cause "fume metal fever", which is characterized by flu-like symptoms. Symptoms may include metallic taste, fever, nausea, vomiting, chills, cough, weakness, chest pain, generalized muscle pain/aches, and increased white blood cell count. Ingestion: Iron metal wire: Not an ingestion hazard: Iron metal filings or dust: The amount of ingested iron which constitutes a toxic dose is not well defined. Proposed toxic doses of elemental iron are 20 mg/kg for gastrointestinal irritation to greater than 60 mg/kg for systemic toxicity. Gastrointestinal effects are the first signs to appear, with hemorrhagic vomiting and diarrhea, hematochezia, abdominal pain, lethargy, metabolic acidosis, coagulaopathy, shock, coma and convulsions developing from 0 to 6 hours after ingestion. Leukocytosis may also occur. An asymptomatic phase may ensue at 6 to 12 hours postingestion, followed by hypoglycemia or hyperglycemia, hepatic and renal failure, severe acidosis, cyanosis, fever, CNS depression (lethargy, restlessness and/or confusion seizures), hypotension, and cardiovascular collapse/cardiac failure in 12 to 48 hours. Hepatic cirrhosis, gastrointestinal scarring and/or strictures may arise in 2 to 6 weeks. It may also cause an anaphylactoid reaction. Non-cardiogenic pulmonary edema also develop in severe cases of iron intoxication. Chronic Potential Health Effects: Inhalation: Chronic inhalation of iron dust can lead to accumulation in the lungs and a characteristic stippled appearance on X-rays. This condition, called SIDEROSIS, is considered benign in that it does not interfere with lung function and does not predispose to other disease. Chronic inhalation of iron dust may also cause fibrosis in the lungs. Ingestion: Clinical signs of iron overload appear when the total body iron is 5 to 10 times higher than normal. Neurobehavioral defects including depression, decreased activity, habituation, reflex startle, and conditioned avoidance response performance may occur. However, similiar effects were also seen in iron defficiency. It is therefore likely that these behavioral effects are secondary to general toxicity. High serum iron levels may be associated with an increased risk of fatal acute myocardial infarction (MI). Skin: Prolonged or repeated contact may cause hypersensivity.

Section 12: Ecological Information

BOD5 and COD: Not available.

Products of Biodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The product itself and its products of degradation are not toxic.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:

Waste must be disposed of in accordance with federal, state and local environmental control regulations.

Section 14: Transport Information

DOT Classification: CLASS 4.1: Flammable solid.

Identification: : Metal powder, flammable, n.o.s. (Iron metal powder) UNNA: 3089 PG: III

Special Provisions for Transport: Not available.

Section 15: Other Regulatory Information

Federal and State Regulations:

California Director's List of Hazardous Substances: Iron Metal TSCA 8(b) inventory: Iron Metal

Other Regulations: EINECS: This product is on the European Inventory of Existing Commercial Chemical Substances.

Other Classifications:

WHMIS (Canada): CLASS B-4: Flammable solid.

DSCL (EEC):

R11- Highly flammable. S16- Keep away from sources of ignition - No smoking. S22- Do not breathe dust.

HMIS (U.S.A.):

Health Hazard: 1

Fire Hazard: 2

Reactivity: 1

Personal Protection: E

National Fire Protection Association (U.S.A.):

Health: 1

Flammability: 2

Reactivity: 1

Specific hazard:

Protective Equipment:

Gloves Lab coat. Dust respirator. Be sure to use an approved/certified respirator or equivalent. Wear appropriate respirator when ventilation is inadequate. Safety glasses.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/09/2005 05:52 PM

Last Updated: 05/21/2013 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

APPENDIX B Phase II Subsurface Investigation Report

June 15, 2015

CPC LLC P.O. Box 2020 Monroe, NY 10949

Attn: Mr. Simon Gelb

Re: Phase II Subsurface Investigation Report Clovewood – Village of South Blooming Grove, New York Section 208, Block 1, Lots 2 and 3

Dear Mr. Gelb:

This letter report summarizes the findings and recommendations pertaining to the Phase II Subsurface Investigation performed by Tenen Environmental, LLC (Tenen) at the above-reference property. The report includes a description of the sampling methodology and discusses the analytical results. The purpose of this investigation was to assess the soil conditions at the former golf course area, former repair shop and near the discarded underground tanks and drums, and to determine the extent of solid waste identified in the Phase I Environmental Site Assessment (Phase I ESA) performed by Tenen Environmental in 2014.

Background

The property is located in the Village of South Blooming Grove, New York and is identified as Tax Map Section 208, Block 1, Lots 2 and 3 (Figure 1). The two parcels have a combined area of 708.2 acres.

During the Phase I ESA site visit, piles of waste and debris; discarded petroleum storage tanks, including an excavated tank with evidence of a release; and unmarked drums and containers were observed. The 2014 Phase I ESA identified the following Recognized Environmental Conditions (RECS):

- piles of waste and debris;
- petroleum storage tanks, including an excavated UST with evidence of a release;
- unmarked drums and pails;
- historic uses of the Site, including a mine, golf course, debris disposal, farmland and orchard; and,
- the multiple spill cases on the Site that have been closed by NYSDEC; these are considered *historical recognized environmental conditions*.

Based on the findings of the Phase I ESA, Tenen completed a Phase II subsurface investigation on May 20, 2015, including excavation of 17 test pits and soil sampling. Groundwater was not sampled in this investigation.

Sampling Methodology and Findings

Sampling Methodology. A total of 17 test pits (TP-1 through TP-17) were excavated during this investigation in the former golf course area, former repair shop, and in the vicinity of the discarded tanks, drums, and pails where stained soil was observed. Test pits were also excavated in the area of the solid waste piles to vertically and horizontally determine the extent of the solid waste. A backhoe was used to excavate the test pits. Test pits were excavated to depths ranged between one and eleven feet below grade. Test pit locations are shown on Figure 2.

Field Observation and Sample Collection. Four of seventeen test pits were excavated in the vicinity of the discarded tanks, one at the former repair shop, one in the former golf course area and eleven near the solid waste piles. Soil near the tanks consisted of fill to a maximum depth of three feet underlain by native soil of silt and sand. Material observed in the test pits near the solid waste piles consisted primarily of household refuse including bottles, tires, plastic bags, old cloth and roof shingles. A photographic log and copy of the field notes are presented in Appendices A and B, respectively.

One composite sample was collected from each of the following test pits: TP-4, TP-6, TP-8, TP-11 and TP-16. Soil screening using a photoionization detector (PID) indicated readings ranging from non-detect to a maximum of 10 parts per million (ppm) in test pit TP-11. Groundwater was not encountered during this investigation and no groundwater samples were collected.

A tank inventory was also performed to determine the total number of tanks at the Site. A total of nineteen 275-gallon aboveground storage tanks (ASTs), one 550-gallon AST and one 10,000-gallon AST were present at the Site.

A summary of sample designations, media sampled and locations is shown below. Sampling locations are shown in Figure 2.

Sample Location	Sample Name (Depth in ft-bg)	media sampled	Petroleum odor PID reading at sampling interval (ppm)		Description of Location
TP-4	TP-4 (0-3)	Soil	No	ND	Former repair shop area where a 48 feet long and 2-foot wide trench was excavated.
TP-6	TP-6 (0-4)	Soil	No	ND	Near a discarded 550-gallon AST.
TP-8	TP-8 (0-11)	Soil	No	ND	Solid waste pile area, with observed household refuse
TP-11	TP-11 (0-5)	Soil	No	10.0	Near the pond adjacent to household refuse and discarded tires
TP-16	TP-16 (0-1)	Soil	No	ND	Former golf course area.

Sampling Locations, Sample Designations and Media Sampled

ft-bg – feet below grade

ND – none detected

Analytical Results. A total of four soil samples were analyzed for full scan volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs). The soil samples collected from the solid waste pile areas (TP-8 and TP-11) were also analyzed for Target Analyte List (TAL) metals. The soil sample collected from the former golf course area (TP-16) was only analyzed for pesticides.

The results of the sample analysis are presented below. The analytical results are included in Tables 1 through 4. Laboratory deliverables packages are included in Appendix C.

Soil

The soil results were compared to the New York State Department of Environmental Conservation (NYSDEC) Unrestricted Use soil cleanup objectives (SCOs) as listed in 6 NYCRR Part 375-6.8(a) and Residential Use and Restricted-Residential Use SCOs as listed in 6 NYCRR Part 375-6.8(b).

VOCs were not detected in any sample at concentrations above the Unrestricted Use SCOs.

SVOCs were detected above the Unrestricted, Residential, and Restricted Residential Use SCOs in the sample collected from test pit TP-4. At this one location SVOCs - specifically polyaromatic hydrocarbons (PAHs) - were detected at levels exceeding the Unrestricted, Residential and/or Restricted Residential Use SCOs. The seven SVOCs exceeding their respective Restricted Residential SCOs are benzo(a)anthracene [7.4 milligrams per kilogram (mg/kg)], benzo(a)pyrene (6.8 mg/kg) benzo(b)fluoranthene (8.7 mg/kg), benzo(k)fluoranthene (3.3 mg/kg), chrysene (7 mg/kg), dibenzo(a,h)anthracene (1.2 mg/kg) and indeno(1,2,3-cd)pyrene (5.3 mg/kg); the concentration of the SVOC benzo(k)fluoranthene (3.3 mg/kg) also exceed the Residential Use SCO.

Several metals typical of fill material, including copper and zinc, were detected above the Unrestricted Use SCOs in sample TP-8. Iron was also detected in samples TP-8 and TP-11 at levels above the Residential Use SCO.

Two pesticides, 4,4'-DDE and 4,4'-DDT, were detected above their Unrestricted Use SCOs, but below the Residential Use SCOs, in sample TP-16, collected from the former golf course area.

Conclusions and Recommendations

- No VOCs were detected in any soil sample at concentrations above the Unrestricted Use SCOs.
- SVOCs, specifically PAHs, were detected in soil sample TP-4 at levels exceeding the Restricted Residential Use SCOs.
- Several metals typical of fill material, including copper, iron, and zinc, were detected above the Unrestricted or Residential Use SCOs.
- Two pesticides, 4,4'-DDE and 4,4'-DDT, were detected above the Unrestricted Use SCO of in the former golf course area.
- Solid waste including household refuse consisting of bottles, tires, plastic bags, old cloth, and roof shingles were observed in ten test pits; these materials extended to depths ranging between three and eleven feet below grade.

3

• A total of nineteen 275-gallon ASTs, one 550-gallon AST and one 10,000-gallon AST are either discarded or abandoned at the Site.

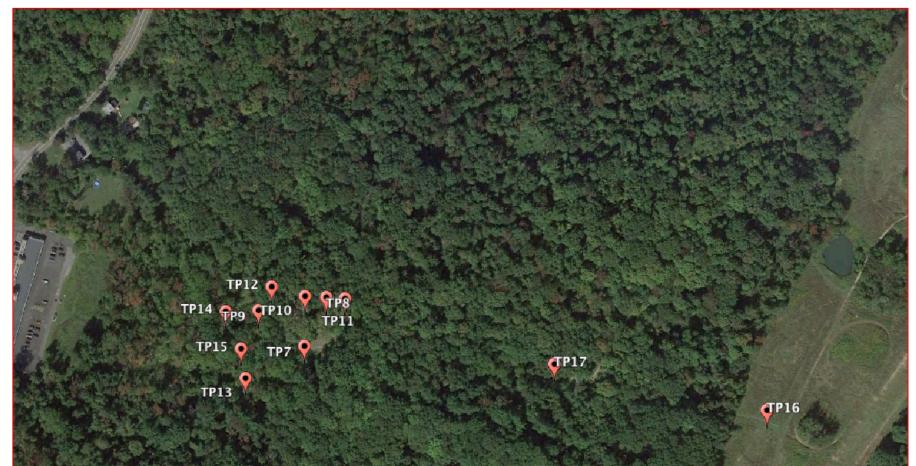
Based on the Phase II Investigation Tenen recommends the following for the future development:

- Either cap or excavate and remove the soil with levels of SVOCs above the Residential Use SCOs in the area of the former repair shop. Any off-site disposal should be in accordance with local, state, and federal regulations;
- Remove and dispose of solid waste consisting of household refuse encountered onsite. Roof shingles should be tested for asbestos prior to off-site disposal;
- Register and remove all ASTs in accordance of local, state, and federal regulations.

Please call me if you have any questions.

Sincerely, Tenen Environmental, LLC

mohamed almed


Mohamed Ahmed, Ph.D., CPG Principal / Senior Geologist

121 West 27th Street, Suite 303 New York, NY 10001 646.606.2332 **FIGURES**

AREA OF DETAIL 1

AREA OF DETAIL 2

DRAWING TITLE. SAMPLE LOCATIONS	DRAWN BY MC		CLIENT
	MM		505 CLOVE ROAD SOUTH BLOOMING
drawing no.	DATE JUNE 2015	TENEN ENVIRONMENTAL, LLC 121 West 27th Street Suite 1004	GROVE, NY
	SCALE: AS NOTED	New York, NY 10001 O: 646-606-2332 F: 646-606-2379	

TABLES

Table 1 Volatile Organic Compounds in Soil Samples

LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE Unit (mg/kg)				TP- 5/20/201 L1511165-0 Composit	.5 1	TP-6 5/20/2015 L1511165-02 Composite		TP-8 5/20/2015 L1511165-03 Composite		TP-11 5/20/2015 L1511165-04 Composite	
om (mg/ng/	NY-RESR	NY-RESRR	NY-UNRES		Qual		Qual		Qual		Qual
Methylene chloride	51		0.05	0.012	U	0.012	U	0.012	U	0.011	U
1,1-Dichloroethane	19	26 49	0.27	0.0017	<u> </u>	0.0018	<u> </u>	0.0018	<u> </u>	0.0016	U
Chloroform Carbon tetrachloride	10	2.4	0.37	0.0017	U U	0.0018	<u> </u>	0.0018 0.0012	U U	0.0016 0.0011	U U
1,2-Dichloropropane	1.4	2.7	0.70	0.004	<u> </u>	0.0043	<u> </u>	0.0041	<u> </u>	0.0038	U
Dibromochloromethane				0.0012	U	0.0012	U	0.0012	U	0.0011	U
1,1,2-Trichloroethane		10	1.0	0.0017	<u> </u>	0.0018	<u> </u>	0.0018	<u> </u>	0.0016	U
Tetrachloroethene Chlorobenzene	5.5 100	19 100	1.3	0.0012	U U	0.0012	U U	0.0012 0.0012	U U	0.0011 0.0011	UU
Trichlorofluoromethane	100	100	1.1	0.0012	<u> </u>	0.0012	U	0.0012	U	0.0011	U U
1,2-Dichloroethane	2.3	3.1	0.02	0.0012	U	0.0012	Ū	0.0012	U	0.0011	U
1,1,1-Trichloroethane	100	100	0.68	0.0012	U	0.0012	U	0.0012	U	0.0011	U
Bromodichloromethane				0.0012	U U	0.0012	<u> </u>	0.0012	U U	0.0011 0.0011	UU
trans-1,3-Dichloropropene cis-1,3-Dichloropropene				0.0012	<u> </u>	0.0012	U	0.0012	U	0.0011	UU
1,3-Dichloropropene, Total				0.0012	<u> </u>	0.0012	<u> </u>	0.0012	<u> </u>	0.0011	U
1,1-Dichloropropene				0.0058	Ŭ	0.0061	U	0.0059	U	0.0054	U
Bromoform				0.0046	U	0.0049	U	0.0047	U	0.0043	U
1,1,2,2-Tetrachloroethane Benzene	35 2.9	4.8	0.06	0.0012	U U	0.0012	<u> </u>	0.0012	U U	0.0011 0.0011	UU
Toluene	2.9	4.8	0.06	0.0012	<u> </u>	0.0012	U	0.0012	<u> </u>	0.0011	U
Ethylbenzene	30	41	1	0.0012	U	0.0012	U	0.0012	U	0.0011	U
Chloromethane	1			0.0058	U	0.0061	U	0.0059	U	0.0054	U
Bromomethane				0.0023	<u> </u>	0.0024	<u> </u>	0.0024	U	0.0022	U
Vinyl chloride Chloroethane	0.21	0.9	0.02	0.0023	U U	0.0024	U U	0.0024 0.0024	U U	0.0022 0.0022	UU
1,1-Dichloroethene	100	100	0.33	0.0023	U	0.0024	<u> </u>	0.0012	<u> </u>	0.0011	U
trans-1,2-Dichloroethene	100	100	0.19	0.0017	Ŭ	0.0018	U	0.0018	Ŭ	0.0016	Ŭ
Trichloroethene	10	21	0.47	0.0012	U	0.0012	U	0.0012	U	0.0011	U
1,2-Dichlorobenzene	100	100	1.1	0.0058	<u> </u>	0.0061	<u> </u>	0.0059	<u> </u>	0.0054	U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	17 9.8	49 13	2.4	0.0058	U U	0.0061	U U	0.0059 0.0059	<u> </u>	0.0054 0.0054	UU
Methyl tert butyl ether	62	100	0.93	0.0023	U	0.0024	<u> </u>	0.0024	<u> </u>	0.0022	U
p/m-Xylene				0.0023	U	0.0024	U	0.0024	U	0.0022	U
o-Xylene				0.0023	U	0.0024	U	0.0024	U	0.0022	U
Xylenes, Total cis-1,2-Dichloroethene	100 59	100 100	0.26	0.0023	U U	0.0024 0.0012	<u> </u>	0.0024 0.0012	U U	0.0022 0.0011	U
1,2-Dichloroethene, Total	59	100	0.25	0.0012	U	0.0012	U	0.0012	U	0.0011	U
Dibromomethane				0.012	Ū	0.012	Ū	0.012	U	0.011	U
Styrene				0.0023	U	0.0024	U	0.0024	U	0.0022	U
Dichlorodifluoromethane	100	100	0.05	0.012	U	0.012	U	0.012	U	0.011	U
Acetone Carbon disulfide	100 100	100	0.05	0.012	U U	0.012	U U	0.012 0.012	U U	0.011 0.011	UU
2-Butanone	100	100	0.12	0.012	U	0.012	U	0.012	<u> </u>	0.011	U
Vinyl acetate				0.012	U	0.012	U	0.012	U	0.011	U
4-Methyl-2-pentanone				0.012	U	0.012	<u> </u>	0.012	U	0.011	U
1,2,3-Trichloropropane 2-Hexanone	80			0.012	U U	0.012	<u> </u>	0.012	<u>U</u>	0.011 0.011	UU
Bromochloromethane				0.0058	U	0.0061	<u> </u>	0.0059	<u> </u>	0.0054	U
2,2-Dichloropropane				0.0058	U	0.0061	U	0.0059	U	0.0054	U
1,2-Dibromoethane				0.0046	U	0.0049	U	0.0047	U	0.0043	U
1,3-Dichloropropane 1,1,1,2-Tetrachloroethane	1			0.0058	U U	0.0061 0.0012	U U	0.0059 0.0012	U U	0.0054 0.0011	UU
Bromobenzene	1			0.0012	U	0.0012	U	0.0012	U	0.0011	U U
n-Butylbenzene	100	100	12	0.0012	U	0.0012	Ū	0.0012	U	0.0011	U
sec-Butylbenzene	100	100	11	0.0012	U	0.0012	U	0.0012	U	0.0011	U
tert-Butylbenzene	100	100	5.9	0.0058	<u> </u>	0.0061	<u> </u>	0.0059	<u> </u>	0.0054	U
o-Chlorotoluene p-Chlorotoluene	1	l		0.0058	U U	0.0061	U U	0.0059 0.0059	U U	0.0054 0.0054	UU
1,2-Dibromo-3-chloropropane	1			0.0058	<u> </u>	0.0061	<u> </u>	0.0059	<u> </u>	0.0054	U
Hexachlorobutadiene				0.0058	U	0.0061	U	0.0059	U	0.0054	U
Isopropylbenzene	100			0.0012	U	0.0012	U	0.0012	U	0.0011	U
p-Isopropyltoluene Naphthalene	100	100	12	0.0012	U U	0.0012	<u> </u>	0.0012 0.0059	U U	0.0011 0.0054	UU
Acrylonitrile	100	100	12	0.0038	<u>U</u>	0.0001	U	0.0039	U	0.0034	U
n-Propylbenzene	100	100	3.9	0.0012	U	0.0012	U	0.0012	U	0.0011	U
1,2,3-Trichlorobenzene				0.0058	U	0.0061	U	0.0059	U	0.0054	U
1,2,4-Trichlorobenzene	47		0.4	0.0058	U U	0.0061	<u> </u>	0.0059	U U	0.0054	UU
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	47	52 52	8.4	0.0058	<u> </u>	0.0061	U U	0.0059 0.0059	<u> </u>	0.0054 0.0054	U
1,4-Dioxane	9.8		0.1	0.12	U	0.12	U	0.12	U	0.11	U
p-Diethylbenzene				0.0046	U	0.0049	U	0.0047	U	0.0043	U
p-Ethyltoluene	1			0.0046	U	0.0049	U	0.0047	U	0.0043	U
1,2,4,5-Tetramethylbenzene				0.0046	U U	0.0049 0.0061	U U	0.0047 0.0059	U U	0.0043 0.0054	UU
Ethyl ether											

U = Undetected

Table 2 Semivolatile Compounds in Soil Samples

SAME IS DATE S20/2015	LOCATION			1	TP-	.4	TP-6		TP-8		TP-11		TP-4	
Last SAMT #: LPT List III-63 et al. List III-63 et al. List III-63 et al. List III-64 et al. List III-														
SAMP. B. PTYE Composite														
NMME Set PLT11 (ft.) NV-RESRE NV-BUSRE NV-BU														
Actinghtere Image: Construction of the second	SAMPLE DEPTH (ft.)						· · · · · ·							
12.4-Trobiosbaseme 0.19 U 0.2 U 0.18 U - Big2-dividence 0.17 U 0.12 U 0.11 U	Units (mg/kg)	NY-RESR NY-	RESRR NY-U	INRES		Qual		Qual		Qual		Qual		Qual
12.4-Trobiosbaseme 0.19 U 0.2 U 0.18 U - Big2-dividence 0.17 U 0.12 U 0.11 U	A		100	00	0.00		0.40		0.45		0.44			
Headchoodensene 0.41 1.2 0.53 0.11 U 0.12 U 0.11 U 0.11 <thu< th=""> <th< td=""><td></td><td>100</td><td>100</td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></th<></thu<>		100	100	20										-
Big2_actionsphymeter 0.17 U 0.18 U 0.17 U 0.18 U 0.18 U 0.19 U 0.18 U - 3.7< Otherword		0.41	12	0.33									-	-
Chiorongsthuigene 0.19 U 0.2 U 0.18 U 12.bolkroberazene 17 40 2.2 0.19 U 0.2 U 0.18 U 12.bolkroberazene 17 40 2.2 0.19 U 0.2 U 0.18 U 2.bolkroberazene 0.19 U 0.2 U 0.19 U 0.18 U 2.bolkroberazene 0.19 U 0.2 U 0.19 U 0.18 U 2.bolkroberazene 0.19 U 0.2 U 0.19 U 0.18 U 2.bolkroberazene 0.19 U 0.2 U 0.19 U 0.18 U <td></td> <td>0.41</td> <td>1.4</td> <td>0.55</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td>		0.41	1.4	0.55				-		-			-	-
12-Dehtorbergene 100 1.1 0.19 U 0.2 U 0.18 U								-						-
14-Dicknowgenzene 9.8 13 1.8 0.19 U 0.2 U 0.18 U 2.4 Dinktorbulene 0.19 U 0.2 U 0.18 U 2.4 Dinktorbulene 100 100 100 18 E 0.18 U 0.18 U 2.4 Dinktorbulene 0.19 U 0.2 U 0.18 U 0.18 U 4 Chacopatry they effer 0.19 U 0.2 U 0.18 U Big2 discissionspondeffer 0.19 U 0.2 U 0.18 U Big2 discissionspondeffer 0.15 U 0.16 U 0.18 U Big2 discissionspondeffer 0.15 U 0.16 U 0.16 U Big2 discissionspondeffer 0.10 0.17 U 0.16 U 0.16 U Big2 discisi		100	100	1.1		U		U		U		U	-	-
3.3*Definitionalization 0.19 U 0.2 U 0.19 U 0.11 U -	1,3-Dichlorobenzene	17	49	2.4	0.19	U	0.2	U	0.19	U	0.18	U	-	-
2.4-Dintroduene 1.03 0.19 U 0.2 U 0.19 U 0.18 U - Construction 1.03 0.19 U 0.19 U 0.19 U 0.18 U - Construction 1.00 1.00 1.00 1.00 0.18 U 0.19 U 0.18 U 0.16 U 0		9.8	13	1.8									-	-
2.5-Ontrobuene 1.03 0.19 U 0.2 U 0.18 U 1.13 4.Chicorphery liptery effer 100 100 100 18 E 0.12 U 0.68 U 1.3 4.Chicorphery liptery effer 0.19 U 0.22 U 0.618 U													-	-
Filozantene 100 100 100 18 E 0.12 U 0.08 J 0.11 U 13 Adimosphery (hery effer 0.19 U 0.22 U 0.19 U 0.18 U - Bise admosphery (hery effer 0.19 U 0.21 U 0.21 U 0.19 U 0.21 U 0.19 U 0.21 U 0.19 U - - Bise admosphere 0.19 U 0.22 U 0.16 U 0.15 U 0.16 U <td< td=""><td></td><td>1.02</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td></td<>		1.02											-	-
4Charongeny Denvi ether 0.19 U 0.22 U 0.19 U 0.18 U - Big2-choresproy/effer 0.33 U 0.24 U 0.23 U 0.21 U 0.23 U 0.21 <			100	100						-				-
Encomplexity item/ ether 0.19 U 0.2 U 0.19 U 0.18 U . Big2-chronogony/ether 0.23 U 0.21 U 0.16 U 0.16 U 0.16 U 0.16 U 0.17 U 0.16 <		100	100	100										-
Big 2: Aboreson provime and a set of the se						-				-				-
Bis/2-characterized 0.2 U 0.21 U 0.21 U 0.21 U 0.19 U - Hexachhoroxydgentadiene 0.54 U 0.57 U 0.58 U 0.55 U - Hexachhoroxydgentadiene 100 0.16 U 0.57 U 0.58 U 0.51 U 0.55 U - Hexachhoroxydgentadiene 100 0.16 U 0.51 U 0.18 U 0.17 U 0.16 U - Nitrosoli-proyramine 0.15 U 0.16 U 0.16 U 0.16 U - Bit/2-Entrydex/lphthalite 100 0.16 U 0.22 U 0.18 U - Dir-but/lphthalite 100 0.16 U 0.22 U 0.18 U - Dir-but/lphthalite 100 0.16 U 0.22 U 0.18 U -													-	-
Hexachtorocupartalene 0.19 U 0.19 U 0.18 U Hexachtoroceptane 0.15 U 0.15 U 0.15 U 0.16 U 0.17 U 0.18 U Hexachtoroceptane 0.01 0.17 U 0.18 U 0.17 U 0.18 U Nighthalate 100 100 12 0.18 U 0.16 U 0.18 U Nilsockit-propytamine 0.19 U 0.19 U 0.19 U 0.19 U 0.18 U Nilsockit-propytamine 0.019 U 0.22 U 0.18 U Bury bency phthalate 100 0.19 U 0.22 U 0.18 U Di-n-dxtypithalate 100 0.19 U 0.18 U Di-n-dxtypithalate 100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td></t<>													-	-
Hexachoroshane 0.15 U 0.16 U 0.16 U 0.16 U 0.16 U . Naphthere 100 100 12 0.18 J 0.2 U 0.18 U NitroseDremyAmine(NDPAyDPA 0.15 U 0.16 U 0.17 U 0.18 U NitroseDremyAmine(NDPAyDPA 0.15 U 0.16 U 0.17 U 0.18 U NitroseDremyAmine(NDPAyDPA 0.19 U 0.22 U 0.19 U 0.18 U Discret/phthalate 100 0.19 U 0.22 U 0.19 U 0.18 U Discret/phthalate 100 0.19 U 0.22 U 0.18 U Discret/phthalate 100 0.19 U 0.14 U 0.18 U Discros/phyrene 1 1 </td <td>Hexachlorobutadiene</td> <td></td> <td>-</td> <td>-</td>	Hexachlorobutadiene												-	-
Isophone 100 0.17 U 0.18 U 0.17 U 0.18 U . Natrobarsene 3.7 15 0.17 U 0.18 U 0.17 U 0.18 U 0.17 U 0.18 U 0.17 U 0.18 U 0.14 U - NitrosoDiPrendymine 0.19 U 0.19 U 0.19 U 0.18 U - Bidy fendy minelate 100 0.19 U 0.19 U 0.19 U 0.18 U - Derivi printatiate 100 0.19 U 0.2 U 0.19 U 0.18 U - Derivi printatiate 100 0.19 U 0.2 U 0.19 U 0.18 U - Derivi printatiate 100 0.12 U 0.044 J 1.1 V 8 3.2 0.12 U 0.14 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td>-</td></t<>						-		-		-				-
Naphthalane 100 100 12 0.18 J 0.2 0 0.19 U 0.18 U Nitrobenzon 0.15 U 0.16 U 0.15 U 0.15 U 0.15 U 0.15 U 0.16 U 0.15 U 0.16 U 0.18 U Nitrosol-propryamine 0.19 U 0.2 U 0.19 U 0.18 U Bix/C Entry hybrithalate 100 0.19 U 0.22 U 0.19 U 0.18 U Din-dryiprihalate 100 0.19 U 0.22 U 0.19 U 0.18 U Derich uprihalate 100 0.19 U 0.22 U 0.19 U 0.10 U Derich uprihalate 100 100 0.12 U 0.014 U Dit U														-
Ninceparene 3.7 15 0.17 U 0.18 U 0.17 U 0.16 U 0.17 U 0.16 U 0.17 U 0.18 U 0.14 U . NitrosoDiP-propylamine 0.19 U 0.18 U 0.18 U 0.14 U . Bit/Lender/ printate 100 0.19 U 0.22 U 0.19 U 0.18 U . Din-cotyphinhate 100 0.19 U 0.18 U . Din-cotyphinhate 100 0.19 U 0.18 U . Din-cotyphinhate 100 0.12 U 0.18 U . Din-cotyphinhate 10 1 7.4 0.12 U 0.039 J 0.11 U 6.8 Beroxolphrorenthene 1 1 7.4 0.12 U 0.044 J 0.14 U Beroxolphrorenthene			100	10		-								-
Nitrosol-PrintyAmine(NDPA)DPA 0.15 U 0.16 U 0.14 U - Nitrosol-propylamine 0.19 U 0.22 U 0.19 U 0.16 U - Big2-Ethythexylphthalate 100 0.19 U 0.22 U 0.19 U 0.16 U - Din-butylphthalate 100 0.19 U 0.22 U 0.19 U 0.18 U - Din-butylphthalate 100 0.19 U 0.22 U 0.19 U 0.18 U - Dinethylphthalate 100 0.19 U 0.22 U 0.19 U 0.18 U - Dinethylphthalate 100 0.12 U 0.14 U 0.18 U - Dinethylphthalate 100 100 102 U 0.14 U 0.14 U 0.14 U 0.14 U 0.14 U				12									-	
In.Nicosci-n-propylamine 0.19 U 0.2 U 0.18 U - Bidy.Ethythytylphtalate 100 0.19 U 0.2 U 0.13 J 0.067 J - Budy.Densyl phthalate 100 0.19 U 0.22 U 0.19 U 0.18 U - Dr-bodylphthalate 100 0.19 U 0.22 U 0.19 U 0.18 U - Directyl phthalate 100 0.19 U 0.22 U 0.19 U 0.18 U - Benzolojnyrene 1 1 7.4 0.12 U 0.039 J U - Benzolojnyrene 1 3.0 0.6 3.3 0.12 U 0.14 U - Benzolojnoranthene 1 1 1 0.16 U 0.14 U - Chrysene 100 100 100 1.6		3.7	15										-	-
Big/E Entryhexylphthalate 50 0.4 0.2 U 0.13 J 0.067 J - Dir-butylphthalate 100 0.19 U 0.2 U 0.19 U 0.18 U - Dir-butylphthalate 100 0.19 U 0.22 U 0.19 U 0.18 U - Direbutylphthalate 100 0.19 U 0.22 U 0.19 U 0.18 U - Direbutylphthalate 100 0.19 U 0.22 U 0.19 U 0.18 U - Berxoclofibuoranthene 1 1 7.4 0.12 U 0.044 J 0.1 U 0.		-												
Burly printalate 100 0.19 U 0.2 U 0.19 U 0.18 U - Dr-hody/phrhalate 100 0.19 U 0.2 U 0.19 U 0.18 U - Dimetry phrhalate 100 0.19 U 0.2 U 0.19 U 0.18 U - Dimetry phrhalate 100 0.19 U 0.2 U 0.19 U 0.18 U - Benzog/apyrene 1 1 1 7.4 0.12 U 0.19 U 0.4 U Benzog/plucranthene 1 3.9 0.8 3.3 C 0.12 U 0.11 U 0.4 0.6 D 0.1 U Acenaptifylene 100 100 100 1.4 U C D D 1.4 U C D D D D D <t< td=""><td></td><td>50</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td></t<>		50				0							-	-
Di-hocytyhthalate 100 0.19 U 0.29 U 0.19 U 0.18 U - Dimethy phthalate 100 0.19 U 0.19 U 0.19 U 0.19 U 0.18 U - Benzo(a)prome 1 1 7.8 E 0.16 U 0.15 U 0.14 U 6.8 Benzo(b)fuoranthene 1 1 1 0.2 U 0.014 U - - Chrysene 1 3.9 1 7 0.12 U 0.014 U - Acenaphtrylene 100 100 0.44 0.16 U 0.11 U 0.11 U 0.11 U - Fluoranthene 100 100 <						U				Ū			-	-
Dieffy ophthalate 100 0.19 U 0.2 U 0.19 U 0.18 U Benzodaphrhacene 1 1 7.4 0.12 U 0.039 J 0.11 U Benzodaphrene 1 1 7.8 E 0.16 U 0.15 U 0.14 U Benzodaphrene 1 1 1 10 E 0.12 U 0.014 U 8.7 Benzodaphrene 1 3.9 7 0.12 U 0.014 U Chrysene 100 100 100 1.4 0.16 U 0.16 U 0.14 U Chrysene 100 100 100 100 1.6 U 0.16 U 0.16 U 0.14 U Diace(a) 0.10 100 100 1.7 0.12 U 0.16 U						U						U	-	-
Dimetry phthalate 100 0.19 U 0.22 U 0.19 U 0.18 U	Di-n-octylphthalate												-	-
Benzo(a)purbracene 1 1 1 7.4 0.12 U 0.039 J 0.1 U								-						-
Benzolapyrene 1 1 1 7.8 E 0.16 U 0.15 U 0.14 U 6.8 Benzolphynornhene 1 3.9 0.8 3.3 0.12 U 0.044 J 0.1 U						U				-				-
Berzo/Diugranthene 1 1 1 10 E 0.12 U 0.044 J 0.11 U 0.11			•	1										-
Benzo(k/fluoranthene 1 3.9 0.8 3.3 0.12 U 0.11 U 0.1 U				1				-		-				
Chrysne 1 3.9 1 7 0.12 U 0.046 J 0.1 U				0.8		E								
Acenapithylene 100 100 100 100 1.10 0.16 U 0.15 U 0.14 U				1										-
Benzolghibgervlene 100 100 100 49 0.16 U 0.15 U 0.14 U Fluorene 100 100 30 0.35 0.2 U 0.19 U 0.18 U Phenanthrene 100 100 100 7.7 E 0.12 U 0.11 U 0.1 U 6.8 Dibenzo(1, 3/2 col)Prene 0.5 0.5 0.5 0.5 0.16 U 0.15 U 0.14 U Biphenyl 0.43 U 0.45 U 0.44 U 0.4 U - - 2-Nitroaniline 100 0.19 U 0.2 U 0.19 U 0.18 U - - - - - Dibenzofitran 0.19 U 0.18 U - - - Dibenzofitran 0.18 U - - - - Dibenzofitran		100		100	0.44								-	-
Fluorene 100 100 30 0.35 0.2 U 0.19 U 0.18 U - Phenanthrene 100 100 100 7.7 E 0.12 U 0.11 U 0.1 U 6.8 Dibenzo(a,h)anthracene 0.33 0.33 1.2 0.12 U 0.11 U 0.1 U - Indenc(1,2,3-cd)Pyrene 0.5 0.5 5.3 0.16 U 0.15 U 0.14 U - Pyrene 100 100 106 E 0.12 U 0.044 U 0.44 U 0.418 U - - - - - - - - - - - <	Anthracene	100	100	100	1.7		0.12	U	0.11	U	0.1	U	-	-
Phenanthrene 100 100 100 7.7 E 0.12 U 0.11 U 0.1 U 6.8 Dibenzo(a,h)anthracene 0.33 0.33 0.33 1.2 0.12 U 0.11 U 0.1 U - Dibenzo(a,h)anthracene 0.5 0.5 0.5 0.5 0.5 0.16 U 0.15 U 0.14 U - Pyrene 100 100 106 E 0.12 U 0.066 J 0.1 U 11 Biphenyl 0.43 U 0.44 U 0.4 U - 2-Nitroaniline 100 0.19 U 0.2 U 0.19 U 0.18 U - 2-Nitroaniline 0.19 U 0.2 U 0.19 U 0.18 U - 2-Methylnaphthalene 0.41 0.16 J 0.24 U 0.23 U 0.18	Benzo(ghi)perylene												-	-
Dibenzo(a,h)anthracene 0.33 0.33 0.33 1.2 0.12 U 0.11 U 0.1 U Indeno(1,2,3-cd)Pyrene 0.5 0.5 0.5 0.5 0.16 U 0.15 U 0.14 U Biphenyl 100 100 106 E 0.12 U 0.066 J 0.1 U 11 4-Chloroaniline 100 0.43 U 0.45 U 0.44 U 0.4 U 2-Nitroaniline 100 0.19 U 0.2 U 0.19 U 0.18 U 3-Nitroaniline 0.19 U 0.2 U 0.19 U 0.18 U 2-Methylnaphthalene 0.41 0.16 J 0.24 U 0.23 U 0.21 U 2.4.6-Trichlorobenzene 0.19 U 0.2 U 0.19 U 0.18														-
Inder(r,1,2,3-cd)Pyrene 0.5 0.5 0.5 0.5 0.16 U 0.15 U 0.14 U Pyrene 100 100 100 16 E 0.12 U 0.066 J 0.1 U 11 Biphenyl 0.43 U 0.45 U 0.44 U 0.4 U 4-Chloroaniline 100 0.19 U 0.2 U 0.19 U 0.18 U 2-Nitroaniline 0.19 U 0.2 U 0.19 U 0.18 U - 3-Nitroaniline 0.19 U 0.2 U 0.19 U 0.18 U - 2-Methylnaphthalene 0.41 0.16 J 0.24 U 0.23 U 0.18 U - 2-Abichanone 0.19 U 0.2 U 0.19 U 0.18 U - 2.4.6/						E								
Pyren 100 100 100 16 E 0.12 U 0.066 J 0.1 U 11 Biphenyl 0.43 U 0.45 U 0.44 U 0.4 U						_		-	-					-
Biphenyl 0.43 U 0.45 U 0.44 U 0.4 U - 4-Chloroaniline 100 0.19 U 0.2 U 0.19 U 0.18 U - 2-Nitroaniline 0.19 U 0.2 U 0.19 U 0.18 U - 3-Nitroaniline 0.19 U 0.2 U 0.19 U 0.18 U - 4-Nitroaniline 0.19 U 0.2 U 0.19 U 0.18 U - Dibenzofuran 14 59 7 0.26 0.2 U 0.19 U 0.18 U - 2.46-Trichlorobenzene 0.19 U 0.2 U 0.19 U 0.18 U - 2.4.6-Trichlorophenol 100 0.11 U 0.12 U 0.11 U 0.18 U - 2.Chlorophenol 100 0.17														-
4-Chloroaniline 100 0.19 U 0.2 U 0.19 U 0.18 U 2-Nitroaniline 0.19 U 0.2 U 0.19 U 0.18 U 3-Nitroaniline 0.19 U 0.2 U 0.19 U 0.18 U 4-Nitroaniline 0.19 U 0.2 U 0.19 U 0.18 U 4-Nitroaniline 0.19 U 0.2 U 0.19 U 0.18 U 2-Methylmaphthalene 0.41 0.16 J 0.24 U 0.23 U 0.18 U 2-Aetophenone 0.19 U 0.2 U 0.19 U 0.18 U 2-Chloro-M-Cresol 0.19 U 0.2 U 0.11 U 0.18 U 2-A-Dichlorophenol 100 0.17 U 0		100	100	100				-						-
2-Nitroaniline 0.19 U 0.2 U 0.19 U 0.18 U 3-Nitroaniline 0.19 U 0.2 U 0.19 U 0.18 U A-Nitroaniline 0.19 U 0.2 U 0.19 U 0.18 U Dibenzofuran 14 59 7 0.26 0.2 U 0.19 U 0.18 U 2-Methylinaphthalene 0.41 0.16 J 0.24 U 0.23 U 0.21 U 12.4.5-Tetrachlorobenzene 0.19 U 0.22 U 0.19 U 0.18 U 2.4.6-Trichlorophenol 0.11 U 0.12 U 0.11 U 0.18 U 2.4-Dichorophenol 100 0.19 U 0.22 U 0.18 U - 2.4-Dichorophenol 100 0.17 U </td <td></td> <td>100</td> <td></td> <td>-</td>		100												-
4-Nitroaniline 0.19 U 0.2 U 0.19 U 0.18 U - Dibenzofuran 14 59 7 0.26 0.2 U 0.19 U 0.18 U - 2-Methylnaphthalene 0.41 0.16 J 0.24 U 0.23 U 0.21 U - 1.2,4,5-Tetrachlorobenzene 0.19 U 0.2 U 0.19 U 0.18 U - Acetophenone 0.19 U 0.2 U 0.19 U 0.18 U - 2.4,6-Trichlorophenol 0.11 U 0.12 U 0.11 U 0.18 U - 2.4-Gorphenol 100 0.19 U 0.2 U 0.19 U 0.18 U - 2.4-Direktylphenol 100 0.19 U 0.2 U 0.19 U 0.18 U - 2.4-Direktylphenol 0.017 U 0.18 U 0.18 U - -						U								-
Dibenzofuran 14 59 7 0.26 0.2 U 0.19 U 0.18 U - 2-Methylnaphthalene 0.41 0.16 J 0.24 U 0.23 U 0.21 U - 12.4.5-Tetrachlorobenzene 0.19 U 0.22 U 0.19 U 0.19 U 0.18 U - Acetophenone 0.19 U 0.22 U 0.19 U 0.11 U <td>3-Nitroaniline</td> <td></td> <td></td> <td></td> <td>0.19</td> <td></td> <td>0.2</td> <td></td> <td>0.19</td> <td></td> <td>0.18</td> <td></td> <td></td> <td>-</td>	3-Nitroaniline				0.19		0.2		0.19		0.18			-
2-Methylnaphthalene 0.41 0.16 J 0.24 U 0.23 U 0.21 U - 1.2.4.5-Tetrachlorobenzene 0.19 U 0.2 U 0.19 U 0.18 U - Acetophenone 0.11 U 0.2 U 0.19 U 0.11 U 0.12 U 0.18 U - 0.22 U 0.11 U 0.22 U 0.16 U						U								-
1.2.4.5-Tetrachlorobenzene 0.19 U 0.2 U 0.19 U 0.18 U - Acetophenone 0.19 U 0.2 U 0.19 U 0.18 U - 2.4.6-Trichlorophenol 0.11 U 0.12 U 0.11 U 0.18 U - P-Chloro-M-Cresol 0.19 U 0.2 U 0.19 U 0.18 U - 2-Chlorophenol 100 0.19 U 0.2 U 0.19 U 0.18 U - 2.4-Dichlorophenol 100 0.17 U 0.18 U 0.16 U - 2.4-Direthylphenol 0.17 U 0.18 U 0.16 U - 2.4-Diritrophenol 0.41 U 0.43 U 0.27 U 0.24 - 2.4-Diritrophenol 100 0.91 0.92 0.92 0.84 U - 2.4-Diritrophenol 100 0.91 0.952 U 0.52 U <			59	7										-
Acetophenone 0.19 U 0.2 U 0.19 U 0.18 U - 2.4.6-Trichlorophenol 0.11 U 0.12 U 0.11 U 0.1 U - Pc-Chtor-M-Cresol 0.19 U 0.2 U 0.19 U 0.11 U 0.118 U - 0.11 U 0.11		0.41												-
2.4.6-Trichlorophenol 0.11 U 0.12 U 0.11 U 0.12 U 0.19 U 0.18 U 0.18 U 0.18 U 0.16 U -2 2.4-Dinchylophenol 100 0.11 U 0.12 U 0.18 U -														-
P-Chloro-M-Cresol 0.19 U 0.2 U 0.19 U 0.18 U - 2.4-Diorophenol 100 0.17 U 0.18 U 0.18 U -													-	-
2-Chlorophenol 100 0.19 U 0.2 U 0.19 U 0.18 U - 2.4-Dichlorophenol 100 0.17 U 0.18 U 0.17 U 0.16 U - 2.4-Direktyphenol 0.19 U 0.2 U 0.17 U 0.16 U - 2.4-Direktyphenol 0.41 U 0.24 U 0.41 U 0.38 U - 2.4-Direktyphenol 0.26 U 0.28 U 0.27 U 0.24 U - 2.4-Diriktrophenol 100 0.91 U 0.95 U 0.84 U - 2.4-Diriktrophenol 100 0.91 U 0.95 U 0.84 U - 2.4-Diriktrophenol 100 0.49 U 0.52 U 0.5 U 0.46 U - Pentachlorophenol 2.4 6.7 0.8 0.15 <td></td> <td>•</td> <td></td> <td>-</td> <td>-</td>		•											-	-
2.4-Dichlorophenol 100 0.17 U 0.18 U 0.17 U 0.16 U - 2.4-Dimethylphenol 0.19 U 0.2 U 0.19 U 0.18 U - 2.4-Dimethylphenol 0.19 U 0.19 U 0.18 U - 2-Nitrophenol 0.41 U 0.43 U 0.41 U 0.38 U - 2-Nitrophenol 0.26 U 0.28 U 0.27 U 0.24 U - 2.4-Dinitrophenol 100 0.91 U 0.95 U 0.24 U - 2.4-Dinitrophenol 100 0.49 U 0.52 U 0.5 U 0.46 U - 2.4-Dinitrophenol 2.4 6.7 0.8 0.15 U 0.15 U 0.14 U - Phenol 100 100 0.33 0.19 U 0.		100						-						-
2.4-Dimethylphenol 0.19 U 0.2 U 0.19 U 0.18 U - 2.Nitrophenol 0.41 U 0.43 U 0.41 U 0.38 U - 2.Nitrophenol 0.26 U 0.28 U 0.27 U 0.24 U - 2.4-Dinitrophenol 100 0.91 U 0.95 U 0.22 U 0.84 U - 4.6-Dinitro-o-cresol 0.49 U 0.52 U 0.5 U 0.46 U - Pentachlorophenol 2.4 6.7 0.8 0.15 U 0.14 U - Phenol 100 100 0.33 0.19 U 0.2 U 0.14 U - 2-Methylphenol/+Methylphenol 100 0.033 0.19 U 0.2 U 0.19 U 0.18 U - 2.4,5-Trichlorophenol 100 0.33 </td <td></td> <td>-</td> <td>-</td>													-	-
2-Nitrophenol 0.41 U 0.43 U 0.41 U 0.38 U - 4-Nitrophenol 0.26 U 0.28 U 0.27 U 0.24 U - 2.4-Dinitrophenol 100 0.91 U 0.926 U 0.27 U 0.24 U - 2.4-Dinitrophenol 100 0.91 U 0.92 U 0.84 U - 4.6-Dinitro-o-cresol 0.49 U 0.52 U 0.55 U 0.46 U - Pentachlorophenol 2.4 6.7 0.8 0.15 U 0.15 U 0.14 U - Phenol 100 100 0.33 0.19 U 0.2 U 0.19 U 0.18 U - 2.4brthylphenol/+Methylphenol 100 0.33 0.19 U 0.28 U 0.25 U - 2.4,5-Trichlorophenol 100					0.19		0.2				0.18		-	-
2,4-Dinitrophenol 100 0.91 U 0.95 U 0.92 U 0.84 U - 4,6-Dinitro-o-cresol 0.49 U 0.52 U 0.5 U 0.46 U - Pentachlorophenol 2.4 6.7 0.8 0.15 U 0.15 U 0.14 U - Phenol 100 100 0.33 0.19 U 0.2 U 0.19 U 0.14 U - 2-Methylphenol 100 100 0.33 0.19 U 0.2 U 0.19 U 0.18 U - 3-Methylphenol/4-Methylphenol 100 0.03 0.27 U 0.28 U 0.25 U - 2.4,5-Trichlorophenol 100 0.19 U 0.22 U 0.19 U - 2.4,5-Trichlorophenol 100 0.61 U 0.64 U 0.57 U -	2-Nitrophenol													-
4,6-Dinitro-o-cresol 0.49 U 0.52 U 0.5 U 0.46 U - Pentachlorophenol 2.4 6.7 0.8 0.15 U 0.15 U 0.14 U - Phenol 100 100 0.33 0.19 U 0.2 U 0.19 U 0.18 U - 2-Methylphenol 100 100 0.33 0.19 U 0.2 U 0.19 U 0.18 U - 3-Methylphenol/+Methylphenol 100 100 0.33 0.27 U 0.28 U 0.25 U - 2.4,5-Trichlorophenol 100 0.03 0.27 U 0.28 U 0.25 U - 2.4,5-Trichlorophenol 100 0.19 U 0.19 U 0.18 U - Benzoic Acid 100 0.61 U 0.64 U 0.67 U -														-
Pentachlorophenol 2.4 6.7 0.8 0.15 U 0.16 U 0.15 U 0.14 U - Phenol 100 100 0.33 0.19 U 0.2 U 0.19 U 0.18 U - 2-Methylphenol 100 100 0.33 0.19 U 0.2 U 0.19 U 0.18 U - 3-Methylphenol/4-Methylphenol 100 0.33 0.27 U 0.28 U 0.25 U - 2.4,5-Trichlorophenol 100 0.33 0.27 U 0.28 U 0.25 U - 2.4,5-Trichlorophenol 100 0.19 U 0.2 U 0.19 U 0.18 U - Benzoic Acid 100 0.61 U 0.64 U 0.62 U 0.57 U -		100												-
Phenol 100 100 0.33 0.19 U 0.2 U 0.19 U 0.18 U - 2-Methylphenol 100 100 0.33 0.19 U 0.2 U 0.19 U 0.18 U - 3-Methylphenol/4-Methylphenol 100 0.033 0.27 U 0.28 U 0.25 U - 2.4,5-Trichlorophenol 100 0.19 U 0.27 U 0.19 U 0.18 U - 2.4,5-Trichlorophenol 100 0.61 U 0.64 U 0.62 U 0.57 U -			67											-
2-Methylphenol 100 100 0.33 0.19 U 0.2 U 0.19 U 0.18 U - 3-Methylphenol/4-Methylphenol 100 100 0.33 0.27 U 0.28 U 0.25 U - 2.4,5-Trichlorophenol 100 0.19 U 0.22 U 0.19 U 0.18 U - Benzoic Acid 100 0.61 U 0.64 U 0.67 U -														-
3-Methylphenol/4-Methylphenol 100 100 0.33 0.27 U 0.28 U 0.25 U - 2,4,5-Trichlorophenol 100 0.19 U 0.2 U 0.19 U 0.19 U 0.18 U - Benzoic Acid 100 0.61 U 0.64 U 0.62 U 0.57 U -														-
2,4,5-Trichlorophenol 100 0.19 U 0.2 U 0.19 U 0.18 U - Benzoic Acid 100 0.61 U 0.64 U 0.62 U 0.57 U -														-
Benzoic Acid 100 0.61 U 0.64 U 0.62 U 0.57 U -			100	5.55										-
														-
Benzyl Alcohol 0.19 U 0.2 U 0.19 U 0.18 U -					0.19		0.2		0.19	U		U		-
	Carbazole							U		U		U	-	-

U = Undectedcted E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument. J = Estimated Value $P_{\rm exc}$

Table 3 TAL Metals in Soil Samples

LOCATION				TP-8		TP-11	
SAMPLING DATE				5/20/2015		5/20/2015	
LAB SAMPLE ID				L1511165-03		L1511165-04	
SAMPLE TYPE				Composite		Composite	
Units (mg/kg)	-						
	NY-RESR	NY-RESRR	NY-UNRES		Qual		Qual
Aluminum, Total				11000		10000	
Antimony, Total				1.1	J	4.2	U
Arsenic, Total	16		13			2.1	
Barium, Total	350		350	38		27	
Beryllium, Total	14	72	7.2	0.3	J	0.37	J
Cadmium, Total	2.5	4.3	2.5	0.94	U	0.84	U
Calcium, Total				13000		2800	
Chromium, Total				19		15	
Cobalt, Total	30			8.3		8.9	
Copper, Total	270	270	50	65		24	
Iron, Total	2000			26000		24000	
Lead, Total	400	400	63	31		11	
Magnesium, Total				3700		5200	
Manganese, Total	2000	2000	1600	620		690	
Mercury, Total	0.81	0.81	0.18	0.07	J	0.04	J
Nickel, Total	140	310	30	20		20	
Potassium, Total				440		410	
Selenium, Total	36	180	3.9	1.9	U	1.7	U
Silver, Total	36	180	2	0.94	U	0.84	U
Sodium, Total				41	J	170	U
Thallium, Total				1.9	U	1.7	U
Vanadium, Total	100			11		14	
Zinc, Total	2200	10000	109	160		66	

U = Undetected

J = Estimated Value

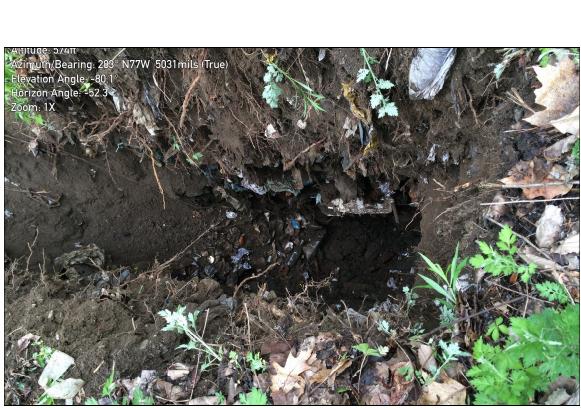
Table 4Pesticides in Soil Sample

LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE Units (mg/kg)				TP-16 5/20/2015 L1511165-05 Composite	5
cints (ing/kg)	NY-RESR	NY-RESRR	NY-UNRES		Qual
Solids, Total				85.4	
Delta-BHC	100	100	0.04	0.00183	U
Lindane	0.28	1.3	0.1	0.000763	U
Alpha-BHC	0.097	0.48	0.02	0.000763	U
Beta-BHC	0.072	0.36	0.036	0.00183	U
Heptachlor	0.42	2.1	0.042	0.000915	U
Aldrin	0.019	0.097	0.005	0.00183	U
Heptachlor epoxide	0.077			0.025	
Endrin	2.2	11	0.014		U
Endrin ketone				0.00183	U
Dieldrin	0.039	0.2	0.005	0.00114	U
4,4'-DDE	1.8	8.9	0.0033	0.0096	
4,4'-DDD	2.6				U
4,4'-DDT	1.7	-	0.0033		
Endosulfan I	4.8	24	2.4	0.00183	U
Endosulfan II	4.8		2.4	0.00183	U
Endosulfan sulfate	4.8	24	2.4	0.000763	U
Methoxychlor	100			0.00343	U
Toxaphene				0.0343	U
cis-Chlordane	0.91	4.2	0.094		
trans-Chlordane	0.54			0.0449	
Chlordane				0.331	

U = Undetected

APPENDIX A Photographs Log

AST near TP6



Solid waste pile

TP8 stockpile

TP8 stockpile

TP9 stockpile

TP10

TP12

TP14

TP16

TP17

APPENDIX B Field Notes

TPH, heart 48' long . new hourt at gampeaners. Find SILT at shake no also, P10: 0.0 ppm. 0858 Collect pput from surface composite at 193: new aboundared 150- gul 451 TPZ : hear alcondored 550-god UST (renoval) Propose i suestopate tanks i dunping areas. TP1: near 350-gad Art, on ground (0820) we: cloudy, low 60's 0800 Tenen on site, molaned thursd Fire sout to efting fore sections adar , Bins: as popula No odar 1 Pib: 0.0 pym. Fine sint, us ada , Bill :0.0 ppm on frank (0825). Clovewood time grates. PID:0.0 ppm. VOCS (SUDCS Simon Fells Backhore, operator: Cherlie 2/20/15 Marthew Conve TPB 1025 497 1020 0935 TPS TPS: near the pole. to confirm surfaced 0925 : ven long Ast , 6" lector pour Clovenson + 10:0.0 ppm. med sand and refine Clastilier, glass, redal, appliances, placter). No odor near into soil asures, sand Collin sarple @ 1045 for volg / svols. collect super Tob for 100- (soc. Par openation, wear bout we area, 0.0 por - sint a cables ? clery. silt when some refuse. No ode, O' \$ x 12.5' cong. peaks adar home task rend. 4' deep fast pat, no adde, 10: may be overburden] only. Nature soil immediately below will be tries. 5/20/15 Rite in the Rain

APPENDIX C Laboratory Deliverables Package

ANALYTICAL REPORT

Lab Number:	L1511165
Client:	Tenen Environmental, LLC
	121 West 27th Street
	Suite 1004
	New York City, NY
ATTN:	Mohamed Ahmed
Phone:	(646) 606-2332
Project Name:	505 CLOVE ROAD
Project Number:	505 CLOVE
Report Date:	05/29/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:05291515:26

Project Name:505 CLOVE ROADProject Number:505 CLOVE

 Lab Number:
 L1511165

 Report Date:
 05/29/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1511165-01	TP-4	SOIL	VILLAGE OF BLOOMING GROVE, NY	05/20/15 08:56	05/21/15
L1511165-02	TP-6	SOIL	VILLAGE OF BLOOMING GROVE, NY	05/20/15 09:35	05/21/15
L1511165-03	TP-8	SOIL	VILLAGE OF BLOOMING GROVE, NY	05/20/15 10:25	05/21/15
L1511165-04	TP-11	SOIL	VILLAGE OF BLOOMING GROVE, NY	05/20/15 11:30	05/21/15
L1511165-05	TP-16	SOIL	VILLAGE OF BLOOMING GROVE, NY	05/20/15 12:20	05/21/15

Project Name: 505 CLOVE ROAD Project Number: 505 CLOVE

 Lab Number:
 L1511165

 Report Date:
 05/29/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:505 CLOVE ROADProject Number:505 CLOVE

 Lab Number:
 L1511165

 Report Date:
 05/29/15

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

Total Metals

L1511165-03 and -04 have elevated detection limits for all elements, with the exception of mercury, due to the dilutions required by matrix interferences encountered during analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

find I. Without Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

Date: 05/29/15

ORGANICS

VOLATILES

	Serial_No:05291515:26			
Project Name:	505 CLOVE ROAD	Lab Number:	L1511165	
Project Number:	505 CLOVE	Report Date:	05/29/15	
	SAMPLE RESULTS			
Lab ID:	L1511165-01	Date Collected:	05/20/15 08:56	
Client ID:	TP-4	Date Received:	05/21/15	
Sample Location:	VILLAGE OF BLOOMING GROVE, NY	Field Prep:	Not Specified	
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	05/26/15 16:48			
Analyst:	BN			
Percent Solids:	87%			

Parameter	Result	Qualifier Units	s RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND	ug/kg	12	1.3	1			
1,1-Dichloroethane	ND	ug/kg		0.10	1			
Chloroform	ND	ug/kg		0.43	1			
Carbon tetrachloride	ND	ug/kg		0.24	1			
1,2-Dichloropropane	ND	ug/kg		0.26	1			
Dibromochloromethane	ND	ug/kg	1.2	0.18	1			
1,1,2-Trichloroethane	ND	ug/kg	1.7	0.35	1			
Tetrachloroethene	ND	ug/kg	1.2	0.16	1			
Chlorobenzene	ND	ug/kg	1.2	0.40	1			
Trichlorofluoromethane	ND	ug/kg	5.8	0.45	1			
1,2-Dichloroethane	ND	ug/kg	1.2	0.13	1			
1,1,1-Trichloroethane	ND	ug/kg	1.2	0.13	1			
Bromodichloromethane	ND	ug/kg	1.2	0.20	1			
trans-1,3-Dichloropropene	ND	ug/kg	1.2	0.14	1			
cis-1,3-Dichloropropene	ND	ug/kg	1.2	0.14	1			
1,3-Dichloropropene, Total	ND	ug/kg	1.2	0.14	1			
1,1-Dichloropropene	ND	ug/kg	5.8	0.16	1			
Bromoform	ND	ug/kg	4.6	0.27	1			
1,1,2,2-Tetrachloroethane	ND	ug/kg	1.2	0.12	1			
Benzene	ND	ug/kg	1.2	0.14	1			
Toluene	ND	ug/kg	1.7	0.22	1			
Ethylbenzene	ND	ug/kg	1.2	0.15	1			
Chloromethane	ND	ug/kg	5.8	0.34	1			
Bromomethane	ND	ug/kg	2.3	0.39	1			
Vinyl chloride	ND	ug/kg	2.3	0.14	1			
Chloroethane	ND	ug/kg	2.3	0.36	1			
1,1-Dichloroethene	ND	ug/kg	1.2	0.30	1			
trans-1,2-Dichloroethene	ND	ug/kg	1.7	0.24	1			
Trichloroethene	ND	ug/kg	1.2	0.14	1			
1,2-Dichlorobenzene	ND	ug/kg	5.8	0.18	1			

		Serial_No:05291515:26				0:05291515:26	
Project Name:	505 CLOVE ROAD				Lab Nu		L1511165
Project Number:	505 CLOVE				Report	Date:	05/29/15
-,		SAMP	LE RESULT	S			00/20/10
Lab ID:	L1511165-01				Date Col	lected:	05/20/15 08:56
Client ID:	TP-4				Date Re		05/21/15
Sample Location:	VILLAGE OF BLOOMIN	IG GROVE	E, NY		Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough La	ab					
	, .						
1,3-Dichlorobenzene		ND		ug/kg	5.8	0.16	1
1,4-Dichlorobenzene		ND		ug/kg	5.8	0.16	1
Methyl tert butyl ether		ND		ug/kg	2.3	0.10	1
p/m-Xylene		ND		ug/kg	2.3	0.23	1
o-Xylene		ND		ug/kg	2.3	0.20	1
Xylenes, Total		ND		ug/kg	2.3	0.20	1
cis-1,2-Dichloroethene		ND		ug/kg	1.2	0.16	1
1,2-Dichloroethene, Total		ND		ug/kg	1.2	0.16	1
Dibromomethane		ND		ug/kg	12	0.19	1
Styrene		ND		ug/kg	2.3	0.46	1
Dichlorodifluoromethane		ND		ug/kg	12	0.22	1
Acetone		ND		ug/kg	12	1.2	1
Carbon disulfide		ND		ug/kg	12	1.3	1
2-Butanone		ND		ug/kg	12	0.31	1
Vinyl acetate		ND		ug/kg	12	0.15	1
4-Methyl-2-pentanone		ND		ug/kg	12	0.28	1
1,2,3-Trichloropropane		ND		ug/kg	12	0.19	1
2-Hexanone		ND		ug/kg	12	0.77	1
Bromochloromethane		ND		ug/kg	5.8	0.32	1
2,2-Dichloropropane		ND		ug/kg	5.8	0.26	1
1,2-Dibromoethane		ND		ug/kg	4.6	0.20	1
1,3-Dichloropropane		ND		ug/kg	5.8	0.17	1
1,1,1,2-Tetrachloroethane	9	ND		ug/kg	1.2	0.37	1
Bromobenzene		ND		ug/kg	5.8	0.24	1
n-Butylbenzene		ND		ug/kg	1.2	0.13	1
sec-Butylbenzene		ND		ug/kg	1.2	0.14	1
tert-Butylbenzene		ND		ug/kg	5.8	0.16	1
o-Chlorotoluene		ND		ug/kg	5.8	0.18	1
p-Chlorotoluene		ND		ug/kg	5.8	0.15	1
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	5.8	0.46	1
Hexachlorobutadiene		ND		ug/kg	5.8	0.26	1
Isopropylbenzene		ND		ug/kg	1.2	0.12	1
p-Isopropyltoluene		ND		ug/kg	1.2	0.14	1
Naphthalene		ND		ug/kg	5.8	0.16	1
Acrylonitrile		ND		ug/kg	12	0.59	1
n-Propylbenzene		ND		ug/kg	1.2	0.12	1
1,2,3-Trichlorobenzene		ND		ug/kg	5.8	0.17	1
1,2,4-Trichlorobenzene		ND		ug/kg	5.8	0.21	1
1,3,5-Trimethylbenzene		ND		ug/kg	5.8	0.16	1
-							

					Serial_No:05291515:26		
Project Name:	505 CLOVE ROAD				Lab Nu	mber:	L1511165
Project Number:	505 CLOVE				Report	Date:	05/29/15
		SAMP		6			
Lab ID:	L1511165-01				Date Co	llected:	05/20/15 08:56
Client ID:	TP-4				Date Re	ceived:	05/21/15
Sample Location:	VILLAGE OF BLOOM	MING GROVI	E, NY		Field Prep:		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westboroug	h Lab					
1,2,4-Trimethylbenzene		ND		ug/kg	5.8	0.16	1
1,4-Dioxane		ND		ug/kg	120	17.	1
p-Diethylbenzene		ND		ug/kg	4.6	0.18	1
p-Ethyltoluene		ND		ug/kg	4.6	0.14	1
1,2,4,5-Tetramethylbenze	ne	ND		ug/kg	4.6	0.15	1
Ethyl ether		ND		ug/kg	5.8	0.30	1
trans-1,4-Dichloro-2-buter	le	ND		ug/kg	5.8	0.45	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	103		70-130	

		Serial_No:05291515			
Project Name:	505 CLOVE ROAD	Lab Number:	L1511165		
Project Number:	505 CLOVE	Report Date:	05/29/15		
-	SAMPLE RESULTS	-			
Lab ID:	L1511165-02	Date Collected:	05/20/15 09:35		
Client ID:	TP-6	Date Received:	05/21/15		
Sample Location:	VILLAGE OF BLOOMING GROVE, NY	Field Prep:	Not Specified		
Matrix:	Soil		·		
Analytical Method:	1,8260C				
Analytical Date:	05/26/15 17:16				
Analyst:	BN				
Percent Solids:	82%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/kg	12	1.4	1
1,1-Dichloroethane	ND		ug/kg	1.8	0.10	1
Chloroform	ND		ug/kg	1.8	0.45	1
Carbon tetrachloride	ND		ug/kg	1.2	0.26	1
1,2-Dichloropropane	ND		ug/kg	4.3	0.28	1
Dibromochloromethane	ND		ug/kg	1.2	0.19	1
1,1,2-Trichloroethane	ND		ug/kg	1.8	0.37	1
Tetrachloroethene	ND		ug/kg	1.2	0.17	1
Chlorobenzene	ND		ug/kg	1.2	0.42	1
Trichlorofluoromethane	ND		ug/kg	6.1	0.47	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.14	1
1,1,1-Trichloroethane	ND		ug/kg	1.2	0.14	1
Bromodichloromethane	ND		ug/kg	1.2	0.21	1
irans-1,3-Dichloropropene	ND		ug/kg	1.2	0.15	1
cis-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
1,3-Dichloropropene, Total	ND		ug/kg	1.2	0.14	1
1,1-Dichloropropene	ND		ug/kg	6.1	0.17	1
Bromoform	ND		ug/kg	4.9	0.29	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2	0.12	1
Benzene	ND		ug/kg	1.2	0.14	1
Toluene	ND		ug/kg	1.8	0.24	1
Ethylbenzene	ND		ug/kg	1.2	0.16	1
Chloromethane	ND		ug/kg	6.1	0.36	1
Bromomethane	ND		ug/kg	2.4	0.41	1
Vinyl chloride	ND		ug/kg	2.4	0.14	1
Chloroethane	ND		ug/kg	2.4	0.39	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.32	1
trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.26	1
Trichloroethene	ND		ug/kg	1.2	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	6.1	0.19	1

		Serial_No:05291515:26								
Project Name:	505 CLOVE ROAD				Lab Nu		L1511165			
Project Number:	505 CLOVE				Report	Date:	05/29/15			
		SAMPL	E RESULTS	S			00/20/10			
Lab ID:	L1511165-02				Date Col	lected:	05/20/15 09:35			
Client ID:	TP-6				Date Red		05/21/15			
Sample Location:	VILLAGE OF BLOOMIN	G GROVE	E, NY		Field Pre		Not Specified			
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab										
1,3-Dichlorobenzene		ND		ug/kg	6.1	0.16	1			
1,4-Dichlorobenzene		ND		ug/kg	6.1	0.17	1			
Methyl tert butyl ether		ND		ug/kg	2.4	0.10	1			
p/m-Xylene		ND		ug/kg	2.4	0.24	1			
o-Xylene		ND		ug/kg	2.4	0.21	1			
Xylenes, Total		ND		ug/kg	2.4	0.21	1			
cis-1,2-Dichloroethene		ND		ug/kg	1.2	0.21	1			
1,2-Dichloroethene, Total		ND		ug/kg ug/kg	1.2	0.17	1			
Dibromomethane		ND			1.2	0.17	1			
Styrene		ND		ug/kg	2.4	0.20	1			
Dichlorodifluoromethane		ND		ug/kg ug/kg	12	0.49	1			
		ND			12	1.3	1			
Acetone Carbon disulfide		ND		ug/kg	12	1.3	1			
		ND		ug/kg			1			
2-Butanone		ND		ug/kg	12	0.33				
Vinyl acetate 4-Methyl-2-pentanone		ND		ug/kg	12 12	0.16	1			
				ug/kg						
1,2,3-Trichloropropane		ND		ug/kg	12	0.20	1			
2-Hexanone		ND		ug/kg	12	0.82	1			
Bromochloromethane		ND		ug/kg	6.1	0.34	1			
2,2-Dichloropropane		ND		ug/kg	6.1	0.28	1			
1,2-Dibromoethane		ND		ug/kg	4.9	0.21	1			
1,3-Dichloropropane		ND		ug/kg	6.1	0.18	1			
1,1,1,2-Tetrachloroethane		ND		ug/kg	1.2	0.39	1			
Bromobenzene		ND		ug/kg	6.1	0.25	1			
n-Butylbenzene		ND		ug/kg	1.2	0.14	1			
sec-Butylbenzene		ND		ug/kg	1.2	0.15	1			
tert-Butylbenzene		ND		ug/kg	6.1	0.16	1			
o-Chlorotoluene		ND		ug/kg	6.1	0.20	1			
p-Chlorotoluene		ND		ug/kg	6.1	0.16	1			
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	6.1	0.48	1			
Hexachlorobutadiene		ND		ug/kg	6.1	0.28	1			
Isopropylbenzene		ND		ug/kg	1.2	0.13	1			
p-Isopropyltoluene		ND		ug/kg	1.2	0.15	1			
Naphthalene		ND		ug/kg	6.1	0.17	1			
Acrylonitrile		ND		ug/kg	12	0.63	1			
n-Propylbenzene		ND		ug/kg	1.2	0.13	1			
1,2,3-Trichlorobenzene		ND		ug/kg	6.1	0.18	1			
1,2,4-Trichlorobenzene		ND		ug/kg	6.1	0.22	1			
1,3,5-Trimethylbenzene		ND		ug/kg	6.1	0.18	1			

					Serial_No:05291515:26		
Project Name:	505 CLOVE ROAD				Lab Nu	mber:	L1511165
Project Number:	505 CLOVE				Report	Date:	05/29/15
		SAMP		6			
Lab ID:	L1511165-02				Date Col	llected:	05/20/15 09:35
Client ID:	TP-6				Date Re	ceived:	05/21/15
Sample Location:	VILLAGE OF BLOOM	/ING GROVI	E, NY		Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westboroug	h Lab					
1,2,4-Trimethylbenzene		ND		ug/kg	6.1	0.17	1
1,4-Dioxane		ND		ug/kg	120	18.	1
p-Diethylbenzene		ND		ug/kg	4.9	0.20	1
p-Ethyltoluene		ND		ug/kg	4.9	0.15	1
1,2,4,5-Tetramethylbenzer	ne	ND		ug/kg	4.9	0.16	1
Ethyl ether		ND		ug/kg	6.1	0.32	1
trans-1,4-Dichloro-2-buten	le	ND		ug/kg	6.1	0.48	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	76		70-130	
4-Bromofluorobenzene	111		70-130	
Dibromofluoromethane	104		70-130	

		Serial_N	0:05291515:26
Project Name:	505 CLOVE ROAD	Lab Number:	L1511165
Project Number:	505 CLOVE	Report Date:	05/29/15
	SAMPLE RESULTS		
Lab ID:	L1511165-03	Date Collected:	05/20/15 10:25
Client ID:	TP-8	Date Received:	05/21/15
Sample Location:	VILLAGE OF BLOOMING GROVE, NY	Field Prep:	Not Specified
Matrix:	Soil		
Analytical Method:	1,8260C		
Analytical Date:	05/26/15 17:45		
Analyst:	BN		
Percent Solids:	84%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/kg	12	1.3	1
1,1-Dichloroethane	ND		ug/kg	1.8	0.10	1
Chloroform	ND		ug/kg	1.8	0.44	1
Carbon tetrachloride	ND		ug/kg	1.2	0.25	1
1,2-Dichloropropane	ND		ug/kg	4.1	0.27	1
Dibromochloromethane	ND		ug/kg	1.2	0.18	1
1,1,2-Trichloroethane	ND		ug/kg	1.8	0.36	1
Tetrachloroethene	ND		ug/kg	1.2	0.17	1
Chlorobenzene	ND		ug/kg	1.2	0.41	1
Trichlorofluoromethane	ND		ug/kg	5.9	0.46	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.13	1
1,1,1-Trichloroethane	ND		ug/kg	1.2	0.13	1
Bromodichloromethane	ND		ug/kg	1.2	0.20	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
cis-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
1,3-Dichloropropene, Total	ND		ug/kg	1.2	0.14	1
1,1-Dichloropropene	ND		ug/kg	5.9	0.17	1
Bromoform	ND		ug/kg	4.7	0.28	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2	0.12	1
Benzene	ND		ug/kg	1.2	0.14	1
Toluene	ND		ug/kg	1.8	0.23	1
Ethylbenzene	ND		ug/kg	1.2	0.15	1
Chloromethane	ND		ug/kg	5.9	0.35	1
Bromomethane	ND		ug/kg	2.4	0.40	1
Vinyl chloride	ND		ug/kg	2.4	0.14	1
Chloroethane	ND		ug/kg	2.4	0.37	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.31	1
trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.25	1
Trichloroethene	ND		ug/kg	1.2	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	5.9	0.18	1

					ç	Serial_No	0:05291515:26
Project Name:	505 CLOVE ROAD				Lab Nu		L1511165
Project Number:	505 CLOVE				Report	Date:	05/29/15
		SAMPL	E RESULTS	6			00/20/10
Lab ID:	L1511165-03				Date Col	lected:	05/20/15 10:25
Client ID:	TP-8				Date Red		05/21/15
Sample Location:	VILLAGE OF BLOOMING	GROVE	NY		Field Pre		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough La	b					
		ND			5.0	0.40	
1,3-Dichlorobenzene 1,4-Dichlorobenzene		ND ND		ug/kg	5.9	0.16	1
Methyl tert butyl ether		ND		ug/kg	2.4	0.10	1
p/m-Xylene		ND		ug/kg	2.4	0.10	1
				ug/kg			
o-Xylene		ND ND		ug/kg	2.4	0.20	1
Xylenes, Total				ug/kg	2.4	0.20	1
cis-1,2-Dichloroethene		ND		ug/kg	1.2	0.17	1
1,2-Dichloroethene, Total		ND		ug/kg	1.2	0.17	1
Dibromomethane		ND		ug/kg	12	0.19	1
Styrene		ND		ug/kg	2.4	0.48	1
Dichlorodifluoromethane		ND		ug/kg	12	0.23	1
Acetone		ND		ug/kg	12	1.2	1
Carbon disulfide		ND		ug/kg	12	1.3	1
2-Butanone		ND		ug/kg	12	0.32	1
Vinyl acetate		ND		ug/kg	12	0.16	1
4-Methyl-2-pentanone		ND		ug/kg	12	0.29	1
1,2,3-Trichloropropane		ND		ug/kg	12	0.19	1
2-Hexanone		ND		ug/kg	12	0.79	1
Bromochloromethane		ND		ug/kg	5.9	0.33	1
2,2-Dichloropropane		ND		ug/kg	5.9	0.27	1
1,2-Dibromoethane		ND		ug/kg	4.7	0.21	1
1,3-Dichloropropane		ND		ug/kg	5.9	0.17	1
1,1,1,2-Tetrachloroethane		ND		ug/kg	1.2	0.38	1
Bromobenzene		ND		ug/kg	5.9	0.25	1
n-Butylbenzene		ND		ug/kg	1.2	0.14	1
sec-Butylbenzene		ND		ug/kg	1.2	0.14	1
tert-Butylbenzene		ND		ug/kg	5.9	0.16	1
o-Chlorotoluene		ND		ug/kg	5.9	0.19	1
p-Chlorotoluene		ND		ug/kg	5.9	0.16	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	5.9	0.47	1
Hexachlorobutadiene		ND		ug/kg	5.9	0.27	1
Isopropylbenzene		ND		ug/kg	1.2	0.12	1
p-Isopropyltoluene		ND		ug/kg	1.2	0.15	1
Naphthalene		ND		ug/kg	5.9	0.16	1
Acrylonitrile		ND		ug/kg	12	0.61	1
n-Propylbenzene		ND		ug/kg	1.2	0.13	1
1,2,3-Trichlorobenzene		ND		ug/kg	5.9	0.17	1
1,2,4-Trichlorobenzene		ND		ug/kg	5.9	0.22	1
1,3,5-Trimethylbenzene		ND		ug/kg	5.9	0.17	1

						Serial_No	0:05291515:26
Project Name:	505 CLOVE ROAD				Lab Nu	mber:	L1511165
Project Number:	505 CLOVE				Report	Date:	05/29/15
		SAMP	LE RESULT	5			
Lab ID:	L1511165-03				Date Co	llected:	05/20/15 10:25
Client ID:	TP-8				Date Re	ceived:	05/21/15
Sample Location:	VILLAGE OF BLOOM	ING GROVI	E, NY		Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westborough	n Lab					
1,2,4-Trimethylbenzene		ND		ug/kg	5.9	0.17	1
1,4-Dioxane		ND		ug/kg	120	17.	1
p-Diethylbenzene		ND		ug/kg	4.7	0.19	1
p-Ethyltoluene		ND		ug/kg	4.7	0.15	1
1,2,4,5-Tetramethylbenze	ne	ND		ug/kg	4.7	0.15	1
Ethyl ether		ND		ug/kg	5.9	0.31	1
trans-1,4-Dichloro-2-buter	le	ND		ug/kg	5.9	0.46	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	112		70-130	
Dibromofluoromethane	94		70-130	

		Serial_N	0:05291515:26
Project Name:	505 CLOVE ROAD	Lab Number:	L1511165
Project Number:	505 CLOVE	Report Date:	05/29/15
	SAMPLE RESULTS		
Lab ID:	L1511165-04	Date Collected:	05/20/15 11:30
Client ID:	TP-11	Date Received:	05/21/15
Sample Location:	VILLAGE OF BLOOMING GROVE, NY	Field Prep:	Not Specified
Matrix:	Soil		
Analytical Method:	1,8260C		
Analytical Date:	05/26/15 18:13		
Analyst:	BN		
Percent Solids:	93%		

ND Ug Kg 1.6 0.40 1 Carbon tetrachloride ND Ug/kg 1.1 0.23 1 Carbon tetrachloride ND Ug/kg 3.8 0.24 1 J2-Dichloropropane ND Ug/kg 3.8 0.24 1 J2-Dichlorophoromethane ND Ug/kg 1.1 0.16 1 J1.2-Trichloroethane ND Ug/kg 1.1 0.15 1 Feitrachloroethane ND Ug/kg 1.1 0.33 1 Trichloroethane ND Ug/kg 1.1 0.12 1 J2-Dichloroethane ND Ug/kg 1.1 0.12 1 J.1-Trichloroethane ND Ug/kg 1.1 0.13 1 J.2-Dichloropropane ND Ug/kg 1.1 0.13 1 J.3-Dichloropropane ND Ug/kg 1.1 0.13 1 J.3-Dichloropropane ND Ug/kg 3.4 0.25 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
NDug/kg1.60.091NDug/kg1.60.401ShoroformNDug/kg1.10.231Jacho totrachlorideNDug/kg1.10.161Jacho totrachlorideNDug/kg1.10.161Jacho totrachlorideNDug/kg1.10.151Jacho totrachlorideNDug/kg1.10.151Jacho totrachlorideNDug/kg1.10.371Shoromch/DoromethaneNDug/kg1.10.121Shoromch/DoromethaneNDug/kg1.10.121Shoromch/DoromethaneNDug/kg1.10.121Shoromch/DoromethaneNDug/kg1.10.121JachotorotomethaneNDug/kg1.10.131JachotorotomethaneNDug/kg1.10.131JachotorotomethaneNDug/kg1.10.131JachotoropopeneNDug/kg1.10.131JachotoropopeneNDug/kg1.10.131JachotoropopeneNDug/kg1.10.131JachotoropopeneNDug/kg1.10.131JachotoropopeneNDug/kg1.10.131JachotoropopeneNDug/kg1.10.131JacaneNDug/kg1.10.131 <t< td=""><td>Volatile Organics by GC/MS - Westb</td><td>orough Lab</td><td></td><td></td><td></td><td></td><td></td></t<>	Volatile Organics by GC/MS - Westb	orough Lab					
NDug/kg1.60.091NDug/kg1.60.401ShoroformNDug/kg1.10.231Jacho totrachlorideNDug/kg1.10.161Jacho totrachlorideNDug/kg1.10.161Jacho totrachlorideNDug/kg1.10.151Jacho totrachlorideNDug/kg1.10.151Jacho totrachlorideNDug/kg1.10.371Shoromch/DoromethaneNDug/kg1.10.121Shoromch/DoromethaneNDug/kg1.10.121Shoromch/DoromethaneNDug/kg1.10.121Shoromch/DoromethaneNDug/kg1.10.121JachotorotomethaneNDug/kg1.10.131JachotorotomethaneNDug/kg1.10.131JachotorotomethaneNDug/kg1.10.131JachotoropopeneNDug/kg1.10.131JachotoropopeneNDug/kg1.10.131JachotoropopeneNDug/kg1.10.131JachotoropopeneNDug/kg1.10.131JachotoropopeneNDug/kg1.10.131JachotoropopeneNDug/kg1.10.131JacaneNDug/kg1.10.131 <t< td=""><td>Methylene chloride</td><td>ND</td><td></td><td>ua/ka</td><td>11</td><td>1.2</td><td>1</td></t<>	Methylene chloride	ND		ua/ka	11	1.2	1
DelivoritorNDug/kg1.60.401Darbon tetrachlorideNDug/kg1.10.2311,2-DichloropropaneNDug/kg3.80.241DibronechloromethaneNDug/kg1.10.1611,12-TrichloroethaneNDug/kg1.10.161ChloroethaneNDug/kg1.10.171ChloroethaneNDug/kg1.10.371ChloroethaneNDug/kg1.10.1212,-DichloroethaneNDug/kg1.10.1212,-DichloroethaneNDug/kg1.10.1213,-DichlorophopeneNDug/kg1.10.1213,-DichlorophopeneNDug/kg1.10.1313,-DichlorophopeneNDug/kg1.10.1313,-DichlorophopeneNDug/kg1.10.1313,-DichlorophopeneNDug/kg1.10.1313,-DichlorophopeneNDug/kg1.10.1313,-DichlorophopeneNDug/kg1.10.1311,12,2-TetrachloroethaneNDug/kg1.10.1411,12,2-TetrachloroethaneNDug/kg1.10.1411,12,2-TetrachloroethaneNDug/kg1.60.2411,12,2-TetrachloroethaneNDug/kg1.60.2411,12,2-Tet	1,1-Dichloroethane	ND					1
Darbon tetrachloride ND ug/kg 1.1 0.23 1 1,2-Dichloropropane ND ug/kg 3.8 0.24 1 1,12-Trichloroethane ND ug/kg 1.1 0.16 1 1,12-Trichloroethane ND ug/kg 1.1 0.15 1 Certrachloroethane ND ug/kg 1.1 0.15 1 Chorobenzene ND ug/kg 1.1 0.17 1 Chorobenzene ND ug/kg 1.1 0.12 1 1,11-Trichloroethane ND ug/kg 1.1 0.12 1 1,11-Trichloroethane ND ug/kg 1.1 0.13 1 1,12-Trichloroethane ND ug/kg 1.1 0.13 1 1,3-Dichloropropene ND ug/kg 1.1 0.13 1 1,3-Dichloropropene, Total ND ug/kg 1.1 0.13 1 1,12-Z-Tetrachloroethane ND ug/kg 1.1	Chloroform	ND			1.6	0.40	1
ND ug/kg 3.8 0.24 1 Dbromochloromethane ND ug/kg 1.1 0.16 1 L1_2-Trichloroethane ND ug/kg 1.6 0.33 1 Fetrachloroethane ND ug/kg 1.1 0.15 1 Chlorobenzene ND ug/kg 1.1 0.16 1 Chlorobethane ND ug/kg 1.1 0.17 1 Schorobethane ND ug/kg 1.1 0.12 1 Schorobethane ND ug/kg 1.1 0.12 1 Schorobethane ND ug/kg 1.1 0.13 1 Schorobethane	Carbon tetrachloride	ND			1.1	0.23	1
DibromochloromethaneNDug/kg1.10.1611,1.2-TrichloroethaneNDug/kg1.10.151TertachloroethaneNDug/kg1.10.3712hlorobenzeneNDug/kg5.40.4212,2-DichloroethaneNDug/kg1.10.1213,2-DichloroethaneNDug/kg1.10.1213,1-DichloroethaneNDug/kg1.10.1213,2-DichloroptpaneNDug/kg1.10.1313,3-DichloroptpaneNDug/kg1.10.1313,3-DichloroptpaneNDug/kg1.10.1313,3-DichloroptpaneNDug/kg1.10.1313,3-DichloroptpaneNDug/kg1.10.1313,3-DichloroptpaneNDug/kg1.10.1313,3-DichloroptpaneNDug/kg1.10.1313,1-DichloroptpaneNDug/kg1.10.1313,2-DichloroptpaneNDug/kg1.10.1313,2-DichloroptpaneNDug/kg1.10.1313,2-DichloroptpaneNDug/kg1.10.1313,2-DichloroptpaneNDug/kg1.10.1313,2-DichloroptpaneNDug/kg1.10.1313,2-DichloroptpaneNDug/kg1.10.1413,11.1	1,2-Dichloropropane	ND			3.8	0.24	1
NDug/kg1.60.331FetrachloroetheneNDug/kg1.10.151ChlorobenzeneNDug/kg1.10.371ChlorobenzeneNDug/kg1.10.3711,2-DichloroethaneNDug/kg1.10.1211,1-TrichloroethaneNDug/kg1.10.1211,1-TrichloroethaneNDug/kg1.10.1212,DichloropropeneNDug/kg1.10.1313romodichloromethaneNDug/kg1.10.1313romodichloropropeneNDug/kg1.10.1313.3-Dichloropropene, TotalNDug/kg1.10.1313romoformNDug/kg1.10.13113.3-Dichloropropene, TotalNDug/kg1.10.1313.4-Dichloropropene, TotalNDug/kg1.10.1313.2-DichloropropeneNDug/kg1.10.1313.2-Dichloropropene, TotalNDug/kg1.60.2113.2-DichloropropeneNDug/kg1.60.2113.2-DichloropropeneNDug/kg1.60.2213.3-DichloropropeneNDug/kg1.60.2213.1-DichloropropeneNDug/kg2.20.3613.1-DichloropropeneNDug/kg2.20.3613.1-Dich	Dibromochloromethane	ND			1.1	0.16	1
ND ug/kg 1.1 0.37 1 Trichloroftuoromethane ND ug/kg 5.4 0.42 1 1,2-Dichloroethane ND ug/kg 1.1 0.12 1 1,1-Trichloroethane ND ug/kg 1.1 0.12 1 3romodichloromethane ND ug/kg 1.1 0.12 1 arans-1,3-Dichloropropene ND ug/kg 1.1 0.13 1 1,3-Dichloropropene ND ug/kg 1.1 0.13 1 1,3-Dichloropropene ND ug/kg 1.1 0.13 1 1,1-Dichloropropene ND ug/kg 1.1 0.13 1 1,2-Z-Tetrachloroethane ND ug/kg 1.1 0.11 1 3dromoferm ND ug/kg 1.1 0.11 1 1,2-Z-Tetrachloroethane ND ug/kg 1.6 0.21 1 1,1-Dichloroethane ND ug/kg 1.6 0.32 <t< td=""><td>1,1,2-Trichloroethane</td><td>ND</td><td></td><td></td><td>1.6</td><td>0.33</td><td>1</td></t<>	1,1,2-Trichloroethane	ND			1.6	0.33	1
DhorobenzeneNDug/kg1.10.371TrichlorofluoromethaneNDug/kg5.40.4211,2-DichloroethaneNDug/kg1.10.121atomodichloromethaneNDug/kg1.10.121atomodichloromethaneNDug/kg1.10.131atomodichloropropeneNDug/kg1.10.131atomodichloropropeneNDug/kg1.10.131atomodichloropropeneNDug/kg1.10.131atomodichloropropeneNDug/kg1.10.131atomodichloropropeneNDug/kg1.10.131atomodichloropropeneNDug/kg1.10.131atomodichloropropeneNDug/kg1.10.131atomoformNDug/kg1.10.111atomoformNDug/kg1.10.131atomoformNDug/kg1.10.131atomoformNDug/kg1.10.141atomoformNDug/kg1.10.141atomoformNDug/kg2.20.361atomoformNDug/kg2.20.341atomoformNDug/kg1.10.281atomoformNDug/kg1.10.281atomoformNDug/kg2.20.341	Tetrachloroethene	ND		ug/kg	1.1	0.15	1
ADD ug/kg 1.1 0.12 1 1,1-Trichloroethane ND ug/kg 1.1 0.12 1 aromodichloromethane ND ug/kg 1.1 0.12 1 aromodichloromethane ND ug/kg 1.1 0.13 1 arans-1,3-Dichloropropene ND ug/kg 1.1 0.13 1 isi-1,3-Dichloropropene, Total ND ug/kg 1.1 0.13 1 .1,1-Dichloropropene, Total ND ug/kg 5.4 0.15 1 .1,2-2-Tetrachloroethane ND ug/kg 1.1 0.11 1 .1,2,2-Tetrachloroethane ND ug/kg 1.1 0.11 1 .1,2,2-Tetrachloroethane ND ug/kg 1.1 0.13 1 .1,1,2,2-Tetrachloroethane ND ug/kg 1.1 0.13 1 .1,1,2,2-Tetrachloroethane ND ug/kg 1.6 0.21 1 .1,1,2,2-Tetrachloroethane ND ug/kg </td <td>Chlorobenzene</td> <td>ND</td> <td></td> <td></td> <td>1.1</td> <td>0.37</td> <td>1</td>	Chlorobenzene	ND			1.1	0.37	1
ND ug/kg 1.1 0.12 1 aromodichloromethane ND ug/kg 1.1 0.19 1 aromodichloromethane ND ug/kg 1.1 0.13 1 arans-1,3-Dichloropropene ND ug/kg 1.1 0.13 1 sis-1,3-Dichloropropene ND ug/kg 1.1 0.13 1 ,3-Dichloropropene, Total ND ug/kg 5.4 0.15 1 ,1-Dichloropropene ND ug/kg 1.1 0.13 1 ,12,2-Tetrachloroethane ND ug/kg 1.1 0.11 1 3romoform ND ug/kg 1.1 0.11 1 3romoform ND ug/kg 1.1 0.11 1 3romoform ND ug/kg 1.1 0.13 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.6 0.21 1 Stribuenzene ND ug/kg 2.4 0.36 1 <td>Trichlorofluoromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>5.4</td> <td>0.42</td> <td>1</td>	Trichlorofluoromethane	ND		ug/kg	5.4	0.42	1
ND ug/kg 1.1 0.19 1 aromodichloromethane ND ug/kg 1.1 0.13 1 isar.1,3-Dichloropropene ND ug/kg 1.1 0.13 1 isar.1,3-Dichloropropene, Total ND ug/kg 1.1 0.13 1 j.3-Dichloropropene, Total ND ug/kg 5.4 0.15 1 aromodichloropropene, Total ND ug/kg 4.3 0.25 1 aromodichloropropene, Total ND ug/kg 1.1 0.11 1 aromodichloropropene ND ug/kg 1.1 0.11 1 aromodichloropropene ND ug/kg 1.1 0.11 1 aromodichloropropene ND ug/kg 1.6 0.21 1 aromodichloropropene ND ug/kg 1.6 0.32 1 aromodichloropropene ND ug/kg 2.2 0.36 1 Chloropethane ND ug/kg 2.2	1,2-Dichloroethane	ND		ug/kg	1.1	0.12	1
ND ug/kg 1.1 0.13 1 isis-1,3-Dichloropropene ND ug/kg 1.1 0.13 1 isis-1,3-Dichloropropene ND ug/kg 1.1 0.13 1 i,3-Dichloropropene, Total ND ug/kg 5.4 0.15 1 i,1-Dichloropropene ND ug/kg 4.3 0.25 1 aromoform ND ug/kg 1.1 0.11 1 i,1,2,2-Tetrachloroethane ND ug/kg 1.1 0.13 1 asenzene ND ug/kg 1.1 0.11 1 1 roluene ND ug/kg 1.1 0.13 1 1 chloromethane ND ug/kg 1.1 0.13 1 1 chloromethane ND ug/kg 1.6 0.21 1 1 chloromethane ND ug/kg 2.2 0.36 1 1 chloropethane ND ug/kg	1,1,1-Trichloroethane	ND		ug/kg	1.1	0.12	1
ND ug/kg 1.1 0.13 1 ,3-Dichloropropene ND ug/kg 1.1 0.13 1 ,3-Dichloropropene, Total ND ug/kg 5.4 0.15 1 ,1-Dichloropropene ND ug/kg 4.3 0.25 1 Bromoform ND ug/kg 1.1 0.11 1 ,1,2,2-Tetrachloroethane ND ug/kg 1.1 0.11 1 Barzene ND ug/kg 1.1 0.13 1 Foluene ND ug/kg 1.1 0.11 1 Ethylbenzene ND ug/kg 1.6 0.21 1 Chloromethane ND ug/kg 5.4 0.32 1 Chloromethane ND ug/kg 2.2 0.36 1 Chloroethane ND ug/kg 2.2 0.34 1 Chloroethane ND ug/kg 1.1 0.28 1 Chloroethene	Bromodichloromethane	ND			1.1	0.19	1
Application ND ug/kg 1.1 0.13 1 1,1-Dichloropropene, Total ND ug/kg 5.4 0.15 1 3romoform ND ug/kg 4.3 0.25 1 3romoform ND ug/kg 1.1 0.11 1 3romoform ND ug/kg 1.1 0.11 1 3romoform ND ug/kg 1.1 0.11 1 3romoform ND ug/kg 1.1 0.13 1 3romoform ND ug/kg 1.1 0.13 1 3romoform ND ug/kg 1.1 0.13 1 Striptoper ND ug/kg 1.6 0.21 1 Striptoper ND ug/kg 5.4 0.32 1 Striptoper ND ug/kg 2.2 0.36 1 Vinyl chloride ND ug/kg 2.2 0.34 1 Chloroethene ND<	trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.13	1
ND ug/kg 5.4 0.15 1 Bromoform ND ug/kg 4.3 0.25 1 Armonform ND ug/kg 1.1 0.11 1 Armonform ND ug/kg 1.1 0.11 1 Bromoform ND ug/kg 1.1 0.11 1 Bromoform ND ug/kg 1.1 0.13 1 Bromoform ND ug/kg 1.6 0.21 1 Store ND ug/kg 1.1 0.14 1 Chloromethane ND ug/kg 5.4 0.32 1 Chloromethane ND ug/kg 5.4 0.32 1 Stromomethane ND ug/kg 2.2 0.36 1 Vinyl chloride ND ug/kg 2.2 0.34 1 Chloroethane ND ug/kg 1.1 0.23 1 .1-Dichloroethene ND ug/kg 1.6 0.23 1	cis-1,3-Dichloropropene	ND		ug/kg	1.1	0.13	1
Arrow Life ND ug/kg 4.3 0.25 1 Bromoform ND ug/kg 1.1 0.11 1 Agence ND ug/kg 1.1 0.13 1 Benzene ND ug/kg 1.6 0.21 1 Folgene ND ug/kg 1.6 0.21 1 Ethylbenzene ND ug/kg 1.1 0.14 1 Chloromethane ND ug/kg 5.4 0.32 1 Chloromethane ND ug/kg 2.2 0.36 1 Vinyl chloride ND ug/kg 2.2 0.34 1 Chloroethane ND ug/kg 2.2 0.34 1 Chloroethane ND ug/kg 1.1 0.28 1 J.1-Dichloroethene ND ug/kg 1.6 0.23 1	1,3-Dichloropropene, Total	ND		ug/kg	1.1	0.13	1
NDug/kg1.10.111BenzeneNDug/kg1.10.131FolueneNDug/kg1.60.211EthylbenzeneNDug/kg1.10.141ChloromethaneNDug/kg5.40.321SomomethaneNDug/kg2.20.361ChloroethaneNDug/kg2.20.341ChloroethaneNDug/kg1.10.281ChloroethaneNDug/kg1.10.281ChloroethaneNDug/kg1.10.281ChloroethaneNDug/kg1.10.231ChloroethaneNDug/kg1.60.231ChloroetheneNDug/kg1.60.231ChloroetheneNDug/kg1.60.231ChloroetheneNDug/kg1.10.131	1,1-Dichloropropene	ND		ug/kg	5.4	0.15	1
Benzene ND ug/kg 1.1 0.13 1 Toluene ND ug/kg 1.6 0.21 1 Ethylbenzene ND ug/kg 1.1 0.14 1 Chloromethane ND ug/kg 5.4 0.32 1 Stronomethane ND ug/kg 2.2 0.36 1 Vinyl chloride ND ug/kg 2.2 0.13 1 Chloroethane ND ug/kg 2.2 0.34 1 Chloroethane ND ug/kg 1.1 0.28 1 Chloroethane ND ug/kg 1.1 0.28 1 Chloroethene ND ug/kg 1.1 0.28 1 I,1-Dichloroethene ND ug/kg 1.6 0.23 1 rans-1,2-Dichloroethene ND ug/kg 1.6 0.13 1	Bromoform	ND		ug/kg	4.3	0.25	1
Toluene ND ug/kg 1.6 0.21 1 Ethylbenzene ND ug/kg 1.1 0.14 1 Chloromethane ND ug/kg 5.4 0.32 1 Stromomethane ND ug/kg 2.2 0.36 1 /inyl chloride ND ug/kg 2.2 0.13 1 Chloroethane ND ug/kg 2.2 0.34 1 (inyl chloride ND ug/kg 2.2 0.34 1 (inyl chloride ND ug/kg 1.1 0.28 1 (inyl chloroethane ND ug/kg 1.1 0.28 1 (inyl chloroethane ND ug/kg 1.6 0.23 1 (intropethane ND ug/kg 1.6 0.23 1 (intropethane ND ug/kg 1.6 0.23 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	1.1	0.11	1
Ethylbenzene ND ug/kg 1.1 0.14 1 Chloromethane ND ug/kg 5.4 0.32 1 Bromomethane ND ug/kg 2.2 0.36 1 Vinyl chloride ND ug/kg 2.2 0.13 1 Chloroethane ND ug/kg 2.2 0.34 1 Chloroethane ND ug/kg 1.1 0.28 1 I,1-Dichloroethene ND ug/kg 1.1 0.28 1 rans-1,2-Dichloroethene ND ug/kg 1.6 0.23 1 Trichloroethene ND ug/kg 1.1 0.13 1	Benzene	ND		ug/kg	1.1	0.13	1
Chloromethane ND ug/kg 5.4 0.32 1 Bromomethane ND ug/kg 2.2 0.36 1 /inyl chloride ND ug/kg 2.2 0.13 1 Chloroethane ND ug/kg 2.2 0.34 1 Chloroethane ND ug/kg 1.1 0.28 1 I,1-Dichloroethene ND ug/kg 1.6 0.23 1 rans-1,2-Dichloroethene ND ug/kg 1.1 0.13 1	Toluene	ND		ug/kg	1.6	0.21	1
ND ug/kg 2.2 0.36 1 /inyl chloride ND ug/kg 2.2 0.13 1 Chloroethane ND ug/kg 2.2 0.34 1 1,1-Dichloroethene ND ug/kg 1.1 0.28 1 rans-1,2-Dichloroethene ND ug/kg 1.6 0.23 1 Trichloroethene ND ug/kg 1.1 0.13 1	Ethylbenzene	ND		ug/kg	1.1	0.14	1
ND ug/kg 2.2 0.13 1 Chloroethane ND ug/kg 2.2 0.34 1 1,1-Dichloroethene ND ug/kg 1.1 0.28 1 rans-1,2-Dichloroethene ND ug/kg 1.6 0.23 1 richloroethene ND ug/kg 1.1 0.13 1	Chloromethane	ND		ug/kg	5.4	0.32	1
ND ug/kg 2.2 0.34 1 1,1-Dichloroethene ND ug/kg 1.1 0.28 1 rans-1,2-Dichloroethene ND ug/kg 1.6 0.23 1 richloroethene ND ug/kg 1.1 0.13 1	Bromomethane	ND		ug/kg	2.2	0.36	1
ND ug/kg 1.1 0.28 1 rans-1,2-Dichloroethene ND ug/kg 1.6 0.23 1 Frichloroethene ND ug/kg 1.1 0.13 1	Vinyl chloride	ND		ug/kg	2.2	0.13	1
rans-1,2-Dichloroethene ND ug/kg 1.6 0.23 1 Trichloroethene ND ug/kg 1.1 0.13 1	Chloroethane	ND		ug/kg	2.2	0.34	1
TrichloroetheneNDug/kg1.10.131	1,1-Dichloroethene	ND		ug/kg	1.1	0.28	1
	trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.23	1
,2-Dichlorobenzene ND ug/kg 5.4 0.16 1	Trichloroethene	ND		ug/kg	1.1	0.13	1
	1,2-Dichlorobenzene	ND		ug/kg	5.4	0.16	1

					Ś	Serial No	0:05291515:26
Project Name:	505 CLOVE ROAD				Lab Nu	mber:	L1511165
Project Number:	505 CLOVE				Report	Date:	05/29/15
	000 020 12	SAMPL	E RESULTS	6			00/20/10
Lab ID:	L1511165-04				Date Col	lected.	05/20/15 11:30
Client ID:	TP-11				Date Red		05/21/15
Sample Location:	VILLAGE OF BLOOMING	G GROVE	, NY		Field Pre		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough La	b					
					5 4	0.44	
1,3-Dichlorobenzene		ND ND		ug/kg ug/kg	5.4	0.14	1
Methyl tert butyl ether		ND		ug/kg	2.2	0.09	1
p/m-Xylene		ND		ug/kg	2.2	0.03	1
o-Xylene		ND			2.2	0.18	1
Xylenes, Total		ND		ug/kg	2.2	0.18	1
				ug/kg			
cis-1,2-Dichloroethene		ND ND		ug/kg	1.1	0.15	1
				ug/kg			
Dibromomethane		ND		ug/kg	11	0.18	1
Styrene		ND		ug/kg	2.2	0.43	1
Dichlorodifluoromethane		ND		ug/kg	11	0.20	1
Acetone		ND		ug/kg	11	1.1	1
Carbon disulfide		ND		ug/kg	11	1.2	1
2-Butanone		ND		ug/kg	11	0.29	1
Vinyl acetate		ND		ug/kg	11	0.14	1
4-Methyl-2-pentanone		ND		ug/kg	11	0.26	1
1,2,3-Trichloropropane		ND		ug/kg	11	0.18	1
2-Hexanone		ND		ug/kg	11	0.72	1
Bromochloromethane		ND		ug/kg	5.4	0.30	1
2,2-Dichloropropane		ND		ug/kg	5.4	0.24	1
1,2-Dibromoethane		ND		ug/kg	4.3	0.19	1
1,3-Dichloropropane		ND		ug/kg	5.4	0.16	1
1,1,1,2-Tetrachloroethane		ND		ug/kg	1.1	0.34	1
Bromobenzene		ND		ug/kg	5.4	0.22	1
n-Butylbenzene		ND		ug/kg	1.1	0.12	1
sec-Butylbenzene		ND		ug/kg	1.1	0.13	1
tert-Butylbenzene		ND		ug/kg	5.4	0.14	1
o-Chlorotoluene		ND		ug/kg	5.4	0.17	1
p-Chlorotoluene		ND		ug/kg	5.4	0.14	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	5.4	0.43	1
Hexachlorobutadiene		ND		ug/kg	5.4	0.24	1
Isopropylbenzene		ND		ug/kg	1.1	0.11	1
p-Isopropyltoluene		ND		ug/kg	1.1	0.13	1
Naphthalene		ND		ug/kg	5.4	0.15	1
Acrylonitrile		ND		ug/kg	11	0.55	1
n-Propylbenzene		ND		ug/kg	1.1	0.12	1
1,2,3-Trichlorobenzene		ND		ug/kg	5.4	0.16	1
1,2,4-Trichlorobenzene		ND		ug/kg	5.4	0.20	1
1,3,5-Trimethylbenzene		ND		ug/kg	5.4	0.15	1

					:	Serial_No	0:05291515:26
Project Name:	505 CLOVE ROAD				Lab Nu	mber:	L1511165
Project Number:	505 CLOVE				Report	Date:	05/29/15
		SAMP		5			
Lab ID:	L1511165-04				Date Col	llected:	05/20/15 11:30
Client ID:	TP-11				Date Re	ceived:	05/21/15
Sample Location:	VILLAGE OF BLOOM	ING GROVI	E, NY		Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westborough	n Lab					
1,2,4-Trimethylbenzene		ND		ug/kg	5.4	0.15	1
1,4-Dioxane		ND		ug/kg	110	16.	1
p-Diethylbenzene		ND		ug/kg	4.3	0.17	1
p-Ethyltoluene		ND		ug/kg	4.3	0.13	1
1,2,4,5-Tetramethylbenzer	ne	ND		ug/kg	4.3	0.14	1
Ethyl ether		ND		ug/kg	5.4	0.28	1
trans-1,4-Dichloro-2-buten	e	ND		ug/kg	5.4	0.42	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	97		70-130	

 Project Name:
 505 CLOVE ROAD
 Lab Number:
 L1511165

 Project Number:
 505 CLOVE
 Report Date:
 05/29/15

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:05/26/15 09:10Analyst:BN

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Westborough La	b for sample(s): 01-04	Batch:	WG788359-3
Methylene chloride	ND	ug/kg	10	1.1
1,1-Dichloroethane	ND	ug/kg	1.5	0.09
Chloroform	ND	ug/kg	1.5	0.37
Carbon tetrachloride	ND	ug/kg	1.0	0.21
1,2-Dichloropropane	ND	ug/kg	3.5	0.23
Dibromochloromethane	ND	ug/kg	1.0	0.15
2-Chloroethylvinyl ether	ND	ug/kg	20	0.62
1,1,2-Trichloroethane	ND	ug/kg	1.5	0.30
Tetrachloroethene	ND	ug/kg	1.0	0.14
Chlorobenzene	ND	ug/kg	1.0	0.35
Trichlorofluoromethane	ND	ug/kg	5.0	0.39
1,2-Dichloroethane	ND	ug/kg	1.0	0.11
1,1,1-Trichloroethane	ND	ug/kg	1.0	0.11
Bromodichloromethane	ND	ug/kg	1.0	0.17
trans-1,3-Dichloropropene	ND	ug/kg	1.0	0.12
cis-1,3-Dichloropropene	ND	ug/kg	1.0	0.12
1,3-Dichloropropene, Total	ND	ug/kg	1.0	0.12
1,1-Dichloropropene	ND	ug/kg	5.0	0.14
Bromoform	ND	ug/kg	4.0	0.24
1,1,2,2-Tetrachloroethane	ND	ug/kg	1.0	0.10
Benzene	ND	ug/kg	1.0	0.12
Toluene	ND	ug/kg	1.5	0.19
Ethylbenzene	ND	ug/kg	1.0	0.13
Chloromethane	ND	ug/kg	5.0	0.29
Bromomethane	ND	ug/kg	2.0	0.34
Vinyl chloride	ND	ug/kg	2.0	0.12
Chloroethane	ND	ug/kg	2.0	0.32
1,1-Dichloroethene	ND	ug/kg	1.0	0.26
trans-1,2-Dichloroethene	ND	ug/kg	1.5	0.21

 Project Name:
 505 CLOVE ROAD
 Lab Number:
 L1511165

 Project Number:
 505 CLOVE
 Report Date:
 05/29/15

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:05/26/15 09:10Analyst:BN

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s): 01-04	Batch:	WG788359-3
Trichloroethene	ND	ug/kg	1.0	0.12
1,2-Dichlorobenzene	ND	ug/kg	5.0	0.15
1,3-Dichlorobenzene	ND	ug/kg	5.0	0.14
1,4-Dichlorobenzene	ND	ug/kg	5.0	0.14
Methyl tert butyl ether	ND	ug/kg	2.0	0.08
p/m-Xylene	ND	ug/kg	2.0	0.20
o-Xylene	ND	ug/kg	2.0	0.17
Xylenes, Total	ND	ug/kg	2.0	0.17
cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.14
1,2-Dichloroethene, Total	ND	ug/kg	1.0	0.14
Dibromomethane	ND	ug/kg	10	0.16
Styrene	ND	ug/kg	2.0	0.40
Dichlorodifluoromethane	ND	ug/kg	10	0.19
Acetone	ND	ug/kg	10	1.0
Carbon disulfide	ND	ug/kg	10	1.1
2-Butanone	ND	ug/kg	10	0.27
Vinyl acetate	ND	ug/kg	10	0.13
4-Methyl-2-pentanone	ND	ug/kg	10	0.24
1,2,3-Trichloropropane	ND	ug/kg	10	0.16
2-Hexanone	ND	ug/kg	10	0.67
Bromochloromethane	ND	ug/kg	5.0	0.28
2,2-Dichloropropane	ND	ug/kg	5.0	0.23
1,2-Dibromoethane	ND	ug/kg	4.0	0.17
1,3-Dichloropropane	ND	ug/kg	5.0	0.14
1,1,1,2-Tetrachloroethane	ND	ug/kg	1.0	0.32
Bromobenzene	ND	ug/kg	5.0	0.21
n-Butylbenzene	ND	ug/kg	1.0	0.11
sec-Butylbenzene	ND	ug/kg	1.0	0.12
tert-Butylbenzene	ND	ug/kg	5.0	0.14

 Project Name:
 505 CLOVE ROAD
 Lab Number:
 L1511165

 Project Number:
 505 CLOVE
 Report Date:
 05/29/15

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:05/26/15 09:10Analyst:BN

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	/estborough La	b for sample(s): 01-04	Batch:	WG788359-3
o-Chlorotoluene	ND	ug/kg	5.0	0.16
p-Chlorotoluene	ND	ug/kg	5.0	0.13
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.0	0.40
Hexachlorobutadiene	ND	ug/kg	5.0	0.23
Isopropylbenzene	ND	ug/kg	1.0	0.10
p-Isopropyltoluene	ND	ug/kg	1.0	0.12
Naphthalene	ND	ug/kg	5.0	0.14
Acrylonitrile	ND	ug/kg	10	0.51
Diisopropyl Ether	ND	ug/kg	4.0	0.14
Tert-Butyl Alcohol	ND	ug/kg	60	2.9
n-Propylbenzene	ND	ug/kg	1.0	0.11
1,2,3-Trichlorobenzene	ND	ug/kg	5.0	0.15
1,2,4-Trichlorobenzene	ND	ug/kg	5.0	0.18
1,3,5-Trimethylbenzene	ND	ug/kg	5.0	0.14
1,2,4-Trimethylbenzene	ND	ug/kg	5.0	0.14
Methyl Acetate	ND	ug/kg	20	0.27
Ethyl Acetate	ND	ug/kg	20	0.92
Acrolein	ND	ug/kg	25	8.1
Cyclohexane	ND	ug/kg	20	0.15
1,4-Dioxane	ND	ug/kg	100	14.
Freon-113	ND	ug/kg	20	0.27
p-Diethylbenzene	ND	ug/kg	4.0	0.16
p-Ethyltoluene	ND	ug/kg	4.0	0.12
1,2,4,5-Tetramethylbenzene	ND	ug/kg	4.0	0.13
Tetrahydrofuran	ND	ug/kg	20	1.0
Ethyl ether	ND	ug/kg	5.0	0.26
trans-1,4-Dichloro-2-butene	ND	ug/kg	5.0	0.39
Methyl cyclohexane	ND	ug/kg	4.0	0.15
Ethyl-Tert-Butyl-Ether	ND	ug/kg	4.0	0.12

Project Name:	505 CLOVE ROAD	Lab Number:	L1511165
Project Number:	505 CLOVE	Report Date:	05/29/15

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	05/26/15 09:10
Analyst:	BN

Parameter	Result	Qualifier Units	8	RL	MDL	
Volatile Organics by GC/MS - V	Vestborough Lat	o for sample(s):	01-04	Batch:	WG788359-3	
Tertiary-Amyl Methyl Ether	ND	ug/k	g	4.0	0.10	

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	105		70-130			
Toluene-d8	106		70-130			
4-Bromofluorobenzene	123		70-130			
Dibromofluoromethane	94		70-130			

Batch Quality Control

Lab Number: L1511165 Report Date: 05/29/15

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04 Batch: WG788359-1 WG788359-2 Methylene chloride 96 70-130 30 97 1 1,1-Dichloroethane 95 92 70-130 3 30 Chloroform 96 70-130 30 98 2 Carbon tetrachloride 30 107 102 70-130 5 1,2-Dichloropropane 95 70-130 30 96 1 Dibromochloromethane 70-130 30 84 99 16 2-Chloroethylvinyl ether 94 91 70-130 3 30 1,1,2-Trichloroethane 93 70-130 30 79 16 Tetrachloroethene 70-130 30 93 99 6 Chlorobenzene 70-130 30 103 100 3 112 102 70-139 30 Trichlorofluoromethane 9 1,2-Dichloroethane 91 91 70-130 0 30 1,1,1-Trichloroethane 104 98 70-130 30 6 Bromodichloromethane 95 70-130 30 94 1 trans-1,3-Dichloropropene 70-130 30 77 90 16 cis-1,3-Dichloropropene 70-130 30 95 95 0 1,1-Dichloropropene 104 95 70-130 9 30 Bromoform 85 94 70-130 10 30 1.1.2.2-Tetrachloroethane 70-130 30 82 78 5 70-130 30 Benzene 99 96 3 Toluene 90 70-130 11 30 81

Batch Quality Control

 Lab Number:
 L1511165

 Report Date:
 05/29/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04 Batch: WG788359-1 WG788359-2 Ethylbenzene 109 96 70-130 13 30 Chloromethane 95 86 52-130 10 30 Bromomethane 121 57-147 30 127 5 Vinyl chloride 30 109 96 67-130 13 Chloroethane 107 102 50-151 30 5 65-135 30 1.1-Dichloroethene 112 97 14 trans-1,2-Dichloroethene 103 96 70-130 7 30 Trichloroethene 109 105 70-130 30 4 1.2-Dichlorobenzene 70-130 30 90 102 13 1,3-Dichlorobenzene 104 70-130 30 107 3 107 105 70-130 30 1.4-Dichlorobenzene 2 Methyl tert butyl ether 92 92 66-130 0 30 p/m-Xylene 107 101 70-130 30 6 o-Xylene 102 70-130 30 105 3 cis-1,2-Dichloroethene 102 98 70-130 30 4 Dibromomethane 98 70-130 30 97 1 Styrene 101 100 70-130 1 30 Dichlorodifluoromethane 115 102 30-146 12 30 54-140 30 Acetone 86 80 7 Carbon disulfide 59-130 30 106 95 11 2-Butanone 87 82 70-130 30 6

Batch Quality Control

Lab Number: L1511165 Report Date: 05/29/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04 Batch: WG788359-1 WG788359-2 Vinyl acetate 90 90 70-130 0 30 4-Methyl-2-pentanone 86 88 70-130 2 30 1,2,3-Trichloropropane 85 68-130 12 30 96 30 2-Hexanone 91 79 70-130 14 Bromochloromethane 105 105 70-130 0 30 2,2-Dichloropropane 70-130 30 99 94 5 1,2-Dibromoethane 87 96 70-130 10 30 1,3-Dichloropropane 78 92 69-130 16 30 1,1,1,2-Tetrachloroethane 99 70-130 30 96 3 Bromobenzene 70-130 30 104 103 1 n-Butylbenzene 109 102 70-130 30 7 sec-Butylbenzene 112 100 70-130 11 30 tert-Butylbenzene 112 101 70-130 30 10 o-Chlorotoluene 106 96 70-130 30 10 p-Chlorotoluene 70-130 30 112 97 14 1,2-Dibromo-3-chloropropane 88 68-130 30 75 16 Hexachlorobutadiene 105 113 67-130 7 30 Isopropylbenzene 108 98 70-130 10 30 p-Isopropyltoluene 70-130 30 111 104 7 Naphthalene 98 70-130 30 82 18 Acrylonitrile 89 91 70-130 2 30

Batch Quality Control

Lab Number: L1511165 Report Date: 05/29/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04 Batch: WG788359-1 WG788359-2 **Diisopropyl Ether** 92 92 66-130 0 30 Tert-Butyl Alcohol 77 79 70-130 3 30 n-Propylbenzene 112 99 70-130 12 30 117 30 1,2,3-Trichlorobenzene 93 70-130 23 1,2,4-Trichlorobenzene 96 109 70-130 13 30 1,3,5-Trimethylbenzene 70-130 30 110 99 11 1,2,4-Trimethylbenzene 113 102 70-130 10 30 Methyl Acetate 85 84 51-146 30 1 Ethyl Acetate 70-130 30 86 88 2 70-130 30 Acrolein 91 89 2 Cyclohexane 104 95 59-142 9 30 1,4-Dioxane 78 79 65-136 1 30 Freon-113 101 50-139 30 111 9 p-Diethylbenzene 110 104 70-130 30 6 p-Ethyltoluene 70-130 30 111 100 10 1,2,4,5-Tetramethylbenzene 92 102 70-130 30 10 Tetrahydrofuran 87 90 66-130 3 30 Ethyl ether 118 120 67-130 2 30 trans-1.4-Dichloro-2-butene 82 70-130 30 88 7 Methyl cyclohexane 70-130 30 110 101 9 Ethyl-Tert-Butyl-Ether 91 90 70-130 30 1

Lab Control Sample Analysis Batch Quality Control

Project Name:505 CLOVE ROADProject Number:505 CLOVE

 Lab Number:
 L1511165

 Report Date:
 05/29/15

Parameter	LCS %Recovery	Qual	-	CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04 E	Batch:	WG788359-1	WG788359-2			
Tertiary-Amyl Methyl Ether	92			93		70-130	1		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	91		91		70-130	
Toluene-d8	86		100		70-130	
4-Bromofluorobenzene	110		96		70-130	
Dibromofluoromethane	103		103		70-130	

SEMIVOLATILES

		Serial_N	0:05291515:26
Project Name:	505 CLOVE ROAD	Lab Number:	L1511165
Project Number:	505 CLOVE	Report Date:	05/29/15
	SAMPLE RESULTS		
Lab ID:	L1511165-01	Date Collected:	05/20/15 08:56
Client ID:	TP-4	Date Received:	05/21/15
Sample Location:	VILLAGE OF BLOOMING GROVE, NY	Field Prep:	Not Specified
Matrix:	Soil	Extraction Metho	d:EPA 3546
Analytical Method:	1,8270D	Extraction Date:	05/26/15 08:49
Analytical Date:	05/29/15 00:05		
Analyst:	PS		
Percent Solids:	87%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	tborough Lab					
Acenaphthene	290		ug/kg	150	39.	1
1,2,4-Trichlorobenzene	ND		ug/kg	190	62.	1
Hexachlorobenzene	ND		ug/kg	110	35.	1
Bis(2-chloroethyl)ether	ND		ug/kg	170	53.	1
2-Chloronaphthalene	ND		ug/kg	190	62.	1
1,2-Dichlorobenzene	ND		ug/kg	190	62.	1
1,3-Dichlorobenzene	ND		ug/kg	190	60.	1
1,4-Dichlorobenzene	ND		ug/kg	190	58.	1
3,3'-Dichlorobenzidine	ND		ug/kg	190	50.	1
2,4-Dinitrotoluene	ND		ug/kg	190	41.	1
2,6-Dinitrotoluene	ND		ug/kg	190	48.	1
Fluoranthene	18000	E	ug/kg	110	35.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	190	58.	1
4-Bromophenyl phenyl ether	ND		ug/kg	190	44.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	67.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	200	57.	1
Hexachlorobutadiene	ND		ug/kg	190	54.	1
Hexachlorocyclopentadiene	ND		ug/kg	540	120	1
Hexachloroethane	ND		ug/kg	150	34.	1
Isophorone	ND		ug/kg	170	50.	1
Naphthalene	180	J	ug/kg	190	63.	1
Nitrobenzene	ND		ug/kg	170	45.	1
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/kg	150	40.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	190	56.	1
Bis(2-Ethylhexyl)phthalate	400		ug/kg	190	50.	1
Butyl benzyl phthalate	ND		ug/kg	190	37.	1
Di-n-butylphthalate	ND		ug/kg	190	37.	1
Di-n-octylphthalate	ND		ug/kg	190	47.	1
Diethyl phthalate	ND		ug/kg	190	40.	1
Dimethyl phthalate	ND		ug/kg	190	48.	1

		Serial_No:05291515:26					
Project Name:	505 CLOVE ROAD				Lab Nu		L1511165
Project Number:	505 CLOVE				Report		05/29/15
		SAMP		S			00120110
Lab ID:	L1511165-01				Date Col	lected:	05/20/15 08:56
Client ID:	TP-4				Date Re		05/21/15
Sample Location:	VILLAGE OF BLOOM		E, NY		Field Pre		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organ	ics by GC/MS - Westbor	ough Lab					
Benzo(a)anthracene		7400		ug/kg	110	37.	1
Benzo(a)pyrene		7800	E	ug/kg	150	46.	1
Benzo(b)fluoranthene		10000	E	ug/kg	110	38.	1
Benzo(k)fluoranthene		3300		ug/kg	110	36.	1
Chrysene		7000		ug/kg	110	37.	1
Acenaphthylene		440			150	35.	1
Anthracene		1700		ug/kg	110	35.	1
Benzo(ghi)perylene		4900		ug/kg	110	32.	1
Fluorene		350		ug/kg	190	39. 54.	1
Phenanthrene		7700	E	ug/kg		54. 37.	1
			E	ug/kg	110		
Dibenzo(a,h)anthracene		1200		ug/kg	110	37.	1
Indeno(1,2,3-cd)Pyrene		5300		ug/kg	150	42.	1
Pyrene		16000	E	ug/kg	110	37.	1
Biphenyl		ND		ug/kg	430	62.	1
4-Chloroaniline		ND		ug/kg	190	50.	1
2-Nitroaniline		ND		ug/kg	190	54.	1
3-Nitroaniline		ND		ug/kg	190	52.	1
4-Nitroaniline		ND		ug/kg	190	51.	1
Dibenzofuran		260		ug/kg	190	63.	1
2-Methylnaphthalene		160	J	ug/kg	230	61.	1
1,2,4,5-Tetrachlorobenzer	ne	ND		ug/kg	190	59.	1
Acetophenone		ND		ug/kg	190	59.	1
2,4,6-Trichlorophenol		ND		ug/kg	110	36.	1
P-Chloro-M-Cresol		ND		ug/kg	190	55.	1
2-Chlorophenol		ND		ug/kg	190	57.	1
2,4-Dichlorophenol		ND		ug/kg	170	61.	1
2,4-Dimethylphenol		ND		ug/kg	190	56.	1
2-Nitrophenol		ND		ug/kg	410	59.	1
4-Nitrophenol		ND		ug/kg	260	61.	1
2,4-Dinitrophenol		ND		ug/kg	910	260	1
4,6-Dinitro-o-cresol		ND		ug/kg	490	69.	1
Pentachlorophenol		ND		ug/kg	150	41.	1
Phenol		ND		ug/kg	190	56.	1
2-Methylphenol		ND		ug/kg	190	61.	1
3-Methylphenol/4-Methylp	henol	ND		ug/kg	270	62.	1
2,4,5-Trichlorophenol		ND		ug/kg	190	61.	1
Benzoic Acid		ND		ug/kg	610	190	1
Benzyl Alcohol		ND		ug/kg	190	58.	1
Carbazole		320		ug/kg	190	41.	1
				5.3			

						Serial_N	o:05291515:26		
Project Name:	505 CLOVE ROAD				Lab Nu	imber:	L1511165		
Project Number:	505 CLOVE				Report	Date:	05/29/15		
SAMPLE RESULTS									
Lab ID:	L1511165-01				Date Co	llected:	05/20/15 08:56		
Client ID:	TP-4				Date Re	ceived:	05/21/15		
Sample Location:	VILLAGE OF BLOOMI	NG GROVE	, NY		Field Pre	ep:	Not Specified		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab									

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	80		25-120	
Phenol-d6	88		10-120	
Nitrobenzene-d5	87		23-120	
2-Fluorobiphenyl	58		30-120	
2,4,6-Tribromophenol	70		10-136	
4-Terphenyl-d14	39		18-120	

	Serial_No:05					
Project Name:	505 CLOVE ROAD		Lab Number:	L1511165		
Project Number:	505 CLOVE		Report Date:	05/29/15		
		SAMPLE RESU	LTS			
Lab ID:	L1511165-01	D	Date Collected:	05/20/15 08:56		
Client ID:	TP-4		Date Received:	05/21/15		
Sample Location:	VILLAGE OF BLO	OMING GROVE, NY	Field Prep:	Not Specified		
Matrix:	Soil		Extraction Metho	d:EPA 3546		
Analytical Method:	1,8270D		Extraction Date:	05/26/15 08:49		
Analytical Date:	05/29/15 12:56					
Analyst:	PS					
Percent Solids:	87%					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Fluoranthene	13000		ug/kg	570	170	5
Benzo(a)pyrene	6800		ug/kg	760	230	5
Benzo(b)fluoranthene	8700		ug/kg	570	190	5
Phenanthrene	6800		ug/kg	570	180	5
Pyrene	11000		ug/kg	570	180	5

		Serial_N	0:05291515:26
Project Name:	505 CLOVE ROAD	Lab Number:	L1511165
Project Number:	505 CLOVE	Report Date:	05/29/15
	SAMPLE RESULTS		
Lab ID:	L1511165-02	Date Collected:	05/20/15 09:35
Client ID:	TP-6	Date Received:	05/21/15
Sample Location:	VILLAGE OF BLOOMING GROVE, NY	Field Prep:	Not Specified
Matrix:	Soil	Extraction Metho	d:EPA 3546
Analytical Method:	1,8270D	Extraction Date:	05/26/15 08:49
Analytical Date:	05/29/15 00:31		
Analyst:	PS		
Percent Solids:	82%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Acenaphthene	ND		ug/kg	160	41.	1
1,2,4-Trichlorobenzene	ND			200	65.	1
	ND		ug/kg		37.	1
Hexachlorobenzene			ug/kg	120		
Bis(2-chloroethyl)ether	ND		ug/kg	180	56.	1
2-Chloronaphthalene			ug/kg	200	65.	1
1,2-Dichlorobenzene	ND		ug/kg	200	65.	1
1,3-Dichlorobenzene	ND		ug/kg	200	62.	1
1,4-Dichlorobenzene	ND		ug/kg	200	60.	1
3,3'-Dichlorobenzidine	ND		ug/kg	200	53.	1
2,4-Dinitrotoluene	ND		ug/kg	200	43.	1
2,6-Dinitrotoluene	ND		ug/kg	200	51.	1
Fluoranthene	ND		ug/kg	120	36.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	200	60.	1
4-Bromophenyl phenyl ether	ND		ug/kg	200	46.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	240	70.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	210	60.	1
Hexachlorobutadiene	ND		ug/kg	200	56.	1
Hexachlorocyclopentadiene	ND		ug/kg	570	130	1
Hexachloroethane	ND		ug/kg	160	36.	1
Isophorone	ND		ug/kg	180	53.	1
Naphthalene	ND		ug/kg	200	66.	1
Nitrobenzene	ND		ug/kg	180	47.	1
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/kg	160	42.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	200	59.	1
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	200	52.	1
Butyl benzyl phthalate	ND		ug/kg	200	39.	1
Di-n-butylphthalate	ND		ug/kg	200	38.	1
Di-n-octylphthalate	ND		ug/kg	200	49.	1
Diethyl phthalate	ND		ug/kg	200	42.	1
Dimethyl phthalate	ND		ug/kg	200	50.	1

				Serial_No:05291515:26				
Project Name:	505 CLOVE ROAD				Lab Nu		L1511165	
Project Number:	505 CLOVE				Report	Date:	05/29/15	
		SAMPL	E RESULTS	6	Report		00/20/10	
Lab ID:	L1511165-02				Date Col	lected.	05/20/15 09:35	
Client ID:	TP-6				Date Red		05/21/15	
Sample Location:	VILLAGE OF BLOOMIN	G GROVE	, NY		Field Pre		Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organi	ics by GC/MS - Westborou	gh Lab						
Benzo(a)anthracene		ND		ualka	120	39.	1	
Benzo(a)pyrene		ND		ug/kg ug/kg	160	48.	1	
Benzo(b)fluoranthene		ND			120	40.	1	
Benzo(k)fluoranthene		ND		ug/kg ug/kg	120	38.	1	
Chrysene		ND			120	39.	1	
Acenaphthylene		ND		ug/kg	120	39.	1	
				ug/kg				
Anthracene		ND ND		ug/kg	120	33. 41.	1	
Benzo(ghi)perylene				ug/kg	160		1	
Fluorene		ND		ug/kg	200	57.	1	
Phenanthrene		ND		ug/kg	120	39.	1	
Dibenzo(a,h)anthracene		ND		ug/kg	120	38.	1	
Indeno(1,2,3-cd)Pyrene		ND		ug/kg	160	44.	1	
Pyrene		ND		ug/kg	120	38.	1	
Biphenyl		ND		ug/kg	450	65.	1	
4-Chloroaniline		ND		ug/kg	200	52.	1	
2-Nitroaniline		ND		ug/kg	200	56.	1	
3-Nitroaniline		ND		ug/kg	200	55.	1	
4-Nitroaniline		ND		ug/kg	200	54.	1	
Dibenzofuran		ND		ug/kg	200	66.	1	
2-Methylnaphthalene		ND		ug/kg	240	63.	1	
1,2,4,5-Tetrachlorobenzer	ne	ND		ug/kg	200	61.	1	
Acetophenone		ND		ug/kg	200	61.	1	
2,4,6-Trichlorophenol		ND		ug/kg	120	37.	1	
P-Chloro-M-Cresol		ND		ug/kg	200	58.	1	
2-Chlorophenol		ND		ug/kg	200	60.	1	
2,4-Dichlorophenol		ND		ug/kg	180	64.	1	
2,4-Dimethylphenol		ND		ug/kg	200	59.	1	
2-Nitrophenol		ND		ug/kg	430	62.	1	
4-Nitrophenol		ND		ug/kg	280	64.	1	
2,4-Dinitrophenol		ND		ug/kg	950	270	1	
4,6-Dinitro-o-cresol		ND		ug/kg	520	73.	1	
Pentachlorophenol		ND		ug/kg	160	42.	1	
Phenol		ND		ug/kg	200	59.	1	
2-Methylphenol		ND		ug/kg	200	64.	1	
3-Methylphenol/4-Methylp	henol	ND		ug/kg	280	65.	1	
2,4,5-Trichlorophenol		ND		ug/kg	200	64.	1	
Benzoic Acid		ND		ug/kg	640	200	1	
Benzyl Alcohol		ND		ug/kg	200	61.	1	
Carbazole		ND		ug/kg	200	43.	1	
				5 5				

	Serial_No:05291515:26				0:05291515:26			
Project Name:	505 CLOVE ROAD				Lab Nu	ımber:	L1511165	
Project Number:	505 CLOVE				Report	Date:	05/29/15	
		SAMPL	E RESULTS	5				
Lab ID:	L1511165-02				Date Co	llected:	05/20/15 09:35	
Client ID:	TP-6				Date Re	ceived:	05/21/15	
Sample Location:	VILLAGE OF BLOOMI	NG GROVE,	NY		Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organ	ics by GC/MS - Westboro	ugh Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	84		25-120	
Phenol-d6	92		10-120	
Nitrobenzene-d5	90		23-120	
2-Fluorobiphenyl	64		30-120	
2,4,6-Tribromophenol	81		10-136	
4-Terphenyl-d14	45		18-120	

		Serial_N	0:05291515:26
Project Name:	505 CLOVE ROAD	Lab Number:	L1511165
Project Number:	505 CLOVE	Report Date:	05/29/15
	SAMPLE RESULTS		
Lab ID:	L1511165-03	Date Collected:	05/20/15 10:25
Client ID:	TP-8	Date Received:	05/21/15
Sample Location:	VILLAGE OF BLOOMING GROVE, NY	Field Prep:	Not Specified
Matrix:	Soil	Extraction Metho	d:EPA 3546
Analytical Method:	1,8270D	Extraction Date:	05/26/15 08:49
Analytical Date:	05/29/15 00:57		
Analyst:	PS		
Percent Solids:	84%		

Iburanthene 58 J ug/kg 10 35. 1 4-Chlorophenyl phenyl ether ND ug/kg 190 58. 1 4-Bromophenyl phenyl ether ND ug/kg 190 44. 1 Bis(2-chloroisopropyl)ether ND ug/kg 230 67. 1 Bis(2-chloroethoxy)methane ND ug/kg 190 54. 1 Hexachlorocyclopentadiene ND ug/kg 550 120 1 Hexachlorocyclopentadiene ND ug/kg 150 35. 1 Isophorone ND ug/kg 170 51. 1 Naphthalene ND ug/kg 170 64. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 190 50. 1 Bis(2-Ethylhexyl)phthalate ND ug/kg 190 50. 1 Di-n-butylphthalate ND ug/kg 190 50. 1 Bis(2-Ethylhexyl)phthalate ND <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RL</th> <th>MDL</th> <th>Dilution Factor</th>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,2.4-Trichlorobenzene ND ug/kg 190 63. 1 Hexachlorobenzene ND ug/kg 170 54. 1 2.Chloronephthalene ND ug/kg 170 54. 1 2.Chloronephthalene ND ug/kg 190 62. 1 2.Chloronephthalene ND ug/kg 190 63. 1 1.3-Dichlorobenzene ND ug/kg 190 63. 1 1.4-Dichlorobenzene ND ug/kg 190 63. 1 3.3-Dichlorobenzene ND ug/kg 190 58. 1 3.3-Dichlorobenzene ND ug/kg 190 58. 1 2.4-Dinitrochluene ND ug/kg 190 44. 1 2.6-Dinitrochluene ND ug/kg 190 58. 1 4.Chorophenyl phenyl ether ND ug/kg 190 54. 1 Bis(2-chloroisopropyl)ether ND ug/kg 190 54. 1 Hexachloroucehoxylmethane ND ug/kg <	Semivolatile Organics by GC/MS - V	Vestborough Lab					
1,2.4-Trichlorobenzene ND ug/kg 190 63. 1 Hexachlorobenzene ND ug/kg 170 54. 1 2.Chloronephthalene ND ug/kg 170 54. 1 2.Chloronephthalene ND ug/kg 190 62. 1 2.Chloronephthalene ND ug/kg 190 63. 1 1.3-Dichlorobenzene ND ug/kg 190 63. 1 1.4-Dichlorobenzene ND ug/kg 190 63. 1 3.3-Dichlorobenzene ND ug/kg 190 58. 1 3.3-Dichlorobenzene ND ug/kg 190 58. 1 2.4-Dinitrochluene ND ug/kg 190 44. 1 2.6-Dinitrochluene ND ug/kg 190 58. 1 4.Chorophenyl phenyl ether ND ug/kg 190 54. 1 Bis(2-chloroisopropyl)ether ND ug/kg 190 54. 1 Hexachloroucehoxylmethane ND ug/kg <	Acononhthono	ND		ug/kg	150	30	1
ND ug/kg 110 36. 1 Bis(2-chloroaethyl)ether ND ug/kg 170 54. 1 2-Chloroaethyl)ether ND ug/kg 190 62. 1 1,2-Dichlorobenzene ND ug/kg 190 63. 1 1,3-Dichlorobenzene ND ug/kg 190 63. 1 1,4-Dichlorobenzene ND ug/kg 190 63. 1 1,4-Dichlorobenzene ND ug/kg 190 58. 1 3,5-Dichlorobenzidine ND ug/kg 190 44. 1 2,4-Dinitrotoluene ND ug/kg 190 44. 1 Fluoranthene ND ug/kg 190 44. 1 Els(2-chlorisoprop/l)ether ND ug/kg 190 44. 1 Bis(2-chlorisoprop/l)ether ND ug/kg 150 56. 1 Bis(2-chlorisoprop/l)ether ND ug/kg 150 56. <	· · · · · · · · · · · · · · · · · · ·						
Bit ND ug/kg 170 54. 1 2-Chloronaphthalene ND ug/kg 190 62. 1 1.2-Dichlorobenzene ND ug/kg 190 63. 1 1.3-Dichlorobenzene ND ug/kg 190 60. 1 1.4-Dichlorobenzene ND ug/kg 190 63. 1 3.3-Dichlorobenzene ND ug/kg 190 60. 1 3.4-Dichlorobenzene ND ug/kg 190 51. 1 2.4-Dintrochluene ND ug/kg 190 41. 1 2.4-Dintrochluene ND ug/kg 190 58. 1 4-Chorophenyl phenyl ether ND ug/kg 190 58. 1 4-Chorophenyl phenyl ether ND ug/kg 190 54. 1 Bie(2-chlorobenzinghenyl phenyl ether ND ug/kg 150 54. 1 Bie(2-chlorobenzinghenyl phenyl ether ND ug/kg							
Lochoronaphthalene ND ug/kg 190 62. 1 1,2-Dichlorobenzene ND ug/kg 190 63. 1 1,3-Dichlorobenzene ND ug/kg 190 60. 1 1,4-Dichlorobenzene ND ug/kg 190 58. 1 3,3-Dichlorobenzine ND ug/kg 190 51. 1 2,4-Dinitrotoluene ND ug/kg 190 49. 1 2,6-Dinitrotoluene ND ug/kg 190 49. 1 Eloranthene S5 J ug/kg 190 49. 1 Eloranthene ND ug/kg 190 44. 1 1 4-Chorophenyl phenyl ether ND ug/kg 190 44. 1 Bis(2-chloroisopropyl phenyl ether ND ug/kg 190 54. 1 Hexachlorobutatiene ND ug/kg 150 35. 1 Bis(2-chloroisopropyl phense ND							
1.2-Dichlorobenzene ND ug/kg 190 63. 1 1.3-Dichlorobenzene ND ug/kg 190 60. 1 1.4-Dichlorobenzene ND ug/kg 190 58. 1 3.3-Dichlorobenzidine ND ug/kg 190 51. 1 2.4-Dinitrotoluene ND ug/kg 190 41. 1 2.6-Dinitrotoluene ND ug/kg 190 43. 1 2.6-Dinitrotoluene ND ug/kg 190 44. 1 2.6-Dinitrotoluene ND ug/kg 190 44. 1 2.6-Dinitrotoluene ND ug/kg 190 58. 1 4-Chlorophenyl phenyl ether ND ug/kg 190 54. 1 58 J ug/kg 190 54. 1 62(c-hlorobenbxylmethane ND ug/kg 150 35. 1 63(c2-hlorobethxylmethane ND ug/kg 150 35. 1 18ig/c2-hlorobethxylmethalene ND ug/kg 150							
A-Dicklorobenzene ND ug/kg 190 60. 1 1,4-Dicklorobenzene ND ug/kg 190 58. 1 3,3-Dicklorobenzidine ND ug/kg 190 51. 1 2,4-Dinitrotoluene ND ug/kg 190 41. 1 2,4-Dinitrotoluene ND ug/kg 190 49. 1 2,4-Dinitrotoluene ND ug/kg 190 49. 1 Fluoranthene 58 J ug/kg 190 58. 1 4-Chlorophenyl phenyl ether ND ug/kg 190 54. 1 4-Bromophenyl phenyl ether ND ug/kg 190 54. 1 62(2-chloroisopropyl)ether ND ug/kg 190 54. 1 Bis(2-chloroisopropyl)ether ND ug/kg 150 35. 1 Hexachlorobutadiene ND ug/kg 170 51. 1 Isophorone ND ug/kg	· · · · · · · · · · · · · · · · · · ·						
1,4-Dichlorobenzelene ND ug/kg 190 58. 1 3,3-Dichlorobenzidine ND ug/kg 190 41. 1 2,4-Dinitrotoluene ND ug/kg 190 41. 1 2,6-Dinitrotoluene ND ug/kg 190 49. 1 2,6-Dinitrotoluene ND ug/kg 190 49. 1 2,6-Dinitrotoluene ND ug/kg 190 49. 1 4-Chorophenyl phenyl ether ND ug/kg 190 58. 1 4-Chorophenyl phenyl ether ND ug/kg 230 67. 1 Bis(2-chlorotioxopropyl)ether ND ug/kg 190 54. 1 Hexachlorototadiene ND ug/kg 150 55. 120 1 Hexachlorotophenylentaliene ND ug/kg 150 35. 1 1 Naphthalene ND ug/kg 170 51. 1 1 Naphthalene ND ug/kg 190 64. 1 1 Nitro							
3.3-Dichlorobenzidine ND ug/kg 190 51. 1 2.4-Dinitrotoluene ND ug/kg 190 41. 1 2.4-Dinitrotoluene ND ug/kg 190 49. 1 2.6-Dinitrotoluene ND ug/kg 190 49. 1 Fluoranthene 58 J ug/kg 190 58. 1 4-Chlorophenyl phenyl ether ND ug/kg 190 58. 1 4-Bromophenyl phenyl ether ND ug/kg 230 67. 1 Bis(2-chlorostoropyl)ether ND ug/kg 190 54. 1 Bis(2-chlorosthoxy)methane ND ug/kg 150 35. 1 Hexachlorobutadiene ND ug/kg 150 35. 1 Isophorone ND ug/kg 170 51. 1 Naphthalene ND ug/kg 190 64. 1 Nitrobenzene ND ug/kg 190 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
A-Dinitrotoluene ND ug/kg 190 41. 1 2,4-Dinitrotoluene ND ug/kg 190 49. 1 Fluoranthene 58 J ug/kg 190 58. 1 4-Chlorophenyl phenyl ether ND ug/kg 190 58. 1 4-Bromophenyl phenyl ether ND ug/kg 190 44. 1 Bis(2-chloroisopropyl)ether ND ug/kg 230 67. 1 Bis(2-chloroisopropyl)ether ND ug/kg 190 54. 1 Hexachlorobutadiene ND ug/kg 150 35. 1 Hexachlorocyclopentadiene ND ug/kg 150 35. 1 Hexachlorocyclopentadiene ND ug/kg 170 51. 1 Naphthalene ND ug/kg 190 64. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 190 57. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 190 57. 1 Bis(2-Ethylhexyl)phthalate </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
A-Definition of the set of the s							
Isolation Isolation Floranthene 58 J ug/kg 10 35. 1 4-Chlorophenyl phenyl ether ND ug/kg 190 58. 1 4-Bromophenyl phenyl ether ND ug/kg 190 44. 1 Bis(2-chlorostopropyl)ether ND ug/kg 230 67. 1 Bis(2-chlorostopropyl)ether ND ug/kg 190 54. 1 Hexachlorocyclopentadiene ND ug/kg 550 120 1 Hexachlorocyclopentadiene ND ug/kg 150 35. 1 Isophorone ND ug/kg 170 51. 1 Naphthalene ND ug/kg 170 64. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 190 57. 1 Bis(2-Ethylhexyl)phthalate ND ug/kg 190 57. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	·						
A-Chlorophenyl phenyl ether ND ug/kg 190 58. 1 4-Bromophenyl phenyl ether ND ug/kg 190 44. 1 Bis/2-chloroisopropyl)ether ND ug/kg 230 67. 1 Bis/2-chloroethoxy)methane ND ug/kg 210 58. 1 Hexachlorobutadiene ND ug/kg 190 54. 1 Hexachlorocyclopentadiene ND ug/kg 550 120 1 Hexachlorocyclopentadiene ND ug/kg 170 51. 1 Isophorone ND ug/kg 170 51. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 190 64. 1 Nitrosodi-n-propylamine ND ug/kg 190 57. 1 Bis/2-Ethylhexyl)phthalate 130 J ug/kg 190 57. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 1 Di-n-octy	2,6-Dinitrotoluene						
A-Bronophenyl phenyl ether ND ug/kg 190 44. 1 4-Bronophenyl phenyl ether ND ug/kg 230 67. 1 Bis(2-chloroisopropyl)ether ND ug/kg 210 58. 1 Bis(2-chloroethoxy)methane ND ug/kg 190 54. 1 Hexachlorocyclopentadiene ND ug/kg 550 120 1 Hexachloroethane ND ug/kg 150 35. 1 Isophorone ND ug/kg 170 51. 1 Naphthalene ND ug/kg 170 64. 1 Nitrosodi-n-propylamine ND ug/kg 150 40. 1 Nitrosodi-n-propylamine ND ug/kg 190 57. 1 Bis(2-Ethylhexyl)phthalate 130 J ug/kg 190 50. 1 Bis(2-Ethylhexyl)phthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND	Fluoranthene		J		110		1
ND ug/kg 230 67. 1 Bis(2-chlorosisopropyl)ether ND ug/kg 210 58. 1 Bis(2-chloroethoxy)methane ND ug/kg 190 54. 1 Hexachlorobutadiene ND ug/kg 550 120 1 Hexachlorocyclopentadiene ND ug/kg 150 35. 1 Hexachlorocyclopentadiene ND ug/kg 170 51. 1 Isophorone ND ug/kg 170 51. 1 Naphthalene ND ug/kg 170 64. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 180 40. 1 Nitrosodi-n-propylamine ND ug/kg 180 50. 1 Bis(2-Ethylhexyl)phthalate 130 J ug/kg 190 57. 1 Butyl benzyl phthalate ND ug/kg 190 37. 1 1 Di-n-butylphthalate ND ug/kg <td>4-Chlorophenyl phenyl ether</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>190</td> <td>58.</td> <td>1</td>	4-Chlorophenyl phenyl ether	ND		ug/kg	190	58.	1
Bis(2-chloroethoxy)methane ND ug/kg 210 58. 1 Hexachlorobutadiene ND ug/kg 190 54. 1 Hexachlorocyclopentadiene ND ug/kg 550 120 1 Hexachlorocyclopentadiene ND ug/kg 150 35. 1 Hexachloroethane ND ug/kg 170 51. 1 Isophorone ND ug/kg 190 64. 1 Nitrobenzene ND ug/kg 170 46. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 190 57. 1 Bis(2-Ethylhexyl)phthalate 130 J ug/kg 190 50. 1 Bis(2-Ethylphexyl)phthalate ND ug/kg 190 57. 1 Bis(2-Ethylphexyl)phthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND </td <td>4-Bromophenyl phenyl ether</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>190</td> <td>44.</td> <td>1</td>	4-Bromophenyl phenyl ether	ND		ug/kg	190	44.	1
Hexachlorobutadiene ND ug/kg 190 54. 1 Hexachlorocyclopentadiene ND ug/kg 550 120 1 Hexachlorocyclopentadiene ND ug/kg 150 35. 1 Hexachlorocyclopentadiene ND ug/kg 170 51. 1 Isophorone ND ug/kg 190 64. 1 Naphthalene ND ug/kg 170 46. 1 Nitrobenzene ND ug/kg 150 40. 1 Nitrosodi-n-propylamine(NDPA)/DPA ND ug/kg 190 57. 1 Bis(2-Ethylhexyl)phthalate 130 J ug/kg 190 50. 1 Bis(2-Ethylhexyl)phthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-octylphthalate ND ug/kg 190 37. 1 Di-n-octylphthalate ND ug/k	Bis(2-chloroisopropyl)ether	ND		ug/kg	230	67.	1
Hexachlorocyclopentadiene ND ug/kg 550 120 1 Hexachlorocyclopentadiene ND ug/kg 150 35. 1 Hexachlorocyclopentadiene ND ug/kg 170 51. 1 Isophorone ND ug/kg 190 64. 1 Naphthalene ND ug/kg 170 46. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 190 57. 1 Nitrosodi-n-propylamine ND ug/kg 190 57. 1 Bis(2-Ethylhexyl)phthalate 130 J ug/kg 190 50. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-octylphthalate ND ug/kg 190 47. 1	Bis(2-chloroethoxy)methane	ND		ug/kg	210	58.	1
Hexachloroethane ND ug/kg 150 35. 1 Isophorone ND ug/kg 170 51. 1 Naphthalene ND ug/kg 190 64. 1 Nitrobenzene ND ug/kg 170 46. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 150 40. 1 n-Nitrosodi-n-propylamine ND ug/kg 190 57. 1 Bis(2-Ethylhexyl)phthalate 130 J ug/kg 190 50. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-ctylphthalate ND ug/kg 190 37. 1 Di-n-ctylphthalate ND ug/kg 190 37. 1 Di-n-otylphthalate ND ug/kg 190 47. 1	Hexachlorobutadiene	ND		ug/kg	190	54.	1
Isophorone ND ug/kg 170 51. 1 Naphthalene ND ug/kg 190 64. 1 Nitrobenzene ND ug/kg 170 46. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 150 40. 1 n-Nitrosodi-n-propylamine ND ug/kg 190 57. 1 Bis(2-Ethylhexyl)phthalate 130 J ug/kg 190 50. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-octylphthalate ND ug/kg 190 37. 1 Di-n-octylphthalate ND ug/kg 190 40. 1	Hexachlorocyclopentadiene	ND		ug/kg	550	120	1
Naphthalene ND ug/kg 190 64. 1 Nitrobenzene ND ug/kg 170 46. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 150 40. 1 n-Nitrosodi-n-propylamine ND ug/kg 190 57. 1 Bis(2-Ethylhexyl)phthalate 130 J ug/kg 190 50. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 47. 1 Di-n-butylphthalate ND ug/kg 190 40. 1	Hexachloroethane	ND		ug/kg	150	35.	1
NitrobenzeneNDug/kg17046.1NitrosoDiPhenylAmine(NDPA)/DPANDug/kg15040.1n-Nitrosodi-n-propylamineNDug/kg19057.1Bis(2-Ethylhexyl)phthalate130Jug/kg19050.1Butyl benzyl phthalateNDug/kg19037.1Di-n-butylphthalateNDug/kg19037.1Di-n-butylphthalateNDug/kg19047.1Di-n-butylphthalateNDug/kg19040.1	Isophorone	ND		ug/kg	170	51.	1
NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 150 40. 1 n-Nitrosodi-n-propylamine ND ug/kg 190 57. 1 Bis(2-Ethylhexyl)phthalate 130 J ug/kg 190 50. 1 Butyl benzyl phthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-octylphthalate ND ug/kg 190 37. 1 Di-n-octylphthalate ND ug/kg 190 40. 1	Naphthalene	ND		ug/kg	190	64.	1
n-Nitrosodi-n-propylamineNDug/kg19057.1Bis(2-Ethylhexyl)phthalate130Jug/kg19050.1Butyl benzyl phthalateNDug/kg19037.1Di-n-butylphthalateNDug/kg19037.1Di-n-octylphthalateNDug/kg19047.1Diethyl phthalateNDug/kg19040.1	Nitrobenzene	ND		ug/kg	170	46.	1
Bis(2-Ethylhexyl)phthalate 130 J ug/kg 190 50. 1 Butyl benzyl phthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-octylphthalate ND ug/kg 190 37. 1 Di-n-octylphthalate ND ug/kg 190 47. 1 Diethyl phthalate ND ug/kg 190 40. 1	NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/kg	150	40.	1
Butyl benzyl phthalateNDug/kg19037.1Di-n-butylphthalateNDug/kg19037.1Di-n-octylphthalateNDug/kg19047.1Diethyl phthalateNDug/kg19040.1	n-Nitrosodi-n-propylamine	ND		ug/kg	190	57.	1
Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-octylphthalate ND ug/kg 190 47. 1 Diethyl phthalate ND ug/kg 190 40. 1	Bis(2-Ethylhexyl)phthalate	130	J	ug/kg	190	50.	1
Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-octylphthalate ND ug/kg 190 47. 1 Diethyl phthalate ND ug/kg 190 40. 1	Butyl benzyl phthalate	ND		ug/kg	190	37.	1
Di-n-octylphthalateNDug/kg19047.1Diethyl phthalateNDug/kg19040.1	Di-n-butylphthalate	ND			190	37.	1
Diethyl phthalate ND ug/kg 190 40. 1	Di-n-octylphthalate	ND			190	47.	1
	Diethyl phthalate	ND			190	40.	1
	Dimethyl phthalate	ND		ug/kg	190	49.	1

					Serial_No:05291515:26				
Project Name:	505 CLOVE ROAD				Lab Nu	mber:	L1511165		
Project Number:	505 CLOVE				Report	Date:	05/29/15		
-,		SAMP		S			00/20/10		
Lab ID:	L1511165-03				Date Col	lected:	05/20/15 10:25		
Client ID:	TP-8				Date Received:		05/21/15		
Sample Location:	VILLAGE OF BLOOM		E, NY		Field Pre		Not Specified		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organ	ics by GC/MS - Westbo	rough Lab							
Benzo(a)anthracene		39	J	ug/kg	110	38.	1		
Benzo(a)pyrene		ND	•	ug/kg	150	47.	1		
Benzo(b)fluoranthene		44	J	ug/kg	110	39.	1		
Benzo(k)fluoranthene		ND	-	ug/kg	110	36.	1		
Chrysene		46	J	ug/kg	110	38.	1		
Acenaphthylene		ND		ug/kg	150	36.	1		
Anthracene		ND		ug/kg ug/kg	110	32.	1		
Benzo(ghi)perylene		ND		ug/kg ug/kg	150	40.	1		
Fluorene		ND		ug/kg ug/kg	190	55.	1		
Phenanthrene		ND			190	37.	1		
Dibenzo(a,h)anthracene		ND		ug/kg	110	37.	1		
Indeno(1,2,3-cd)Pyrene		ND		ug/kg	110	42.	1		
		66	1	ug/kg		42. 37.			
Pyrene			J	ug/kg	110		1		
Biphenyl		ND		ug/kg	440	63.	1		
4-Chloroaniline		ND		ug/kg	190	50.	1		
2-Nitroaniline		ND		ug/kg	190	54.	1		
3-Nitroaniline		ND		ug/kg	190	53.	1		
4-Nitroaniline		ND		ug/kg	190	52.	1		
Dibenzofuran		ND		ug/kg	190	64.	1		
2-Methylnaphthalene		ND		ug/kg	230	61.	1		
1,2,4,5-Tetrachlorobenzer	10	ND		ug/kg	190	59.	1		
Acetophenone		ND		ug/kg	190	59.	1		
2,4,6-Trichlorophenol		ND		ug/kg	110	36.	1		
P-Chloro-M-Cresol		ND		ug/kg	190	56.	1		
2-Chlorophenol		ND		ug/kg	190	58.	1		
2,4-Dichlorophenol		ND		ug/kg	170	62.	1		
2,4-Dimethylphenol		ND		ug/kg	190	57.	1		
2-Nitrophenol		ND		ug/kg	410	60.	1		
4-Nitrophenol		ND		ug/kg	270	62.	1		
2,4-Dinitrophenol		ND		ug/kg	920	260	1		
4,6-Dinitro-o-cresol		ND		ug/kg	500	70.	1		
Pentachlorophenol		ND		ug/kg	150	41.	1		
Phenol		ND		ug/kg	190	57.	1		
2-Methylphenol		ND		ug/kg	190	62.	1		
3-Methylphenol/4-Methylp	henol	ND		ug/kg	280	63.	1		
2,4,5-Trichlorophenol		ND		ug/kg	190	62.	1		
Benzoic Acid		ND		ug/kg	620	190	1		
Benzyl Alcohol		ND		ug/kg	190	59.	1		
Carbazole		ND		ug/kg	190	41.	1		

Semivolatile Orgar	nics by GC/MS - Westbo	rough Lab						
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Sample Location:	VILLAGE OF BLOO	MING GROVE	E, NY		Field Pre	ep:	Not Specified	
Client ID:	TP-8				Date Re	ceived:	05/21/15	
Lab ID:	L1511165-03				Date Co	llected:	05/20/15 10:25	
		SAMPI	LE RESULT	5				
Project Number:	505 CLOVE				Report	Date:	05/29/15	
Project Name:	505 CLOVE ROAD				Lab Nu	umber:	L1511165	
	Serial_No:05291515:26						0:05291515:26	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	69		25-120	
Phenol-d6	76		10-120	
Nitrobenzene-d5	74		23-120	
2-Fluorobiphenyl	57		30-120	
2,4,6-Tribromophenol	64		10-136	
4-Terphenyl-d14	47		18-120	

		Serial_No:05291515:26				
Project Name:	505 CLOVE ROAD	Lab Number:	L1511165			
Project Number:	505 CLOVE	Report Date:	05/29/15			
	SAMPLE RESULTS					
Lab ID:	L1511165-04	Date Collected:	05/20/15 11:30			
Client ID:	TP-11	Date Received:	05/21/15			
Sample Location:	VILLAGE OF BLOOMING GROVE, NY	Field Prep:	Not Specified			
Matrix:	Soil	Extraction Metho	d:EPA 3546			
Analytical Method:	1,8270D	Extraction Date:	05/26/15 08:49			
Analytical Date:	05/29/15 01:22					
Analyst:	PS					
Percent Solids:	93%					

ND ug/kg 100 32. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 53. 1 4-Bromophenyl phenyl ether ND ug/kg 180 40. 1 Bis(2-chloroisopropyl)ether ND ug/kg 180 40. 1 Bis(2-chloroisopropyl)ether ND ug/kg 190 53. 1 Hexachlorocyclopentadiene ND ug/kg 180 49. 1 Hexachlorocyclopentadiene ND ug/kg 500 110 1 Hexachlorocyclopentadiene ND ug/kg 160 42. 1 Isophorone ND ug/kg 160 47. 1 Naphthalene ND ug/kg 180 58. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 180 46. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 180 34. 1 Bis(2-Ethylhexyl)phthalate ND ug/kg <td< th=""><th>Parameter</th><th>Result</th><th>Qualifier</th><th>Units</th><th>RL</th><th>MDL</th><th>Dilution Factor</th></td<>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,2,4-TrichlorobenzeneNDug/kg18058.1HexachlorobenzeneNDug/kg10033.1Bisl2-ChloronephthaleneNDug/kg16049.12-ChloronephthaleneNDug/kg18057.12-ChloronephthaleneNDug/kg18058.11.3-DichlorobenzeneNDug/kg18053.11.4-DichlorobenzeneNDug/kg18053.13.3-DichlorobenzidineNDug/kg18047.13.4-DichlorobenzidineNDug/kg18045.12.4-DinitrotolueneNDug/kg18045.12.4-DinitrotolueneNDug/kg18046.12.4-DinitrotolueneNDug/kg18046.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-Dinitrotoluen	Semivolatile Organics by GC/MS - V	Vestborough Lab					
1,2,4-TrichlorobenzeneNDug/kg18058.1HexachlorobenzeneNDug/kg10033.1Bisl2-ChloronephthaleneNDug/kg16049.12-ChloronephthaleneNDug/kg18057.12-ChloronephthaleneNDug/kg18058.11.3-DichlorobenzeneNDug/kg18053.11.4-DichlorobenzeneNDug/kg18053.13.3-DichlorobenzidineNDug/kg18047.13.4-DichlorobenzidineNDug/kg18045.12.4-DinitrotolueneNDug/kg18045.12.4-DinitrotolueneNDug/kg18046.12.4-DinitrotolueneNDug/kg18046.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-DinitrotolueneNDug/kg18040.12.4-Dinitrotoluen	Acononhthono	ND		ua/ka	140	36	1
ND ug/kg 100 33. 1 Bis/2-chloroethyljether ND ug/kg 160 49. 1 2-Chloroethyljether ND ug/kg 180 57. 1 2-Chloroethyljether ND ug/kg 180 57. 1 1,2-Dichlorobenzene ND ug/kg 180 55. 1 1,3-Dichlorobenzene ND ug/kg 180 55. 1 1,4-Dichlorobenzene ND ug/kg 180 53. 1 3.3-Dichlorobenzidine ND ug/kg 180 45. 1 2,4-Dinitrotoluene ND ug/kg 180 45. 1 Fluoranthene ND ug/kg 180 40. 1 8(2-chlorisoprop/lyther ND ug/kg 180 40. 1 Bis(2-chlorisoprop/lyther ND ug/kg 180 42. 1 Bis(2-chlorisoprop/lyther ND ug/kg 180 43. 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Bis/2-chloronethyl)ether ND ug/kg 160 49. 1 2-Chloronaphihalene ND ug/kg 180 57. 1 1,2-Dichlorobenzene ND ug/kg 180 58. 1 1,3-Dichlorobenzene ND ug/kg 180 55. 1 1,4-Dichlorobenzene ND ug/kg 180 53. 1 3.3-Dichlorobenzenia ND ug/kg 180 47. 1 2,4-Dintrocoluene ND ug/kg 180 45. 1 2,6-Dintrocoluene ND ug/kg 180 45. 1 160 MD ug/kg 180 45. 1 161 Ug/kg 180 45. 1 1 162 Ug/kg 180 49. 1 1 163 Ug/kg 180 49. 1 1 163 Ug/kg 180 49. 1 1 160 ND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
D ug/kg 180 57. 1 1,2-Dichlorobenzene ND ug/kg 180 58. 1 1,3-Dichlorobenzene ND ug/kg 180 55. 1 1,4-Dichlorobenzene ND ug/kg 180 53. 1 3.3-Dichlorobenzene ND ug/kg 180 47. 1 2.4-Dinitrobluene ND ug/kg 180 45. 1 2.4-Dinitrobluene ND ug/kg 180 45. 1 Eloranthene ND ug/kg 180 45. 1 Eloranthene ND ug/kg 180 40. 1 42Chlorophenyl phenyl ether ND ug/kg 180 40. 1 Bis(2-chlorobicxymethane ND ug/kg 180 40. 1 Hexachlorobutadiene ND ug/kg 180 40. 1 Hexachlorobutadiene ND ug/kg 180 47. 1							
1.2-Dichlorobenzene ND ug/kg 180 58. 1 1.3-Dichlorobenzene ND ug/kg 180 55. 1 1.4-Dichlorobenzene ND ug/kg 180 53. 1 3.3-Dichlorobenzidine ND ug/kg 180 47. 1 2.4-Dinitrotoluene ND ug/kg 180 38. 1 2.6-Dinitrotoluene ND ug/kg 180 45. 1 Fluoranhene ND ug/kg 180 45. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 45. 1 8ig(2-chloroticopropylythenyl ether ND ug/kg 180 40. 1 8ig(2-chlorothoxymethane ND ug/kg 180 49. 1 Hexachlorocyclopentadiene ND ug/kg 180 49. 1 Isophorone ND ug/kg 180 47. 1 Naphtalene ND ug/kg 180 47. 1 Nitroberzene ND ug/kg 180							
A.D. in Application ND ug/kg 180 55. 1 1, 4-Dichlorobenzene ND ug/kg 180 53. 1 3,3-Dichlorobenzidine ND ug/kg 180 47. 1 2,4-Dinitrotoluene ND ug/kg 180 38. 1 2,4-Dinitrotoluene ND ug/kg 180 45. 1 Fluoranthene ND ug/kg 180 45. 1 Fluoranthene ND ug/kg 180 40. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 40. 1 4-Sicochloroisopropyljether ND ug/kg 180 40. 1 612(-chloroisopropyljether ND ug/kg 190 53. 1 44xachlorocyclopentadiene ND ug/kg 180 49. 1 44xachlorocyclopentadiene ND ug/kg 180 58. 1 45xophorone ND ug/kg 180	· · · · · · · · · · · · · · · · · · ·						
ND ug/kg 180 53. 1 3,3-Dichlorobenzidine ND ug/kg 180 47. 1 2,4-Dinitrotoluene ND ug/kg 180 45. 1 2,6-Dinitrotoluene ND ug/kg 180 45. 1 2,6-Dinitrotoluene ND ug/kg 180 45. 1 2,6-Dinitrotoluene ND ug/kg 180 53. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 53. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 40. 1 3is(2-chlorostopropyl)ether ND ug/kg 180 40. 1 Bis(2-chlorostopropyl)ether ND ug/kg 180 49. 1 Hexachloroclopentadiene ND ug/kg 180 49. 1 Hexachloropentadiene ND ug/kg 180 47. 1 Naphthalene ND ug/kg 180 42. 1 Naphthalene ND ug/kg 180 42.							
3.3-Dichlorobenzidine ND ug/kg 180 47. 1 2.4-Dinitrotoluene ND ug/kg 180 38. 1 2.6-Dinitrotoluene ND ug/kg 180 45. 1 2.6-Dinitrotoluene ND ug/kg 180 45. 1 Fluoranthene ND ug/kg 180 53. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 40. 1 Bis(2-chloroisopropyl)ether ND ug/kg 180 40. 1 Bis(2-chlorobtoxy)methane ND ug/kg 180 40. 1 Hexachlorobutadiene ND ug/kg 180 49. 1 Hexachlorocyclopentadiene ND ug/kg 180 49. 1 Hexachlorocyclopentadiene ND ug/kg 180 47. 1 Naphthalene ND ug/kg 180 47. 1 Naphthalene ND ug/kg 180 48. 1 Nitroboolien-proroylamine ND ug/kg 1							
A-Dinitrotoluene ND ug/kg 180 38. 1 2.4-Dinitrotoluene ND ug/kg 180 45. 1 Fluoranthene ND ug/kg 180 53. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 53. 1 4-Bromophenyl phenyl ether ND ug/kg 180 40. 1 Bis(2-chloroisopropyl)ether ND ug/kg 180 49. 1 Bis(2-chloroisopropyl)ether ND ug/kg 180 49. 1 Hexachlorobutadiene ND ug/kg 180 49. 1 Hexachlorocyclopentadiene ND ug/kg 180 47. 1 Hexachlorocyclopentadiene ND ug/kg 180 58. 1 Naphthalene ND ug/kg 180 42. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 180 52. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 180 34. 1 Din-butylphthalate ND							
Action ND ug/kg 180 45. 1 Fluoranthene ND ug/kg 100 32. 1 4-Chlorophenyl ether ND ug/kg 180 53. 1 4-Bromophenyl ether ND ug/kg 180 53. 1 4-Bromophenyl ether ND ug/kg 180 62. 1 Bis(2-chloroisopropyl)ether ND ug/kg 190 53. 1 Bis(2-chloroisopropyl)ether ND ug/kg 180 49. 1 Hexachlorobutadiene ND ug/kg 180 49. 1 Hexachlorocyclopentadiene ND ug/kg 140 32. 1 Hexachlorocyclopentadiene ND ug/kg 140 32. 1 Naphthalene ND ug/kg 180 45. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 180 46. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg	·						
ND ug/kg 100 32. 1 Flucranthene ND ug/kg 180 53. 1 Flucranthene ND ug/kg 180 53. 1 Flucranthene ND ug/kg 180 53. 1 Flucranthene ND ug/kg 180 40. 1 Bis(2-chlorosphenyl ptenyl ether ND ug/kg 190 53. 1 Bis(2-chlorosphoryl)tether ND ug/kg 180 49. 1 Bis(2-chlorosthoxy)methane ND ug/kg 180 49. 1 Hexachlorocyclopentadiene ND ug/kg 180 49. 1 Hexachlorocyclopentadiene ND ug/kg 160 47. 1 Isophorone ND ug/kg 180 58. 1 Naphthalene ND ug/kg 180 46. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 180 34. 1 </td <td>2,4-Dinitrotoluene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2,4-Dinitrotoluene						
A-Chlorophenyl phenyl ether ND ug/kg 180 53. 1 4-Bromophenyl phenyl ether ND ug/kg 180 40. 1 Bis(2-chlorostopropyl)ether ND ug/kg 180 62. 1 Bis(2-chlorostopropyl)ether ND ug/kg 190 53. 1 Hexachlorosylmethane ND ug/kg 180 49. 1 Hexachlorosylopentadiene ND ug/kg 500 110 1 Hexachlorosylopentadiene ND ug/kg 140 32. 1 Hexachlorosylopentadiene ND ug/kg 160 47. 1 Isophorone ND ug/kg 180 58. 1 Naphthalene ND ug/kg 160 42. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 180 52. 1 NitrosoDiPhenylAmine(NDA)/DPA ND ug/kg 180 52. 1 Bis(2-Ethylhexyl)phthalate 67 J ug/kg 180 34. 1 Din-obtylphthala	2,6-Dinitrotoluene						
A-Bronophenyl phenyl ether ND ug/kg 180 40. 1 4-Bronophenyl phenyl ether ND ug/kg 210 62. 1 Bis(2-chloroisopropyl)ether ND ug/kg 190 53. 1 Bis(2-chloroethoxy)methane ND ug/kg 180 49. 1 Hexachlorocyclopentadiene ND ug/kg 500 110 1 Hexachloroethane ND ug/kg 140 32. 1 Isophorone ND ug/kg 160 47. 1 Naphthalene ND ug/kg 160 42. 1 Nitrosodi-n-propylamine ND ug/kg 140 37. 1 Nitrosodi-n-propylamine ND ug/kg 180 52. 1 Bis(2-Ethylhexyl)phthalate 67 J ug/kg 180 46. 1 Buryl berzyl phthalate ND ug/kg 180 34. 1 1 Di-n-otylphthalate	Fluoranthene	ND		ug/kg	100	32.	1
ND ug/kg 210 62. 1 Bis(2-chloroisopropyl)ether ND ug/kg 190 53. 1 Bis(2-chloroisopropyl)ether ND ug/kg 180 49. 1 Hexachlorobutadiene ND ug/kg 500 110 1 Hexachlorocyclopentadiene ND ug/kg 140 32. 1 Hexachlorocyclopentadiene ND ug/kg 160 47. 1 Isophorone ND ug/kg 180 58. 1 Naphthalene ND ug/kg 180 58. 1 Nitrosodi-n-propylamine ND ug/kg 140 37. 1 Nitrosodi-n-propylamine ND ug/kg 180 52. 1 Bis(2-Ethylhexyl)phthalate 67 J ug/kg 180 34. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-butylphthalate ND ug/kg 180	4-Chlorophenyl phenyl ether	ND		ug/kg	180	53.	1
ND ug/kg 190 53. 1 Bis(2-chloroethoxy)methane ND ug/kg 180 49. 1 Hexachlorobutadiene ND ug/kg 500 110 1 Hexachlorocyclopentadiene ND ug/kg 140 32. 1 Hexachlorocyclopentadiene ND ug/kg 160 47. 1 Hexachloroethane ND ug/kg 180 58. 1 Naphthalene ND ug/kg 160 47. 1 Naphthalene ND ug/kg 160 42. 1 Nitrobenzene ND ug/kg 140 37. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 180 52. 1 Bis(2-Ethylhexyl)phthalate 67 J ug/kg 180 34. 1 Buyl benzyl phthalate ND ug/kg 180 34. 1 1 Di-n-butylphthalate ND ug/kg 180	4-Bromophenyl phenyl ether	ND		ug/kg	180	40.	1
Hexachlorobutadiene ND ug/kg 180 49. 1 Hexachlorocyclopentadiene ND ug/kg 500 110 1 Hexachlorocyclopentadiene ND ug/kg 140 32. 1 Hexachlorocyclopentadiene ND ug/kg 140 32. 1 Hexachlorocethane ND ug/kg 160 47. 1 Isophorone ND ug/kg 180 58. 1 Naphthalene ND ug/kg 160 42. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 180 52. 1 Nitrosodi-n-propylamine ND ug/kg 180 46. 1 Bis(2-Ethylhexyl)phthalate 67 J ug/kg 180 34. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-butylphthalate ND ug/kg 180 34. 1	Bis(2-chloroisopropyl)ether	ND		ug/kg	210	62.	1
Hexachlorocyclopentadiene ND ug/kg 500 110 1 Hexachlorocyclopentadiene ND ug/kg 140 32. 1 Hexachlorocyclopentadiene ND ug/kg 160 47. 1 Isophorone ND ug/kg 160 47. 1 Naphthalene ND ug/kg 160 42. 1 Nitrobenzene ND ug/kg 140 37. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 180 52. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 46. 1 Bis(2-Ethylhexyl)phthalate 67 J ug/kg 180 34. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-cotylphthalate ND ug/kg 180 43. 1	Bis(2-chloroethoxy)methane	ND		ug/kg	190	53.	1
Hexachloroethane ND ug/kg 140 32. 1 Isophorone ND ug/kg 160 47. 1 Naphthalene ND ug/kg 180 58. 1 Nitrobenzene ND ug/kg 160 42. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 140 37. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 52. 1 Bis(2-Ethylhexyl)phthalate 67 J ug/kg 180 34. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 37. 1	Hexachlorobutadiene	ND		ug/kg	180	49.	1
ND ug/kg 160 47. 1 Naphthalene ND ug/kg 180 58. 1 Nitrobenzene ND ug/kg 160 42. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 140 37. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 52. 1 Bis(2-Ethylhexyl)phthalate 67 J ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-cotylphthalate ND ug/kg 180 34. 1 Di-n-otylphthalate ND ug/kg 180 34. 1	Hexachlorocyclopentadiene	ND		ug/kg	500	110	1
Naphthalene ND ug/kg 180 58. 1 Nitrobenzene ND ug/kg 160 42. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 140 37. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 52. 1 Bis(2-Ethylhexyl)phthalate 67 J ug/kg 180 34. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 37. 1	Hexachloroethane	ND		ug/kg	140	32.	1
NitrobenzeneNDug/kg16042.1NitrosoDiPhenylAmine(NDPA)/DPANDug/kg14037.1n-Nitrosodi-n-propylamineNDug/kg18052.1Bis(2-Ethylhexyl)phthalate67Jug/kg18046.1Butyl benzyl phthalateNDug/kg18034.1Di-n-butylphthalateNDug/kg18034.1Di-n-butylphthalateNDug/kg18034.1Di-n-butylphthalateNDug/kg18043.1Di-n-butylphthalateNDug/kg18043.1Di-n-butylphthalateNDug/kg18037.1	Isophorone	ND		ug/kg	160	47.	1
NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 140 37. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 52. 1 Bis(2-Ethylhexyl)phthalate 67 J ug/kg 180 46. 1 Butyl benzyl phthalate ND ug/kg 180 34. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 34. 1	Naphthalene	ND		ug/kg	180	58.	1
n-Nitrosodi-n-propylamineNDug/kg18052.1Bis(2-Ethylhexyl)phthalate67Jug/kg18046.1Butyl benzyl phthalateNDug/kg18034.1Di-n-butylphthalateNDug/kg18034.1Di-n-butylphthalateNDug/kg18034.1Di-n-octylphthalateNDug/kg18043.1Diethyl phthalateNDug/kg18037.1	Nitrobenzene	ND		ug/kg	160	42.	1
Bis(2-Ethylhexyl)phthalate 67 J ug/kg 180 46. 1 Butyl benzyl phthalate ND ug/kg 180 34. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 43. 1 Diethyl phthalate ND ug/kg 180 37. 1	NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/kg	140	37.	1
Butyl benzyl phthalateNDug/kg18034.1Di-n-butylphthalateNDug/kg18034.1Di-n-octylphthalateNDug/kg18043.1Diethyl phthalateNDug/kg18037.1	n-Nitrosodi-n-propylamine	ND		ug/kg	180	52.	1
Di-n-butylphthalateNDug/kg18034.1Di-n-octylphthalateNDug/kg18043.1Diethyl phthalateNDug/kg18037.1	Bis(2-Ethylhexyl)phthalate	67	J	ug/kg	180	46.	1
Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 43. 1 Diethyl phthalate ND ug/kg 180 37. 1	Butyl benzyl phthalate	ND		ug/kg	180	34.	1
Di-n-octylphthalateNDug/kg18043.1Diethyl phthalateNDug/kg18037.1	Di-n-butylphthalate	ND			180	34.	1
Diethyl phthalate ND ug/kg 180 37. 1	Di-n-octylphthalate	ND			180	43.	1
	Diethyl phthalate	ND			180	37.	1
	Dimethyl phthalate	ND		ug/kg	180	44.	1

					Ś	Serial No	0:05291515:26	
Project Name:	505 CLOVE ROAD				Lab Nu		L1511165	
Project Number:	505 CLOVE				Report		05/29/15	
		SAMPL	E RESULTS	5	Report		00/20/10	
Lab ID:	L1511165-04				Date Col	lected [.]	05/20/15 11:30	
Client ID:	TP-11				Date Red		05/21/15	
Sample Location:	VILLAGE OF BLOOMIN	G GROVE	, NY		Field Pre		Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab								
-					400	24	4	
Benzo(a)anthracene Benzo(a)pyrene		ND ND		ug/kg	100 140	34. 43.	1	
Benzo(b)fluoranthene		ND		ug/kg	140	35.	1	
Benzo(k)fluoranthene		ND		ug/kg	100	33.	1	
				ug/kg				
Chrysene		ND ND		ug/kg	100	34.	1	
Acenaphthylene				ug/kg	140	33.	1	
Anthracene		ND		ug/kg	100	29.	1	
Benzo(ghi)perylene		ND		ug/kg	140	36.	1	
Fluorene		ND		ug/kg	180	50.	1	
Phenanthrene		ND		ug/kg	100	34.	1	
Dibenzo(a,h)anthracene		ND		ug/kg	100	34.	1	
Indeno(1,2,3-cd)Pyrene		ND		ug/kg	140	39.	1	
Pyrene		ND		ug/kg	100	34.	1	
Biphenyl		ND		ug/kg	400	58.	1	
4-Chloroaniline		ND		ug/kg	180	46.	1	
2-Nitroaniline		ND		ug/kg	180	49.	1	
3-Nitroaniline		ND		ug/kg	180	48.	1	
4-Nitroaniline		ND		ug/kg	180	47.	1	
Dibenzofuran		ND		ug/kg	180	58.	1	
2-Methylnaphthalene		ND		ug/kg	210	56.	1	
1,2,4,5-Tetrachlorobenzer	ne	ND		ug/kg	180	54.	1	
Acetophenone		ND		ug/kg	180	54.	1	
2,4,6-Trichlorophenol		ND		ug/kg	100	33.	1	
P-Chloro-M-Cresol		ND		ug/kg	180	51.	1	
2-Chlorophenol		ND		ug/kg	180	53.	1	
2,4-Dichlorophenol		ND		ug/kg	160	57.	1	
2,4-Dimethylphenol		ND		ug/kg	180	52.	1	
2-Nitrophenol		ND		ug/kg	380	55.	1	
4-Nitrophenol		ND		ug/kg	240	57.	1	
2,4-Dinitrophenol		ND		ug/kg	840	240	1	
4,6-Dinitro-o-cresol		ND		ug/kg	460	64.	1	
Pentachlorophenol		ND		ug/kg	140	38.	1	
Phenol		ND		ug/kg	180	52.	1	
2-Methylphenol		ND		ug/kg	180	56.	1	
3-Methylphenol/4-Methylp	henol	ND		ug/kg	250	58.	1	
2,4,5-Trichlorophenol		ND		ug/kg	180	57.	1	
Benzoic Acid		ND		ug/kg	570	180	1	
Benzyl Alcohol		ND		ug/kg	180	54.	1	
Carbazole		ND		ug/kg	180	38.	1	
				5.5				

Semivolatile Orgar	nics by GC/MS - Westb	orough Lab					
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Location:	VILLAGE OF BLOO	MING GROVE	E, NY		Field Pre	ep:	Not Specified
Client ID:	TP-11				Date Re	ceived:	05/21/15
Lab ID:	L1511165-04				Date Co	llected:	05/20/15 11:30
		SAMPI		5			
Project Number:	505 CLOVE				Report	Date:	05/29/15
Project Name:	505 CLOVE ROAD				Lab Nu	umber:	L1511165
	Serial_No:0						0:05291515:26

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	93		25-120	
Phenol-d6	102		10-120	
Nitrobenzene-d5	94		23-120	
2-Fluorobiphenyl	91		30-120	
2,4,6-Tribromophenol	93		10-136	
4-Terphenyl-d14	83		18-120	

Project Name:	505 CLOVE ROAD	Lab Number:	L1511165
Project Number:	505 CLOVE	Report Date:	05/29/15

Analytical Method: Analytical Date: Analyst:

1,8270D 05/26/15 13:40 PS Extraction Method: EPA 3546 Extraction Date: 05/26/15 08:49

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	01-04	Batch:	WG787945-1
Acenaphthene	ND		ug/kg	130		34.
1,2,4-Trichlorobenzene	ND		ug/kg	160		54.
Hexachlorobenzene	ND		ug/kg	99		31.
Bis(2-chloroethyl)ether	ND		ug/kg	150		46.
2-Chloronaphthalene	ND		ug/kg	160		54.
1,2-Dichlorobenzene	ND		ug/kg	160		54.
1,3-Dichlorobenzene	ND		ug/kg	160		52.
1,4-Dichlorobenzene	ND		ug/kg	160		50.
3,3'-Dichlorobenzidine	ND		ug/kg	160		44.
2,4-Dinitrotoluene	ND		ug/kg	160		36.
2,6-Dinitrotoluene	ND		ug/kg	160		42.
Fluoranthene	ND		ug/kg	99		30.
4-Chlorophenyl phenyl ether	ND		ug/kg	160		50.
4-Bromophenyl phenyl ether	ND		ug/kg	160		38.
Bis(2-chloroisopropyl)ether	ND		ug/kg	200		58.
Bis(2-chloroethoxy)methane	ND		ug/kg	180		50.
Hexachlorobutadiene	ND		ug/kg	160		47.
Hexachlorocyclopentadiene	ND		ug/kg	470		110
Hexachloroethane	ND		ug/kg	130		30.
Isophorone	ND		ug/kg	150		44.
Naphthalene	ND		ug/kg	160		55.
Nitrobenzene	ND		ug/kg	150		39.
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/kg	130		35.
n-Nitrosodi-n-propylamine	ND		ug/kg	160		49.
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	160		43.
Butyl benzyl phthalate	ND		ug/kg	160		32.
Di-n-butylphthalate	ND		ug/kg	160		32.
Di-n-octylphthalate	ND		ug/kg	160		41.
Diethyl phthalate	ND		ug/kg	160		35.

Project Name:	505 CLOVE ROAD	Lab Number:	L1511165
Project Number:	505 CLOVE	Report Date:	05/29/15

Analytical Method: Analytical Date: Analyst:

1,8270D 05/26/15 13:40 PS Extraction Method: EPA 3546 Extraction Date: 05/26/15 08:49

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	01-04	Batch:	WG787945-1
Dimethyl phthalate	ND		ug/kg	160		42.
Benzo(a)anthracene	ND		ug/kg	99		32.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	99		33.
Benzo(k)fluoranthene	ND		ug/kg	99		32.
Chrysene	ND		ug/kg	99		32.
Acenaphthylene	ND		ug/kg	130		31.
Anthracene	ND		ug/kg	99		28.
Benzo(ghi)perylene	ND		ug/kg	130		34.
Fluorene	ND		ug/kg	160		48.
Phenanthrene	ND		ug/kg	99		32.
Dibenzo(a,h)anthracene	ND		ug/kg	99		32.
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	130		37.
Pyrene	ND		ug/kg	99		32.
Biphenyl	ND		ug/kg	380		55.
4-Chloroaniline	ND		ug/kg	160		44.
2-Nitroaniline	ND		ug/kg	160		47.
3-Nitroaniline	ND		ug/kg	160		46.
4-Nitroaniline	ND		ug/kg	160		45.
Dibenzofuran	ND		ug/kg	160		55.
2-Methylnaphthalene	ND		ug/kg	200		53.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160		51.
Acetophenone	ND		ug/kg	160		51.
2,4,6-Trichlorophenol	ND		ug/kg	99		31.
P-Chloro-M-Cresol	ND		ug/kg	160		48.
2-Chlorophenol	ND		ug/kg	160		50.
2,4-Dichlorophenol	ND		ug/kg	150		54.
2,4-Dimethylphenol	ND		ug/kg	160		49.
2-Nitrophenol	ND		ug/kg	360		52.

Project Name:	505 CLOVE ROAD	Lab Number:	L1511165
Project Number:	505 CLOVE	Report Date:	05/29/15

Analytical Method:
Analytical Date:
Analyst:

1,8270D 05/26/15 13:40 PS Extraction Method: EPA 3546 Extraction Date: 05/26/15 08:49

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS -	- Westborougl	n Lab for s	ample(s):	01-04	Batch:	WG787945-1
4-Nitrophenol	ND		ug/kg	230		54.
2,4-Dinitrophenol	ND		ug/kg	800		230
4,6-Dinitro-o-cresol	ND		ug/kg	430		61.
Pentachlorophenol	ND		ug/kg	130		35.
Phenol	ND		ug/kg	160		49.
2-Methylphenol	ND		ug/kg	160		53.
3-Methylphenol/4-Methylphenol	ND		ug/kg	240		54.
2,4,5-Trichlorophenol	ND		ug/kg	160		54.
Benzoic Acid	ND		ug/kg	540		170
Benzyl Alcohol	ND		ug/kg	160		51.
Carbazole	ND		ug/kg	160		36.

	Acceptance			
%Recovery	Qualifier	Criteria		
62		25-120		
67		10-120		
63		23-120		
65		30-120		
77		10-136		
96		18-120		
	62 67 63 65 77	%Recovery Qualifier 62 67 63 65 77 77	%Recovery Qualifier Criteria 62 25-120 67 10-120 63 23-120 65 30-120 77 10-136	

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L1511165 Report Date: 05/29/15

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04 Batch: WG787945-2 WG787945-3 Acenaphthene 31-137 67 73 9 50 1,2,4-Trichlorobenzene 64 67 38-107 5 50 Hexachlorobenzene 40-140 50 70 77 10 Bis(2-chloroethyl)ether 50 65 69 40-140 6 2-Chloronaphthalene 76 40-140 50 68 11 40-140 50 1.2-Dichlorobenzene 64 68 6 1,3-Dichlorobenzene 64 68 40-140 6 50 1.4-Dichlorobenzene 66 28-104 50 63 5 3.3'-Dichlorobenzidine 40-140 50 65 68 5 2.4-Dinitrotoluene 28-89 50 73 77 5 2.6-Dinitrotoluene 78 40-140 12 50 69 Fluoranthene 75 79 40-140 5 50 4-Chlorophenyl phenyl ether 75 40-140 50 69 8 4-Bromophenyl phenyl ether 40-140 50 69 79 14 Bis(2-chloroisopropyl)ether 40-140 50 65 70 7 Bis(2-chloroethoxy)methane 40-117 50 65 73 12 Hexachlorobutadiene 68 72 40-140 6 50 Hexachlorocyclopentadiene 61 67 40-140 9 50 Hexachloroethane 50 62 65 40-140 5 Isophorone 40-140 50 67 76 13 Naphthalene 71 40-140 50 67 6

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L1511165 Report Date: 05/29/15

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04 Batch: WG787945-2 WG787945-3 71 40-140 Nitrobenzene 67 6 50 NitrosoDiPhenylAmine(NDPA)/DPA 72 78 36-157 8 50 n-Nitrosodi-n-propylamine 75 32-121 50 68 10 Bis(2-Ethylhexyl)phthalate 50 73 79 40-140 8 Butyl benzyl phthalate 83 40-140 50 77 8 Di-n-butylphthalate 40-140 50 75 81 8 Di-n-octylphthalate 75 82 40-140 9 50 Diethyl phthalate 78 40-140 9 50 71 Dimethyl phthalate 40-140 50 70 76 8 Benzo(a)anthracene 40-140 50 70 77 10 Benzo(a)pyrene 76 40-140 50 70 8 Benzo(b)fluoranthene 70 76 40-140 8 50 Benzo(k)fluoranthene 76 40-140 10 50 69 Chrysene 75 40-140 50 67 11 Acenaphthylene 40-140 50 70 78 11 Anthracene 40-140 50 72 79 9 Benzo(ghi)perylene 71 77 40-140 8 50 Fluorene 69 76 40-140 10 50 Phenanthrene 40-140 50 71 76 7 Dibenzo(a,h)anthracene 40-140 50 72 77 7 Indeno(1,2,3-cd)Pyrene 72 77 40-140 50 7

RPD

Limits

Lab Control Sample Analysis Batch Quality Control

Qual

%Recovery

Limits

RPD

LCSD

%Recovery

Project Name: 505 CLOVE ROAD Project Number: 505 CLOVE

Lab Number: L1511165 Report Date: 05/29/15

Qual

LCS %Recovery Parameter Qual

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04 Batch: WG787945-2 WG787945-3

Pyrene	73	79	35-142	8	50
Biphenyl	68	74	54-104	8	50
4-Chloroaniline	60	65	40-140	8	50
2-Nitroaniline	72	79	47-134	9	50
3-Nitroaniline	60	66	26-129	10	50
4-Nitroaniline	69	75	41-125	8	50
Dibenzofuran	68	75	40-140	10	50
2-Methylnaphthalene	67	75	40-140	11	50
1,2,4,5-Tetrachlorobenzene	67	72	40-117	7	50
Acetophenone	72	78	14-144	8	50
2,4,6-Trichlorophenol	73	78	30-130	7	50
P-Chloro-M-Cresol	74	80	26-103	8	50
2-Chlorophenol	68	73	25-102	7	50
2,4-Dichlorophenol	71	78	30-130	9	50
2,4-Dimethylphenol	74	80	30-130	8	50
2-Nitrophenol	64	73	30-130	13	50
4-Nitrophenol	77	85	11-114	10	50
2,4-Dinitrophenol	48	49	4-130	2	50
4,6-Dinitro-o-cresol	70	73	10-130	4	50
Pentachlorophenol	68	75	17-109	10	50
Phenol	69	74	26-90	7	50

Lab Control Sample Analysis Batch Quality Control

Project Name: 505 CLOVE ROAD Project Number: 505 CLOVE

Lab Number: L1511165 Report Date: 05/29/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery		covery imits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associa	ated sample(s)	: 01-04 Batch	: WG787945-2	WG787945-3			
2-Methylphenol	70		76	30	-130.	8		50
3-Methylphenol/4-Methylphenol	71		80	30)-130	12		50
2,4,5-Trichlorophenol	72		80	30)-130	11		50
Benzoic Acid	23		18	1	0-66	24		50
Benzyl Alcohol	71		80	40)-140	12		50
Carbazole	71		77	54	-128	8		50

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	67		70		25-120	
Phenol-d6	69		75		10-120	
Nitrobenzene-d5	67		73		23-120	
2-Fluorobiphenyl	68		74		30-120	
2,4,6-Tribromophenol	71		77		10-136	
4-Terphenyl-d14	76		81		18-120	

PESTICIDES

		Serial_No	0:05291515:26
Project Name:	505 CLOVE ROAD	Lab Number:	L1511165
Project Number:	505 CLOVE	Report Date:	05/29/15
	SAMPLE RESULTS		
Lab ID:	L1511165-05	Date Collected:	05/20/15 12:20
Client ID:	TP-16	Date Received:	05/21/15
Sample Location:	VILLAGE OF BLOOMING GROVE, NY	Field Prep:	Not Specified
Matrix:	Soil	Extraction Metho	d:EPA 3546
Analytical Method:	1,8081B	Extraction Date:	05/26/15 10:13
Analytical Date:	05/28/15 04:04	Cleanup Method:	EPA 3620B
Analyst:	GP	Cleanup Date:	05/27/15
Percent Solids:	85%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - W	estborough Lab						
Delta-BHC	ND		ug/kg	1.83	0.358	1	A
Lindane	ND		ug/kg	0.763	0.341	1	Α
Alpha-BHC	ND		ug/kg	0.763	0.217	1	А
Beta-BHC	ND		ug/kg	1.83	0.694	1	А
Heptachlor	ND		ug/kg	0.915	0.410	1	А
Aldrin	ND		ug/kg	1.83	0.645	1	А
Heptachlor epoxide	25.0		ug/kg	3.43	1.03	1	В
Endrin	ND		ug/kg	0.763	0.313	1	А
Endrin ketone	ND		ug/kg	1.83	0.471	1	А
Dieldrin	ND		ug/kg	1.14	0.572	1	А
4,4'-DDE	9.60		ug/kg	1.83	0.423	1	А
4,4'-DDD	ND		ug/kg	1.83	0.653	1	А
4,4'-DDT	12.2		ug/kg	3.43	1.47	1	А
Endosulfan I	ND		ug/kg	1.83	0.432	1	А
Endosulfan II	ND		ug/kg	1.83	0.612	1	А
Endosulfan sulfate	ND		ug/kg	0.763	0.363	1	А
Methoxychlor	ND		ug/kg	3.43	1.07	1	А
Toxaphene	ND		ug/kg	34.3	9.61	1	А
cis-Chlordane	76.0	PI	ug/kg	2.29	0.638	1	В
trans-Chlordane	44.9		ug/kg	2.29	0.604	1	А
Chlordane	331		ug/kg	14.9	6.06	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	61		30-150	В
Decachlorobiphenyl	70		30-150	В
2,4,5,6-Tetrachloro-m-xylene	62		30-150	А
Decachlorobiphenyl	50		30-150	А

Project Name:	505 CLOVE ROAD	Lab Number:	L1511165
Project Number:	505 CLOVE	Report Date:	05/29/15

Analytical Method:
Analytical Date:
Analyst:

1,8081B 05/28/15 05:56 GP Extraction Method:EPA 3546Extraction Date:05/26/15 10:13Cleanup Method:EPA 3620BCleanup Date:05/27/15

arameter	Result	Qualifier	Units	F	RL	MDL	Column
rganochlorine Pesticides I	by GC - Westboroug	gh Lab for s	sample(s):	05	Batch:	WG787987-1	
Delta-BHC	ND		ug/kg	1	.58	0.309	А
Lindane	ND		ug/kg	0.	658	0.294	А
Alpha-BHC	ND		ug/kg	0.	658	0.187	А
Beta-BHC	ND		ug/kg	1	.58	0.599	А
Heptachlor	ND		ug/kg	0.	790	0.354	А
Aldrin	ND		ug/kg	1	.58	0.556	А
Heptachlor epoxide	ND		ug/kg	2	.96	0.889	А
Endrin	ND		ug/kg	0.	658	0.270	А
Endrin ketone	ND		ug/kg	1	.58	0.407	А
Dieldrin	ND		ug/kg	0.	987	0.494	А
4,4'-DDE	ND		ug/kg	1	.58	0.365	А
4,4'-DDD	ND		ug/kg	1	.58	0.564	А
4,4'-DDT	ND		ug/kg	2	.96	1.27	А
Endosulfan I	ND		ug/kg	1	.58	0.373	А
Endosulfan II	ND		ug/kg	1	.58	0.528	А
Endosulfan sulfate	ND		ug/kg	0.	658	0.313	А
Methoxychlor	ND		ug/kg	2	.96	0.922	А
Toxaphene	ND		ug/kg	2	9.6	8.29	А
cis-Chlordane	ND		ug/kg	1	.97	0.550	А
trans-Chlordane	ND		ug/kg	1	.97	0.521	А
Chlordane	ND		ug/kg	1	2.8	5.23	А

			Acceptance	•
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	69		30-150	В
Decachlorobiphenyl	82		30-150	В
2,4,5,6-Tetrachloro-m-xylene	74		30-150	А
Decachlorobiphenyl	71		30-150	А

Lab Control Sample Analysis

Batch Quality Control

Project Number: 505 CLOVE

Lab Number: L1511165 Report Date: 05/29/15

LCSD LCS %Recovery RPD %Recovery Limits RPD Limits Column %Recovery Qual Parameter Qual Qual Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 05 Batch: WG787987-2 WG787987-3 Delta-BHC 42 50 30-150 17 30 А Lindane 52 60 30-150 14 30 А Alpha-BHC 63 30-150 30 А 55 14 Beta-BHC 60 30 А 55 30-150 9 Heptachlor 60 30-150 12 30 А 53 Aldrin 30 А 55 64 30-150 15 Heptachlor epoxide 49 57 30-150 15 30 А Endrin 72 30-150 17 30 А 61 Endrin ketone 54 30-150 30 А 47 14 Dieldrin 69 30-150 30 60 14 А 4.4'-DDE 65 30-150 15 30 А 56 4,4'-DDD 58 68 30-150 16 30 А 4,4'-DDT 74 30-150 30 А 63 16 Endosulfan I 58 30-150 30 А 50 15 Endosulfan II 30-150 30 52 61 16 А Endosulfan sulfate 30-150 30 А 48 57 17 Methoxychlor 58 66 30-150 13 30 А cis-Chlordane 51 59 30-150 15 30 А 62 30-150 30 А trans-Chlordane 54 14

Lab Control Sample Analysis Batch Quality Control

Project Name: 505 CLOVE ROAD Project Number: 505 CLOVE

Lab Number: L1511165

Report Date: 05/29/15

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Organochlorine Pesticides by GC - West	borough Lab Associ	ated sample	e(s): 05 Batch:	WG787987	'-2 WG787987-3				

	LCS		LCSD		Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	45		54		30-150	В	
Decachlorobiphenyl	56		65		30-150	В	
2,4,5,6-Tetrachloro-m-xylene	49		57		30-150	А	
Decachlorobiphenyl	52		55		30-150	А	

METALS

Serial_No:05291515:26

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
Percent Solids:	84%					Dilution	Date	Date	Prep	Analytical	
Matrix:	Soil										
Sample Location:	VILLA	GE OF BL	DOMING	GROV	E, NY		Field Pr	ep:	Not Sp	pecified	
Client ID:	TP-8						Date Re	eceived:	05/21/	15	
Lab ID:	L1511	165-03					Date Co	ollected:	05/20/	15 10:25	
				SAMP	LE RES	ULTS					
Project Number:	505 C	LOVE					Report	Date:	05/29/	15	
Project Name:	505 C	LOVE ROA	١D				Lab Nu	mber:	L1511	165	

Total Metals - Westborough Lab

i otal metals - wes	stborougn La	ab						
Aluminum, Total	11000		mg/kg	9.4	1.9	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Antimony, Total	1.1	J	mg/kg	4.7	0.75	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Arsenic, Total	4.7		mg/kg	0.94	0.19	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Barium, Total	38		mg/kg	0.94	0.28	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Beryllium, Total	0.30	J	mg/kg	0.47	0.09	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Cadmium, Total	ND		mg/kg	0.94	0.07	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Calcium, Total	13000		mg/kg	9.4	2.8	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Chromium, Total	19		mg/kg	0.94	0.19	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Cobalt, Total	8.3		mg/kg	1.9	0.47	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Copper, Total	65		mg/kg	0.94	0.19	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Iron, Total	26000		mg/kg	4.7	1.9	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Lead, Total	31		mg/kg	4.7	0.19	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Magnesium, Total	3700		mg/kg	9.4	0.94	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Manganese, Total	620		mg/kg	0.94	0.19	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Mercury, Total	0.07	J	mg/kg	0.08	0.02	1	05/27/15 03:41 05/27/15 10:23 EPA 7471B 1,7471B DE	3
Nickel, Total	20		mg/kg	2.3	0.37	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Potassium, Total	440		mg/kg	230	37.	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Selenium, Total	ND		mg/kg	1.9	0.28	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Silver, Total	ND		mg/kg	0.94	0.19	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Sodium, Total	41	J	mg/kg	190	28.	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Thallium, Total	ND		mg/kg	1.9	0.37	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Vanadium, Total	11		mg/kg	0.94	0.09	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1
Zinc, Total	160		mg/kg	4.7	0.66	2	05/22/15 07:06 05/22/15 14:31 EPA 3050B 1,6010C JH	1

Serial_No:05291515:26

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Percent Solids:	93%					Dilution	Date	Date	Prep	Analytical	
Matrix:	Soil										
Sample Location:	VILLA	GE OF BL	DOMING	GROVI	E, NY		Field Pr	ep:	Not Sp	pecified	
Client ID:	TP-11						Date Re	eceived:	05/21/	15	
Lab ID:	L1511	165-04					Date Co	ollected:	05/20/	15 11:30	
				SAMP	LE RES	ULTS					
Project Number:	505 C	LOVE					Report	Date:	05/29/	15	
Project Name:	505 C	LOVE ROA	D				Lab Nu	mber:	L1511	165	

Total Metals - Westborough Lab

I otal Metals - Wes	stoorough La	ab						
Aluminum, Total	10000		mg/kg	8.4	1.7	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Antimony, Total	ND		mg/kg	4.2	0.67	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Arsenic, Total	2.1		mg/kg	0.84	0.17	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Barium, Total	27		mg/kg	0.84	0.25	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Beryllium, Total	0.37	J	mg/kg	0.42	0.08	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Cadmium, Total	ND		mg/kg	0.84	0.06	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Calcium, Total	2800		mg/kg	8.4	2.5	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Chromium, Total	15		mg/kg	0.84	0.17	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Cobalt, Total	8.9		mg/kg	1.7	0.42	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Copper, Total	24		mg/kg	0.84	0.17	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Iron, Total	24000		mg/kg	4.2	1.7	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Lead, Total	11		mg/kg	4.2	0.17	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Magnesium, Total	5200		mg/kg	8.4	0.84	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Manganese, Total	690		mg/kg	0.84	0.17	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Mercury, Total	0.04	J	mg/kg	0.07	0.02	1	05/27/15 03:41 05/27/15 10:25 EPA 7471B 1,7471B DE	3
Nickel, Total	20		mg/kg	2.1	0.34	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Potassium, Total	410		mg/kg	210	34.	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Selenium, Total	ND		mg/kg	1.7	0.25	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Silver, Total	ND		mg/kg	0.84	0.17	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Sodium, Total	ND		mg/kg	170	25.	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Thallium, Total	ND		mg/kg	1.7	0.34	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Vanadium, Total	14		mg/kg	0.84	0.08	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-
Zinc, Total	66		mg/kg	4.2	0.59	2	05/23/15 10:34 05/26/15 14:29 EPA 3050B 1,6010C TT	-

Project Name:505 CLOVE ROADProject Number:505 CLOVE

 Lab Number:
 L1511165

 Report Date:
 05/29/15

Method Blank Analysis Batch Quality Control

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westb	orough Lab fo	or sample(s): 03	Batch: W	/G78728	37-1				
Aluminum, Total	ND		mg/kg	4.0	0.80	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Antimony, Total	ND		mg/kg	2.0	0.32	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Arsenic, Total	ND		mg/kg	0.40	0.08	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Barium, Total	ND		mg/kg	0.40	0.12	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.20	0.04	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.40	0.03	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Calcium, Total	ND		mg/kg	4.0	1.2	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Chromium, Total	ND		mg/kg	0.40	0.08	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Cobalt, Total	ND		mg/kg	0.80	0.20	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Copper, Total	ND		mg/kg	0.40	0.08	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Iron, Total	1.0	J	mg/kg	2.0	0.80	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Lead, Total	ND		mg/kg	2.0	0.08	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Magnesium, Total	ND		mg/kg	4.0	0.40	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Manganese, Total	ND		mg/kg	0.40	0.08	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Nickel, Total	ND		mg/kg	1.0	0.16	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Potassium, Total	ND		mg/kg	100	16.	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Selenium, Total	ND		mg/kg	0.80	0.12	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Silver, Total	ND		mg/kg	0.40	0.08	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Sodium, Total	ND		mg/kg	80	12.	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Thallium, Total	ND		mg/kg	0.80	0.16	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Vanadium, Total	ND		mg/kg	0.40	0.04	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH
Zinc, Total	ND		mg/kg	2.0	0.28	1	05/22/15 07:06	05/22/15 10:21	1,6010C	JH

Prep Information

Digestion Method: EPA 3050B

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westbo	orough Lab f	or sample((s): 04 E	Batch: W	/G78766	64-1				
Aluminum, Total	1.9	J	mg/kg	4.0	0.80	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Antimony, Total	ND		mg/kg	2.0	0.32	1	05/23/15 10:34	05/26/15 13:30	1,6010C	ТТ
Arsenic, Total	ND		mg/kg	0.40	0.08	1	05/23/15 10:34	05/26/15 13:30	1,6010C	ТТ
Barium, Total	ND		mg/kg	0.40	0.12	1	05/23/15 10:34	05/26/15 13:30	1,6010C	тт

Project Name:505 CLOVE ROADProject Number:505 CLOVE

 Lab Number:
 L1511165

 Report Date:
 05/29/15

Method Blank Analysis Batch Quality Control

Beryllium, Total	ND	mg/kg	0.20	0.04	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Cadmium, Total	ND	mg/kg	0.40	0.03	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Calcium, Total	ND	mg/kg	4.0	1.2	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Chromium, Total	ND	mg/kg	0.40	0.08	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Cobalt, Total	ND	mg/kg	0.80	0.20	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Copper, Total	ND	mg/kg	0.40	0.08	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Iron, Total	ND	mg/kg	2.0	0.80	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Lead, Total	ND	mg/kg	2.0	0.08	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Magnesium, Total	ND	mg/kg	4.0	0.40	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Manganese, Total	ND	mg/kg	0.40	0.08	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Nickel, Total	ND	mg/kg	1.0	0.16	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Potassium, Total	ND	mg/kg	100	16.	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Selenium, Total	ND	mg/kg	0.80	0.12	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Silver, Total	ND	mg/kg	0.40	0.08	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Sodium, Total	ND	mg/kg	80	12.	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Thallium, Total	ND	mg/kg	0.80	0.16	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Vanadium, Total	ND	mg/kg	0.40	0.04	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT
Zinc, Total	ND	mg/kg	2.0	0.28	1	05/23/15 10:34	05/26/15 13:30	1,6010C	TT

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Westbo	rough Lab for s	ample(s): 03-04	Batch	: WG78	8216-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	05/27/15 03:41	05/27/15 10:15	5 1,7471B	DB

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: 505 CLOVE ROAD Lab Number: L1511165 Report Date: 05/29/15

Project Number: 505 CLOVE

Parameter	LCS %Recovery		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Westborough Lab Associated sa	mple(s): 03 Ba	atch: WG787287-2	SRM Lot	Number: D	088-540			
Aluminum, Total	87		-		48-151	-		
Antimony, Total	187		-		1-208	-		
Arsenic, Total	96		-		79-121	-		
Barium, Total	94		-		83-117	-		
Beryllium, Total	93		-		83-117	-		
Cadmium, Total	87		-		83-117	-		
Calcium, Total	82		-		81-119	-		
Chromium, Total	91		-		80-120	-		
Cobalt, Total	86		-		84-115	-		
Copper, Total	90		-		81-118	-		
Iron, Total	103		-		45-155	-		
Lead, Total	98		-		81-117	-		
Magnesium, Total	81		-		76-124	-		
Manganese, Total	88		-		81-118	-		
Nickel, Total	85		-		83-117	-		
Potassium, Total	93		-		71-129	-		
Selenium, Total	97		-		78-122	-		
Silver, Total	96		-		75-124	-		
Sodium, Total	94		-		72-127	-		
Thallium, Total	85		-		80-120	-		
Vanadium, Total	93		-		78-122	-		

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1511165

Project Name: 505 CLOVE ROAD Project Number: 505 CLOVE

Report Date: 05/29/15

Parameter	LCS %Recover		SD covery	%Recovery Limits	RPD	RPD Limits
Total Metals - Westborough Lab Ass	ociated sample(s): 03	Batch: WG787287-2	SRM Lot Numb	er: D088-540		
Zinc, Total	88		-	82-118	-	

Lab Control Sample Analysis

Batch Quality Control

Project Name:505 CLOVE ROADProject Number:505 CLOVE

 Lab Number:
 L1511165

 Report Date:
 05/29/15

LCS LCSD %Recovery Limits %Recovery %Recovery RPD **RPD** Limits Parameter Total Metals - Westborough Lab Associated sample(s): 04 Batch: WG787664-2 SRM Lot Number: D088-540 Aluminum, Total 86 48-151 --Antimony, Total 187 1-208 --Arsenic, Total 105 79-121 --Barium, Total 83-117 94 --Beryllium, Total 99 83-117 --Cadmium, Total 96 83-117 --Calcium, Total 99 81-119 --Chromium, Total 80-120 101 --Cobalt, Total 84-115 92 --Copper, Total 98 81-118 --Iron, Total 110 45-155 --Lead. Total 98 81-117 --Magnesium, Total 91 76-124 --Manganese, Total 81-118 103 -Nickel, Total 96 83-117 --Potassium, Total 96 71-129 --Selenium, Total 102 78-122 --Silver, Total 100 75-124 --Sodium, Total 97 72-127 --Thallium, Total 100 80-120 --Vanadium, Total 97 78-122 -

Lab Control Sample Analysis Batch Quality Control

Project Name: 505 CLOVE ROAD Project Number: 505 CLOVE

Lab Number: L1511165 Report Date: 05/29/15

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Westborough Lab Associated s	ample(s): 04 Batch: W	VG787664-2 SRM Lot Numb	er: D088-540		
Zinc, Total	97	-	82-118	-	
Total Metals - Westborough Lab Associated s	ample(s): 03-04 Batch	n: WG788216-2 SRM Lot Nu	ımber: D088-540		
Mercury, Total	118	-	72-128	-	

Matrix Spike Analysis Batch Quality Control

Project Name: 505 CLOVE ROAD

Project Number: 505 CLOVE

Lab Number: L1511165 **Report Date:** 05/29/15

MS MSD RPD Native MS MS MSD Recovery Sample Added %Recovery Limits Found Found Qual %Recovery Qual Limits **RPD** Qual Parameter Total Metals - Westborough Lab Associated sample(s): 03 QC Batch ID: WG787287-4 QC Sample: L1511207-01 Client ID: MS Sample Aluminum, Total 6100 190 5800 Q 75-125 20 0 -ND 47.6 41 86 75-125 20 Antimony, Total ---Arsenic, Total 1.9 11.4 12 88 75-125 20 ---Barium, Total 38. 190 200 85 75-125 20 -_ -Beryllium, Total 0.27J 4.76 4.5 94 -75-125 20 --Cadmium. Total ND 4.86 3.9 80 75-125 20 ---Calcium, Total 1500 953 2300 84 75-125 20 ---Chromium, Total 11. 19 27 84 75-125 20 _ --Cobalt, Total 5.1 47.6 45 84 75-125 20 -_ -Copper, Total 12. 23.8 32 84 -75-125 20 --Iron, Total 19000 95.3 19000 Q 75-125 20 0 ---Lead, Total ND 56 48.6 115 -75-125 20 --Magnesium, Total Q 75-125 2400 953 3000 63 --_ 20 Manganese, Total 47.6 260 310 105 -75-125 20 --Nickel, Total 12. 47.6 50 80 -75-125 20 --953 1600 75-125 Potassium, Total 660 99 -_ 20 _ 11.4 9.9 86 75-125 Selenium, Total ND -_ 20 -75-125 ND 28.6 27 94 20 Silver, Total ---70.J 953 970 102 75-125 20 Sodium, Total _ -_ Thallium, Total ND 11.4 8.2 72 Q --75-125 _ 20 Vanadium, Total 13. 47.6 55 88 75-125 20 _ --

		Matrix Spike Analysis Batch Quality Control		
Project Name:	505 CLOVE ROAD	Batch Quality Control	Lab Number:	L1511165
Project Number:	505 CLOVE		Report Date:	05/29/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits RPD	RPD Limits
Total Metals - Westborough Lab	Associated	sample(s): 03	QC Ba	atch ID: WG787287-4	QC Sam	ple: L1511207-01	Client ID: MS Sample	
Zinc, Total	32.	47.6	70	80	-	-	75-125 -	20

Matrix Spike Analysis Batch Quality Control

Project Name: 505 CLOVE ROAD

Project Number: 505 CLOVE Lab Number: L1511165

Report Date:

05/29/15

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Westborough	h Lab Associated	sample(s): 04	QC Ba	atch ID: WG787	664-4	QC Sam	ple: L1511401-21	Client ID: MS	Sample	
Aluminum, Total	3900	179	5200	724	Q	-	-	75-125	-	20
Antimony, Total	130	44.8	210	178	Q	-	-	75-125	-	20
Arsenic, Total	140	10.8	180	372	Q	-	-	75-125	-	20
Barium, Total	160	179	370	117		-	-	75-125	-	20
Beryllium, Total	2.2	4.48	11	196	Q	-	-	75-125	-	20
Cadmium, Total	9.2	4.58	13	83		-	-	75-125	-	20
Calcium, Total	2400	897	3800	156	Q	-	-	75-125	-	20
Chromium, Total	34.	17.9	56	123		-	-	75-125	-	20
Cobalt, Total	32.	44.8	82	111		-	-	75-125	-	20
Copper, Total	3700	22.4	4200	2230	Q	-	-	75-125	-	20
Iron, Total	39000	89.7	49000	11100	Q	-	-	75-125	-	20
Lead, Total	2600	45.8	3000	874	Q	-	-	75-125	-	20
Magnesium, Total	1100	897	2300	134	Q	-	-	75-125	-	20
Manganese, Total	220	44.8	280	134	Q	-	-	75-125	-	20
Nickel, Total	97.	44.8	170	163	Q	-	-	75-125	-	20
Potassium, Total	390	897	1500	124		-	-	75-125	-	20
Selenium, Total	31.	10.8	52	195	Q	-	-	75-125	-	20
Silver, Total	29.	26.9	73	163	Q	-	-	75-125	-	20
Sodium, Total	300	897	1400	123		-	-	75-125	-	20
Thallium, Total	ND	10.8	9.3	86		-	-	75-125	-	20
Vanadium, Total	21.	44.8	62	91		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name:	505 CLOVE ROAD
Project Number:	505 CLOVE

 Lab Number:
 L1511165

 Report Date:
 05/29/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Westborough	Lab Associated	sample(s): 0	4 QC Ba	tch ID: WG787	664-4	QC Sam	ole: L1511401-21	Client ID: MS	Sample	
Zinc, Total	2100	44.8	3300	2680	Q	-	-	75-125	-	20
Total Metals - Westborough	Lab Associated	sample(s): 0	3-04 QC	Batch ID: WG7	788216-	4 QC S	ample: L1511450-	01 Client ID:	MS Sample	
Mercury, Total	0.13	0.147	0.40	183	Q	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:505 CLOVE ROADProject Number:505 CLOVE

Lab Number: Report Date:

L1511165 05/29/15

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
otal Metals - Westborough Lab Associated sample(s):	03 QC Batch ID: WG	787287-3 QC Sample:	L1511207-01	Client ID:	DUP Sample
Aluminum, Total	6100	6000	mg/kg	2	20
Antimony, Total	ND	ND	mg/kg	NC	20
Arsenic, Total	1.9	1.9	mg/kg	0	20
Barium, Total	38.	38	mg/kg	0	20
Beryllium, Total	0.27J	0.26J	mg/kg	NC	20
Cadmium, Total	ND	ND	mg/kg	NC	20
Calcium, Total	1500	1500	mg/kg	0	20
Chromium, Total	11.	12	mg/kg	9	20
Cobalt, Total	5.1	5.1	mg/kg	0	20
Copper, Total	12.	12	mg/kg	0	20
Iron, Total	19000	18000	mg/kg	5	20
Magnesium, Total	2400	2300	mg/kg	4	20
Manganese, Total	260	250	mg/kg	4	20
Nickel, Total	12.	12	mg/kg	0	20
Potassium, Total	660	720	mg/kg	9	20
Selenium, Total	ND	ND	mg/kg	NC	20
Silver, Total	ND	ND	mg/kg	NC	20
Sodium, Total	70.J	83J	mg/kg	NC	20
Thallium, Total	ND	ND	mg/kg	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 505 CLOVE ROAD Project Number: 505 CLOVE

Lab Number: L1511165 05/29/15 Report Date:

20
20
20
20
20
20
e
20
e

INORGANICS & MISCELLANEOUS

26

Project Name: Project Number:	505 CLOVE ROAD 505 CLOVE		Lab Nu Report		L1511165 05/29/15
	SAMPLE RE	SULTS			
Lab ID: Client ID: Sample Location: Matrix:	L1511165-01 TP-4 VILLAGE OF BLOOMING GROVE, NY Soil			ollected: eceived: rep:	05/20/15 08:56 05/21/15 Not Specified
		Dilution	Date	Date	Analytical

Parameter	Result C	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - V	Vestborough Lab									
Solids, Total	86.8		%	0.100	NA	1	-	05/22/15 14:18	30,2540G	AB

	Serial_No:0	05291515:26
CLOVE ROAD	Lab Number:	L1511165
CLOVE	Report Date:	05/29/15
SAMPLE RESUL	TS	
11165-02	Date Collected	05/20/15 09:35

Lab ID:	L1511165-02	Date Collected:	05/20/15 09:35
Client ID:	TP-6	Date Received:	05/21/15
Sample Location:	VILLAGE OF BLOOMING GROVE, NY	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab)								
Solids, Total	81.7		%	0.100	NA	1	-	05/22/15 14:18	30,2540G	AB

Project Name:

Project Number: 505

505

Serial_No:05291515:26	

Project Name: Project Number:	505 CLOVE ROAD 505 CLOVE				Lab Nu Report	umber:	L1511165 05/29/15	
	505 CLOVE	SAMP	LE RESULT	S	Report	Dute.	03/23/13	
Lab ID: Client ID: Sample Location: Matrix:	L1511165-03 TP-8 VILLAGE OF BLOOMING GROV Soil	E, NY				ollected: eceived: rep:	05/20/15 10:2 05/21/15 Not Specified	-
arameter	Posult Qualifier Units	e Di	МОІ	Dilution Factor	Date Prepared	Date Analvzed	Analytical Method	۸n

Parameter	Result C	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - We	estborough Lab									
Solids, Total	84.4		%	0.100	NA	1	-	05/22/15 14:18	30,2540G	AB

Serial No:05291515:26

Project Name: Project Number:	505 CLOVE ROAD 505 CLOVE		Lab Nu Report		L1511165 05/29/15
	SAMPLE RESUL	_TS			
Lab ID: Client ID: Sample Location: Matrix:	L1511165-04 TP-11 VILLAGE OF BLOOMING GROVE, NY Soil		Date Co Date Re Field Pr	eceived:	05/20/15 11:30 05/21/15 Not Specified
		Dilution	Date	Date	Analytical

Parameter	Result Q	ualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	92.9		%	0.100	NA	1	-	05/22/15 14:18	30,2540G	AB

Serial	No:05291515:26
Ochiai_	_10.00201010.20

Project Name: Project Number:	505 CLOVE ROAD 505 CLOVE		umber: t Date:	L1511165 05/29/15			
	SAMPI	LE RESULT	S				
Lab ID: Client ID: Sample Location: Matrix:	L1511165-05 TP-16 VILLAGE OF BLOOMING GROVE, NY Soil				Collected: Received: Prep:	05/20/15 12:2 05/21/15 Not Specified	0
Poromotor	Bogult Qualifier Unite Bl	MDI	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	٨٣

Parameter	Result Qualif	ier Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - W	/estborough Lab								
Solids, Total	85.4	%	0.100	NA	1	-	05/22/15 14:18	30,2540G	AB

Project Name: Project Number:	505 CLOVE I 505 CLOVE	ROAD			Duplicate Ar atch Quality Cor		-	ab Number Report Date	LIJIIIO
Parameter			Native Sam	ple	Duplicate Samp	le Units	RPD	Qual	RPD Limits
General Chemistry - Wes	stborough Lab	Associated sample	e(s): 01-05	QC Batch II	D: WG787465-1	QC Sample:	L1511165-01	Client ID: 1	ГР-4
Solids, Total			86.8		87.1	%	0		20

Serial_No:05291515:26

Lab Number: L1511165 Report Date: 05/29/15

Project Name:505 CLOVE ROADProject Number:505 CLOVE

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

А

Absent

Vial Large Septa unpreserved

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1511165-01A	Vial Large Septa unpreserved	А	N/A	2.1	Y	Absent	NYTCL-8260(14)
L1511165-01B	Glass 120ml/4oz unpreserved	А	N/A	2.1	Y	Absent	NYTCL-8270(14),TS(7)
L1511165-02A	Vial Large Septa unpreserved	А	N/A	2.1	Y	Absent	NYTCL-8260(14)
L1511165-02B	Glass 120ml/4oz unpreserved	А	N/A	2.1	Y	Absent	NYTCL-8270(14),TS(7)
L1511165-03A	Vial Large Septa unpreserved	А	N/A	2.1	Y	Absent	NYTCL-8260(14)
L1511165-03B	Vial Large Septa unpreserved	A	N/A	2.1	Y	Absent	BE-TI(180),NYTCL- 8270(14),AS-TI(180),BA- TI(180),AG-TI(180),AL- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),TS(7),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),CO-TI(180),V- TI(180),FE-TI(180),HG- T(28),MG-TI(180),MN- TI(180),CA-TI(180),CD- TI(180),K-TI(180),NA-TI(180)
L1511165-03C	Glass 120ml/4oz unpreserved	A	N/A	2.1	Y	Absent	BE-TI(180),NYTCL- 8270(14),AS-TI(180),BA- TI(180),AG-TI(180),AL- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),TS(7),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),SB- TI(180),CO-TI(180),V- TI(180),FE-TI(180),HG- T(28),MG-TI(180),MN- TI(180),CA-TI(180),CD- TI(180),K-TI(180),NA-TI(180)
L1511165-03D	Glass 250ml/8oz unpreserved	А	N/A	2.1	Y	Absent	-
L1511165-03E	Glass 250ml/8oz unpreserved	А	N/A	2.1	Y	Absent	-

А

N/A

2.1

Υ

Absent

NYTCL-8260(14)

L1511165-04A

Serial_No:05291515:26

Lab Number: L1511165 Report Date: 05/29/15

Project Name:505 CLOVE ROADProject Number:505 CLOVE

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1511165-04B	Glass 250ml/8oz unpreserved	A	N/A	2.1	Y	Absent	BE-TI(180),NYTCL- 8270(14),AS-TI(180),BA- TI(180),AG-TI(180),AL- TI(180),CR-TI(180),NI- TI(180),CR-TI(180),NI- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),FE-TI(180),HG- T(28),MG-TI(180),MN- TI(180),CA-TI(180),NA-TI(180)
L1511165-04C	Glass 250ml/8oz unpreserved	A	N/A	2.1	Y	Absent	BE-TI(180),NYTCL- 8270(14),AS-TI(180),BA- TI(180),AG-TI(180),AL- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),TS(7),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),SB- TI(180),CO-TI(180),V- TI(180),CO-TI(180),V- TI(180),FE-TI(180),MG- T(28),MG-TI(180),MN- TI(180),CA-TI(180),CD- TI(180),K-TI(180),NA-TI(180)
L1511165-05A	Glass 250ml/8oz unpreserved	A	N/A	2.1	Y	Absent	TS(7),NYTCL-8081(14)

Project Name: 505 CLOVE ROAD

Project Number: 505 CLOVE

Lab Number: L1511165

Report Date: 05/29/15

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.

Report Format: DU Report with 'J' Qualifiers

Serial_No:05291515:26

Project Name: 505 CLOVE ROAD

Project Number: 505 CLOVE

Lab Number: L1511165

Report Date: 05/29/15

Data Qualifiers

- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name: 505 CLOVE ROAD Project Number: 505 CLOVE
 Lab Number:
 L1511165

 Report Date:
 05/29/15

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility EPA 8270D: Biphenyl. EPA 2540D: TSS EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:05291515:26

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney F Albany, NY 12205: 14 Walker Wa Tonawanda, NY 14150: 275 Coop	ıy	;	Page of			Date I In L erables	ab		Ja .	1]/	N.		ALPHA Job # 1.7.5.77716.5 Billing Information	
8 Walkup Dr.	320 Forbes Blvd TEL: 508-822-9300	Project Information	Claula	12-7-1				ASP-/				ASP-E	3		Same as Client Info	
TEL: 508-898-9220 FAX: 508-898-9193	FAX: 508-822-9300	Project Name: 505	<u>1076</u>	TOOO	24240 1	\overline{V}		EQuis		ile)		EQuis		le) I	PO#	
Oliant Information		Project Location: Villa Project # 505 CV	Jeo DIC	<u>omna c</u>	<u>אטורכ /</u>	<u>v</u> }		Other	-	-,				Í		ļ
Client Information	Envilonmental	(Use Project name as Pro					Regu	latory		remeni	t				Disposal Site Information	
Address: 121 West		······································	Ahmed					NY TO	IGS			NY Par	t 375		Please identify below location of	
Suite (004,/		ALPHAQuote #:	<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	u u u				AWQ S	Standaı	rds		NY CP	-51		applicable disposal facilities.	
Phone: 646606		Turn-Around Time						NY Re	stricted	1 Use		Other		ľ	Disposal Facility:	
Fax:		Standard		Due Date:				NY Un	restrict	ed Use					NJ NY	
Email: Mahmede	fenen-env.com	Rush (only if pre approved)		# of Days:						Discharg	je				Other:	
These samples have be		ed by Alpha					ANA	LYSIS	<u> </u>						Sample Filtration	T O
Other project specific Please specify Metals		ents:					r 8260	5VOCS 8270	. Metals 6	t. c.des	i i i				Done Lab to do Preservation Lab to do (Please Specify below)	t a I B o t
			Colle	ection	Sample	Sampler's	VOCS	2	TAL	Pest					· · · · · · · · · · · · · · · · · · ·	t
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	Ľ	S	1	2					Sample Specific Comments	e
		4	5.20.15	8:56	- 5	MA	X	×		┝──┥						
	TP-)	9,35	5		4	×								
	TP-			10.25	5		×	×	\star							
OCA	TP-			11:30	5		X	X	×							_
	TP.		l	12:20	5	¥				X						<u> </u>
AND NO																┨
A LANK							 									
			ļ				<u> </u>		ļ	┝──┧			_			
後. 公義 へ 渡* 4					ļ		<u> </u>									╂
				<u> </u>			—	┿╾╼	┣	┝						
Preservative Code: A = None B = HCl	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification N Mansfield: Certification N			Con	tainer Type	 	ļ 							Please print clearly, legib and completely. Samples not be logged in and	can
$C = HNO_3$ $D = H_2SO_4$	v = viai G = Glass				P	reservative			1						turnaround time clock will	
E = NaOH	B = Bacteria Cup C = Cube	<u> </u>			L		Rece'	I ved P	<u> </u>			Dete	l /Time	1	start until any ambiguities resolved. BY EXECUTIN	
F = MeOH G = NaHSO₄	O = Other	Relinquished	7	Date/	/Time	-7-		ived By	y: IA	1	5-2	2(-/5		45	THIS COC, THE CLIENT	
$H = Na_2S_2O_3$	E = Encore D = BOD Bottle	Molemed al	med	5-20-15		Tom	<u>A</u>	BU	<u>141</u> /		21-	15	78	Ýð	HAS READ AND AGREE TO BE BOUND BY ALPH	
K/E = Zn Ac/NaOH		Tomotole	/	5-21-15	27:20				5	$\frac{\omega}{2}$		mal's	<u>- ()</u> アカ:	<u>, v</u> z : 20	TERMS & CONDITIONS	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	10" V /00 20 V			63.90	<u> </u>									(See reverse side.)	

Å

APPENDIX B

NYSDEC PBS Certificate

RABLE Page 1 of 1	IS NON-TRANSFERABLE	THIS REGISTRATION CERTIFICATE IS NO	THIS RE	6/7/2016	Print Date: 6/
			\$4,500.00		FEE PAID:
Printed Name and Title of Facility Owner/Authorized Representative	Printed Name a		07/07/2019	ATE :	EXPIRAT
Signature of Facility Owner/Authorized Representative Date	Signature of Fa	PO BOX 2020 MONROE, NY 10950	3-601349 06/07/2016		PBS NUMBER: DATE ISSUED:
Spills must be reported to the DEC within two hours (1-800-457-7362).	Spills must be r	SIMON GELB	nissioner	Y: Acting Commissioner Basil Seggos	ISSUED BY:
This registration certificate must be kept current and conspicuously posted at this facility at all times. Posting must be at the tank, at the entrance of the facility, or the main office where the storage tanks are located.	This registratic this facility at to or the main offi	Facility Phone Number (949) 769-9478 MAILING CORRESPONDENCE:	Class A (Primary) Operator: Emergency Contact Name: SIMON GELB Emergency Contact Phone Number: (845) 774-8000	Class A (Primary) Operator: Emergency Contact Name: SIMON GELB Emergency Contact Phone Number: (845	Class A (Pr Emergency Emergency
as a criminal offense and/or a civil violation in accordance with applicable state and federal law.	as a criminal of federal law.		CHARLEY BAILEY		Class B (Da
As the owner of this facility and/or the tanks at this facility, the receipt, posting, and use of this certificate is an acknowledgement that I am responsible to the extent required by law for ensuring that this facility is in compliance with all regulations for the bulk storage of petroleum including those regarding equipment requirements, inspections, handling procedures, recordkeeping, registration requirements, providing advanced notice to the Department of major changes to a tank system, spill reporting, and all other applicable requirements. Violations may be punishable	As the owner of use of this certii required by law the bulk storage inspections, har providing advar spill reporting, a	FACILITY (PROPERTY) OWNER: KEEN EQUITIES LLC C/O YC RUBIN 601 LEHIGH AVENUE LEHIGH, NJ 07083		FACILITY NAME AND ADDRESS : LAKE ANNE REALTY CORP .A/K/A 505 CLOVE ROAD MONROE, NY 10950	FACILITY NAME A LAKE ANNE REALT 505 CLOVE ROAD MONROE, NY 10950
		Renoved.)))	art	*
as described in 6 NYCRR Section 613-4.3	sections as described in 6	* Aboveground tanks require monthly visual inspections and may need documented internal inspections	nonthly visual inspections a	ound tanks require n	* Abovegro
* 5,000 *	#2 fuel oil (on-site consumption)	01/01/1998 Steel/Carbon Steel/Iron	Aboveground - in contact with soil 01/0	Aboveground - i	001
CAPACITY (GALLONS)	PRODUCT STORED	DATE TANK INSTALLED TYPE		TANK LOCATION	TANK NUMBER
Region 3 NYSDEC - PBS Unit 21 South Putt Corners Road New Paltz, NY 12561-1696 (845) 256-3022	ental Conservation CERTIFICATE 0 Phone: 518-402-9553	New York State Department of Environmental Conservation PETROLEUM BULK STORAGE CERTIFICATE 625 Broadway, 11th Floor, Albany, NY 12233-7020 Phone: 518-402-9553	New York PETRO 625 Broad	PBS Number 3-601349	

APPENDIX C

Disposal Manifests

NON-HAZARDOUS WASTE MANIFEST	1. Generator ID Number	2.		Emergency Respon (631) 588-2		4. Waste 1	racking Nu	^{mber} 060	314
5. Generator's Name and Mail	ing Address			nerator's Site Addre				- 1. A.	
	PO Box 2020 Monroe, NY 10	949 USA		Clove R Monroe	oad & La NY 109	ke Anne I 160 USA	Orive		
Generator's Phone: 6. Transporter 1 Company Nar	me					U.S. EPA ID	Number	1	
	/IPONMENTAL ASSES	SMENT CORP.				,	000044	412	
7. Transporter 2 Company Nar						U.S. EPA ID			
	Charlen Watter	at House Yash	5.8					1	19
8. Designated Facility Name a 715-90 Facility's Phone:		of New York nd Terrace I NY 10303 US	A			U.S. EPA ID	Number		
				10. Cor	tainers	11. Total	12. Unit	1. A.	
9. Waste Shipping Nam	aked Debris	ATTR:	2.5	No.	Туре	Quantity	Wt./Vol.		
	NON DOT REGULÁTE				BRI	155	GA.	L	
2.			1. j					an a	
3.					1		4		
4.						1			The second
I3. Special Handling Instructio	ns and Additional Information	- 012 - 8	1211						1 4
A prov	R'S CERTIFICATION: I hereby declare th	hat the contents of this cons	signment are fu	lly and accurately d	escribed above	by the proper sl	Ipping name	e, and are classif	ied, packaged
A provide the second se	R'S CERTIFICATION: I hereby declare the ded, and are in all respects in proper com	hat the contents of this cons	signment are fu	international and na	escribed above ational governm	by the proper si nental regulation	pping name	e, and are classif Month	
14. GENERATOR'S/OFFERO marked and labeled/placar Generator's/Offeror's Printed/T	R'S CERTIFICATION: I hereby declare the ded, and are in all respects in proper com	hat the contents of this cons	signment are fu	international and na	escribed above ational governm	by the proper si nental regulation	pipping name	1	
4. GENERATOR'S/OFFERO marked and labeled/placar Generator's/Offeror's Printed/T 5. International Shipments	R'S CERTIFICATION: I hereby declare the ded, and are in all respects in proper considered and are in all respects the proper considered and the ded and are in all respects the proper considered and the ded and	hat the contents of this condition for transport according the condition for transport according the conditional sector of	signment are fu	international and na re <u>MM</u> Port of d	ational governm	by the proper si nental regulation	Tipping name	1	
14. GENERATOR'S/OFFERO marked and labeled/placar Generator's/Offeror's Printed/T 15. International Shipments Fransporter Signature (for exp	R'S CERTIFICATION: I hereby declare the ded, and are in all respects in proper com yped Name A proper declare the ded, and proper to U.S. orts only):	hat the contents of this condition for transport according the condition for transport according the conditional sector of	signment are fu ig to applicable Signatu	international and na re <u>MM</u> Port of d	ational governm	by the proper sl nental regulation	pipping name	1	
4. GENERATOR'S/OFFERO marked and labeled/placar Generator's/Offeror's Printed/T 15. International Shipments Fransporter Signature (for exp 16. Transporter Acknowledgme Fransporter 1 Printed/Typed N	R'S CERTIFICATION: I hereby declare the decl, and are in all respects in proper construction of the declare the de	hat the contents of this condition for transport according the condition for transport according the conditional sector of	signment are fu ig to applicable Signatu port from U.S. Signatu	re Model Port of under the port of under the por	ational governm	by the proper sinental regulation	pipping name	Month Month	Day Day Day
4. GENERATOR'S/OFFERO marked and labeled/placar Generator's/Offeror's Printed/T 15. International Shipments Fransporter Signature (for exp 16. Transporter Acknowledgme Fransporter 1 Printed/Typed N	R'S CERTIFICATION: I hereby declare the decl, and are in all respects in proper construction of the declare the de	hat the contents of this condition for transport according the condition for transport according the conditional sector of	signment are fu ig to applicable Signatu port from U.S.	re Model Port of under the port of under the por	ational governm	by the proper sl nental regulation	Toping name	Month	Day Day Day
4. GENERATOR'S/OFFERO marked and labeled/placar Generator's/Offeror's Printed/T 15. International Shipments Fransporter Signature (for exp 16. Transporter Acknowledgme Transporter 1 Printed/Typed N	R'S CERTIFICATION: I hereby declare the decl, and are in all respects in proper construction of the declare the de	hat the contents of this condition for transport according the condition for transport according the conditional sector of	signment are fu ig to applicable Signatu port from U.S. Signatu	re Model Port of under the port of under the por	ational governm	by the proper si nental regulation	pipping name	Month Month	Day Day Day
A. GENERATOR'S/OFFERO marked and labeled/placar Generator's/Offeror's Printed/T Is. International Shipments Transporter Signature (for exp I. Transporter Acknowledgme Transporter 1 Printed/Typed N Transporter 2 Printed/Typed N Transporter 2 Printed/Typed N Transporter 2 Printed/Typed N	R'S CERTIFICATION: I hereby declare the ded, and are in all respects in proper consistent of Name A A A A A A A A A A A A A A A A A A A	hat the contents of this condition for transport according the condition for transport according the conditional sector of	signment are fu ig to applicable Signatu port from U.S. Signatu	re Babb	ational governm	by the proper sl nental regulation	heg	Month Month Month	Day Day Day
A GENERATOR'S/OFFERO marked and labeled/placar Generator's/Offeror's Printed/T I5. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgma Transporter 1 Printed/Typed N Transporter 2 Printed/Typed N Transporter 2 Printed/Typed N Transporter 2 Printed/Typed N	R'S CERTIFICATION: I hereby declare the ded, and are in all respects in proper consistency of the declare the decl	hat the contents of this cons dition for transport accordin Medd	signment are fu ig to applicable Signatu port from U.S. Signatu	re Model re model Port of a Date lea re babb	ational governm	Partial Re	s. hef	Month Month Month	Day Day Day Day
Approximately and the second sec	R'S CERTIFICATION: I hereby declare the ded, and are in all respects in proper consistency of the declare the decl	hat the contents of this cons dition for transport accordin Medd	signment are fu ig to applicable Signatu port from U.S. Signatu	re Babb	ational governm		s. hef	Month Month Month	Day Day Day Day
A. Discrepancy Transporter 2 Printed/Typed N Transporter 3 Printed/Typed N Transporter 4 Printed/Typed N Transporter 5 Printed/Typed N Transporter 5 Printed/Typed N Transporter 7 Printed/Typed N Transporter 9 Printed/Typed 9 Transporter 9 Printed/Type4	R'S CERTIFICATION: I hereby declare the ded, and are in all respects in proper consistency of the declare the decl	hat the contents of this cons dition for transport accordin Medd	signment are fu ig to applicable Signatu port from U.S. Signatu	re Babb	ational governm	Partial Re	s. hef	Month Month Month	Day Day Day Day
A. Discrepancy Transporter 2 Printed/Typed N Transporter 3 Printed/Typed N Transporter 4 Printed/Typed N Transporter 5 Printed/Typed N Transporter 5 Printed/Typed N Transporter 6 Printed/Typed N Transporter 7 Printed/Typed N Transporter 7 Printed/Typed N Transporter 7 Printed/Typed N Transporter 7 Printed/Typed N Transporter 9 Printed/Typed 9 Printed/Typed 9 Transporter 9 Printed/Typed 9	R'S CERTIFICATION: I hereby declare the ded, and are in all respects in proper consistency of Name A A A A A A A A A A A A A A A A A A A	hat the contents of this cons dition for transport accordin Medd	signment are fu ig to applicable Signatu port from U.S. Signatu	re Babb	ational governm	Partial Re	s. hef	Month Month Month	Day Day Day Day
A. Discrepancy Transporter 2 Printed/Typed N Transporter 3 Printed/Typed N Transporter 4 Printed/Typed N Transporter 5 Printed/Typed N Transporter 5 Printed/Typed N Transporter 6 Printed/Typed N Transporter 7 Printed/Typed N Transporter 7 Printed/Typed N Transporter 7 Printed/Typed N Transporter 7 Printed/Typed N Transporter 9 Printed/Typed 9 Printed/Typed 9 Transporter 9 Printed/Typed 9	R'S CERTIFICATION: I hereby declare the ded, and are in all respects in proper consistency of Name A A A A A A A A A A A A A A A A A A A	hat the contents of this cons dition for transport accordin Medd	signment are fu ig to applicable Signatu port from U.S. Signatu	re Babb	ational governm	Partial Re	s. hef	Month Month	Day Day Day Day Full Rejection
14. GENERATOR'S/OFFERO marked and labeled/placar Generator's/Offeror's Printed/T 15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgmu Transporter 1 Printed/Typed N Transporter 2 Printed/Typed N 17. Discrepancy 17a. Discrepancy 17b. Alternate Facility (or Gene Facility's Phone: 17c. Signature of Alternate Fac	R'S CERTIFICATION: I hereby declare the ded, and are in all respects in proper conservations only is the declare the dedition of the declare the decla	hat the contents of this cons dilition for transport accordin Med Ex Type	signment are fu ig to applicable Signatu port from U.S. Signatu Signatu	International and na re <u>Model</u> Port of a Date lea re <u>Bools</u> re Residue Manifest Reference	ational governm	Partial Re	s. hef	Month Month	Day Day Day Day Full Rejection
14. GENERATOR'S/OFFERO marked and labeled/placar Generator's/Offeror's Printed/T 15. International Shipments Transporter Signature (for exp 16. Transporter Signature (for exp 17. Discrepancy 17a. Discrepancy 17b. Alternate Facility (or Gene Facility's Phone: 17c. Signature of Alternate Facility	R'S CERTIFICATION: I hereby declare the ded, and are in all respects in proper consistency of Name A A A A A A A A A A A A A A A A A A A	hat the contents of this cons dilition for transport accordin Med Ex Type	signment are fu ig to applicable Signatu port from U.S. Signatu Signatu	International and na re Model Port of a Date lea re Residue Manifest References noted in Item 17a	ational governm	Partial Re	s. hef	Month Month	Day Day Day Day Full Rejection

APPENDIX D

Photo Log Documenting Tank Removal Activities

One 4,900-gallon #2 Fuel Oil Aboveground Tank

A Large Openning on Tank Side for Interior Cleaning

APPENDIX E

Receipts from the Disposal Facility and Scrap Yard

SCRAP & IRON METAL	(NY DISM 7046331	10-40 YARD CONTAINERS				· •
JUNK	OWN AUTO WR CARS & TRUCKS WAN OFF CONTAINERS SERV	TED				•
JOHN CARBONE 1-845-343-8011 1-845-343-0682	83-85 INDUSTRIAL MIDDLETOW			09119 am 4	07/23/16 8740 1b	
	orlie Bailey	v 7-23	-16		<i>v</i>	
Destination	V			(19:23 am	the state and state into bee	
Loading Adderss South B/O CityGn	505 Clove oming ove state NY				5260 1b 3,480	-
Product Clea	n Metal	<u>304</u>	331	100 mudere	(6.7)	4T)
Remarks			100.		(1
Driver MC5	- Ron		12	27.00		
Weightmaster	UX		0			

mc5 Ron aster Uf Driver ____ Weightmaster

SYSTEM GENERATED Ticket# 174160 Operator GAMAR01	TAYLOR-MONTGOMERY, LLC 350 NEELYTOWN ROAD MONTGOMERY NY 12549 (845) 457-4021	Date: 7/15/16 In/Tm: 10:52 AM Out/Tm:10:58 AM
Billing Cust# 01-0000187 CB TRUCKING & EXCAVATING HARRIMAN HEIGHTS RD HARRIMAN NY 10926	Service Cust# -00 CB TRUCKING & EXCAV HARRIMAN HEIGHTS RD HARRIMAN NY 10926	ATING
Vehicle ID: CB TRUCKING Tr Comment: CK 6823	cailer ID: 187 Ori	gin: ORA
Material Gross W	Vgt Tare Wgt Net Wgt	Qty Amount
C&D 34100		3.03TN 257.55
		Total 257.55
Driver Signature	Weighmaster Signature Weighmaster - GINA M Weighmaster License#	AMARO

Date: 7/12/16 In/Tm: 10:29 AM Out/Tm:10:37 AM			Amount 741.25	741.25	
549	# -0000000 & EXCAVATING GHTS RD 10926	Origin: ORA	c Qty	Total	signature - GINA M AMARO License# -602836
TAYLOR-MONTGOMERY, LLC 350 NEELYTOWN ROAD MONTGOMERY NY 12 (845) 457-4021	Service Cust# -0000000 CB TRUCKING & EXCAVATING HARRIMAN HEIGHTS RD HARRIMAN NY 10926	r ID: 187	Tare Wgt Net Wgt 28060 LB 11860 LB		Weighmaster Sig Weighmaster - G Weighmaster Lice
	-0000187 CAVATING RD 6	RUCKING Trailer ID: 3	Gross Wgt 39920 LB		
SYSTEM GENERATED Ticket# 173862 Operator GAMAR01	Billing Cust# 01-0000187 CB TRUCKING & EXCAVATING HARRIMAN HEIGHTS RD HARRIMAN NY 10926	Vehicle ID: CB TRUCKING Comment: CK 6823	Material RESIDUE		Driver Signature

SYSTEM GENERATED Ticket# 173896 Operator GAMAR01	TAYLOR-MONTGOMERY, 350 NEELYTOWN ROAD MONTGOMERY NY	NTGOMERY, LLC FOWN ROAD I NY 12549	Date: 7/12/ In/Tm: 12:58 Out/Tm: 1:05	7/12/16 12:58 PM : 1:05 PM
	(845) 457-4021	-4021		
Billing Cust# 01-0000187 CB TRUCKING & EXCAVATING HARRIMAN HEIGHTS RD HARRIMAN NY 10926		Service Cust# -0000000 CB TRUCKING & EXCAVATING HARRIMAN HEIGHTS RD HARRIMAN NY 10926	000 DNU	
Vehicle ID: CB TRUCKING Comment: CK 6823	G Trailer ID:	187 Origi	Origin: ORA	
Material G C&D	Gross Wgt Tare Wgt 35760 LB 28200 LB	Net Wgt 7560 LB	Qty An 3.78 TN 321	Amount 321.30
			Total 321	321.30
Driver Signature	Weigh Weigh Weigh	Weighmaster Signature Weighmaster - GINA M AM Weighmaster License# /-	AMARO - 602836	

REPRINTED Ticket# 173926 Operator GAMAR01	TAYLOR-MONTGOMERY, LLC 350 NEELYTOWN ROAD MONTGOMERY NY 12549 (845) 457-4021	Date: 7/12/16 In/Tm: 3:31 PM Out/Tm: 3:40 PM
Billing Cust# 01-0000187 CB TRUCKING & EXCAVATING HARRIMAN HEIGHTS RD HARRIMAN NY 10926	<pre>L87 Service Cust# -0000000 CB TRUCKING & EXCAVATING HARRIMAN HEIGHTS RD HARRIMAN NY 10926</pre>	
Vehicle ID: CB TRUCKING Comment: CK 6823	NG Trailer ID: 187 Origin: ORA	JRA
Material G&D	Gross Wgt Tare Wgt Net Wgt Qty 33520 LB 28140 LB 5380 LB 2.69 TN	Qty Amount TN 228.65
	O E	Total- 228.65
Driver Signature	Weighmaster Signature Weighmaster - GINA M AMARO Weighmaster License# - 602836	836

APPENDIX F

Fill Material Analytical Results

ANALYTICAL REPORT

Lab Number:	L1621764
Client:	Tenen Environmental, LLC
	121 West 27th Street
	Suite 702
	New York City, NY 10001
ATTN:	Mohamed Ahmed
Phone:	(646) 606-2332
Project Name:	505 CLOVE RD.
Project Number:	505 CLOVE
Report Date:	07/22/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:07221616:37

 Lab Number:
 L1621764

 Report Date:
 07/22/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1621764-01	SC1	SOIL	MONROE, NEW YORK	07/13/16 13:00	07/14/16

Project Name:

Project Number:

505 CLOVE RD.

505 CLOVE

Project Name: 505 CLOVE RD. Project Number: 505 CLOVE

Lab Number: L1621764 Report Date: 07/22/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:505 CLOVE RD.Project Number:505 CLOVE

 Lab Number:
 L1621764

 Report Date:
 07/22/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

Metals

L1621764-01: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Auchelle M. Morris Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 07/22/16

ORGANICS

VOLATILES

			Serial_N	o:07221616:37
Project Name:	505 CLOVE RD.		Lab Number:	L1621764
Project Number:	505 CLOVE		Report Date:	07/22/16
		SAMPLE RESULTS		
Lab ID:	L1621764-01		Date Collected:	07/13/16 13:00
Client ID:	SC1		Date Received:	07/14/16
Sample Location:	MONROE, NEW YORK		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	07/20/16 17:13			
Analyst:	BN			
Percent Solids:	92%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/kg	9.7	1.1	1
1,1-Dichloroethane	ND		ug/kg	1.4	0.08	1
Chloroform	ND		ug/kg	1.4	0.36	1
Carbon tetrachloride	ND		ug/kg	0.97	0.20	1
1,2-Dichloropropane	ND		ug/kg	3.4	0.22	1
Dibromochloromethane	ND		ug/kg	0.97	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.4	0.29	1
Tetrachloroethene	ND		ug/kg	0.97	0.14	1
Chlorobenzene	ND		ug/kg	0.97	0.34	1
Trichlorofluoromethane	ND		ug/kg	4.8	0.38	1
1,2-Dichloroethane	ND		ug/kg	0.97	0.11	1
1,1,1-Trichloroethane	ND		ug/kg	0.97	0.11	1
Bromodichloromethane	ND		ug/kg	0.97	0.17	1
trans-1,3-Dichloropropene	ND		ug/kg	0.97	0.12	1
cis-1,3-Dichloropropene	ND		ug/kg	0.97	0.11	1
1,3-Dichloropropene, Total	ND		ug/kg	0.97	0.11	1
1,1-Dichloropropene	ND		ug/kg	4.8	0.14	1
Bromoform	ND		ug/kg	3.9	0.23	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.97	0.10	1
Benzene	ND		ug/kg	0.97	0.11	1
Toluene	ND		ug/kg	1.4	0.19	1
Ethylbenzene	ND		ug/kg	0.97	0.12	1
Chloromethane	ND		ug/kg	4.8	0.28	1
Bromomethane	ND		ug/kg	1.9	0.33	1
Vinyl chloride	ND		ug/kg	1.9	0.11	1
Chloroethane	ND		ug/kg	1.9	0.31	1
1,1-Dichloroethene	ND		ug/kg	0.97	0.25	1
trans-1,2-Dichloroethene	ND		ug/kg	1.4	0.20	1
Trichloroethene	ND		ug/kg	0.97	0.12	1
1,2-Dichlorobenzene	ND		ug/kg	4.8	0.15	1

						Serial_N	0:07221616:37
Project Name:	505 CLOVE RD.				Lab Nu		L1621764
Project Number:	505 CLOVE				Report	Date:	07/22/16
••••••••••••••••••••••••••••••••••••••		SAMP	LE RESULTS	;			
Lab ID:	L1621764-01				Date Co	llected:	07/13/16 13:00
Client ID:	SC1				Date Re	ceived:	07/14/16
Sample Location:	MONROE, NEW YO	RK			Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborou	jh Lab					
1,3-Dichlorobenzene		ND		ug/kg	4.8	0.13	1
1,4-Dichlorobenzene		ND		ug/kg	4.8	0.13	1
Methyl tert butyl ether		ND		ug/kg	1.9	0.08	1
p/m-Xylene		ND		ug/kg	1.9	0.19	1
o-Xylene		ND		ug/kg	1.9	0.13	1
Xylenes, Total		ND		ug/kg	1.9	0.17	1
cis-1,2-Dichloroethene		ND			0.97	0.17	1
1,2-Dichloroethene, Total		ND		ug/kg	0.97	0.14	1
Dibromomethane		ND		ug/kg	9.7	0.14	1
		ND		ug/kg			1
Styrene				ug/kg	1.9	0.39	
Dichlorodifluoromethane		ND ND		ug/kg	9.7	0.18	1
Acetone				ug/kg	9.7	1.0	1
Carbon disulfide		ND		ug/kg	9.7	1.1	1
2-Butanone		ND		ug/kg	9.7	0.26	1
Vinyl acetate		ND		ug/kg	9.7	0.13	1
4-Methyl-2-pentanone		ND		ug/kg	9.7	0.24	1
1,2,3-Trichloropropane		ND		ug/kg	9.7	0.16	1
2-Hexanone		ND		ug/kg	9.7	0.64	1
Bromochloromethane		ND		ug/kg	4.8	0.27	1
2,2-Dichloropropane		ND		ug/kg	4.8	0.22	1
1,2-Dibromoethane		ND		ug/kg	3.9	0.17	1
1,3-Dichloropropane		ND		ug/kg	4.8	0.14	1
1,1,1,2-Tetrachloroethane)	ND		ug/kg	0.97	0.31	1
Bromobenzene		ND		ug/kg	4.8	0.20	1
n-Butylbenzene		ND		ug/kg	0.97	0.11	1
sec-Butylbenzene		ND		ug/kg	0.97	0.12	1
tert-Butylbenzene		ND		ug/kg	4.8	0.13	1
o-Chlorotoluene		ND		ug/kg	4.8	0.15	1
p-Chlorotoluene		ND		ug/kg	4.8	0.13	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	4.8	0.38	1
Hexachlorobutadiene		ND		ug/kg	4.8	0.22	1
Isopropylbenzene		ND		ug/kg	0.97	0.10	1
p-Isopropyltoluene		ND		ug/kg	0.97	0.12	1
Naphthalene		ND		ug/kg	4.8	0.13	1
Acrylonitrile		ND		ug/kg	9.7	0.50	1
		ND		ug/kg	0.97	0.10	1
n-Propylbenzene							
n-Propylbenzene 1,2,3-Trichlorobenzene		ND		ug/kg	4.8	0.14	1
					4.8 4.8	0.14 0.18	1

						Serial_No	p:07221616:37
Project Name:	505 CLOVE RD.				Lab Nu	ımber:	L1621764
Project Number:	505 CLOVE				Report	Date:	07/22/16
		SAMP	LE RESULTS	6			
Lab ID:	L1621764-01				Date Co	llected:	07/13/16 13:00
Client ID:	SC1				Date Re	ceived:	07/14/16
Sample Location:	MONROE, NEW YOR	K			Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	Lab					
1,2,4-Trimethylbenzene		ND		ug/kg	4.8	0.14	1
1,4-Dioxane		ND		ug/kg	97	14.	1
p-Diethylbenzene		ND		ug/kg	3.9	0.15	1
p-Ethyltoluene		ND		ug/kg	3.9	0.12	1
1,2,4,5-Tetramethylbenze	ne	ND		ug/kg	3.9	0.13	1
Ethyl ether		ND		ug/kg	4.8	0.25	1
trans-1,4-Dichloro-2-buter	ne	ND		ug/kg	4.8	0.38	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	89		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	92		70-130	

 Project Name:
 505 CLOVE RD.
 Lab Number:
 L1621764

 Project Number:
 505 CLOVE
 Report Date:
 07/22/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	07/20/16 08:23
Analyst:	BN

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample	(s): 01	Batch:	WG915659-5
Methylene chloride	ND		ug/kg	10	1.1
1,1-Dichloroethane	ND		ug/kg	1.5	0.09
Chloroform	ND		ug/kg	1.5	0.37
Carbon tetrachloride	ND		ug/kg	1.0	0.21
1,2-Dichloropropane	ND		ug/kg	3.5	0.23
Dibromochloromethane	ND		ug/kg	1.0	0.15
1,1,2-Trichloroethane	ND		ug/kg	1.5	0.30
Tetrachloroethene	ND		ug/kg	1.0	0.14
Chlorobenzene	ND		ug/kg	1.0	0.35
Trichlorofluoromethane	ND		ug/kg	5.0	0.39
1,2-Dichloroethane	ND		ug/kg	1.0	0.11
1,1,1-Trichloroethane	ND		ug/kg	1.0	0.11
Bromodichloromethane	ND		ug/kg	1.0	0.17
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.12
cis-1,3-Dichloropropene	ND		ug/kg	1.0	0.12
1,3-Dichloropropene, Total	ND		ug/kg	1.0	0.12
1,1-Dichloropropene	ND		ug/kg	5.0	0.14
Bromoform	ND		ug/kg	4.0	0.24
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0	0.10
Benzene	ND		ug/kg	1.0	0.12
Toluene	ND		ug/kg	1.5	0.19
Ethylbenzene	ND		ug/kg	1.0	0.13
Chloromethane	ND		ug/kg	5.0	0.29
Bromomethane	ND		ug/kg	2.0	0.34
Vinyl chloride	ND		ug/kg	2.0	0.12
Chloroethane	ND		ug/kg	2.0	0.32
1,1-Dichloroethene	ND		ug/kg	1.0	0.26
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.21
Trichloroethene	ND		ug/kg	1.0	0.12

 Project Name:
 505 CLOVE RD.
 Lab Number:
 L1621764

 Project Number:
 505 CLOVE
 Report Date:
 07/22/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	07/20/16 08:23
Analyst:	BN

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample	e(s): 01	Batch:	WG915659-5
1,2-Dichlorobenzene	ND		ug/kg	5.0	0.15
1,3-Dichlorobenzene	ND		ug/kg	5.0	0.14
1,4-Dichlorobenzene	ND		ug/kg	5.0	0.14
Methyl tert butyl ether	ND		ug/kg	2.0	0.08
p/m-Xylene	ND		ug/kg	2.0	0.20
o-Xylene	ND		ug/kg	2.0	0.17
Xylenes, Total	ND		ug/kg	2.0	0.17
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.14
1,2-Dichloroethene, Total	ND		ug/kg	1.0	0.14
Dibromomethane	ND		ug/kg	10	0.16
Styrene	ND		ug/kg	2.0	0.40
Dichlorodifluoromethane	ND		ug/kg	10	0.19
Acetone	ND		ug/kg	10	1.0
Carbon disulfide	ND		ug/kg	10	1.1
2-Butanone	ND		ug/kg	10	0.27
Vinyl acetate	ND		ug/kg	10	0.13
4-Methyl-2-pentanone	ND		ug/kg	10	0.24
1,2,3-Trichloropropane	ND		ug/kg	10	0.16
2-Hexanone	ND		ug/kg	10	0.67
Bromochloromethane	ND		ug/kg	5.0	0.28
2,2-Dichloropropane	ND		ug/kg	5.0	0.23
1,2-Dibromoethane	ND		ug/kg	4.0	0.17
1,3-Dichloropropane	ND		ug/kg	5.0	0.14
1,1,1,2-Tetrachloroethane	ND		ug/kg	1.0	0.32
Bromobenzene	ND		ug/kg	5.0	0.21
n-Butylbenzene	ND		ug/kg	1.0	0.11
sec-Butylbenzene	ND		ug/kg	1.0	0.12
tert-Butylbenzene	ND		ug/kg	5.0	0.14
o-Chlorotoluene	ND		ug/kg	5.0	0.16

 Project Name:
 505 CLOVE RD.
 Lab Number:
 L1621764

 Project Number:
 505 CLOVE
 Report Date:
 07/22/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	07/20/16 08:23
Analyst:	BN

Parameter	Result Qu	alifier Units	RL	MDL	
/olatile Organics by GC/MS	- Westborough Lab for	sample(s): 01	Batch:	WG915659-5	
p-Chlorotoluene	ND	ug/kg	5.0	0.13	
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.0	0.40	
Hexachlorobutadiene	ND	ug/kg	5.0	0.23	
Isopropylbenzene	ND	ug/kg	1.0	0.10	
p-Isopropyltoluene	ND	ug/kg	1.0	0.12	
Naphthalene	ND	ug/kg	5.0	0.14	
Acrylonitrile	ND	ug/kg	10	0.51	
n-Propylbenzene	ND	ug/kg	1.0	0.11	
1,2,3-Trichlorobenzene	ND	ug/kg	5.0	0.15	
1,2,4-Trichlorobenzene	ND	ug/kg	5.0	0.18	
1,3,5-Trimethylbenzene	ND	ug/kg	5.0	0.14	
1,2,4-Trimethylbenzene	ND	ug/kg	5.0	0.14	
1,4-Dioxane	ND	ug/kg	100	14.	
p-Diethylbenzene	ND	ug/kg	4.0	0.16	
p-Ethyltoluene	ND	ug/kg	4.0	0.12	
1,2,4,5-Tetramethylbenzene	ND	ug/kg	4.0	0.13	
Ethyl ether	ND	ug/kg	5.0	0.26	
trans-1,4-Dichloro-2-butene	ND	ug/kg	5.0	0.39	

	Acceptance				
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	91		70-130		
Toluene-d8	101		70-130		
4-Bromofluorobenzene	98		70-130		
Dibromofluoromethane	91		70-130		

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L1621764 Report Date: 07/22/16

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG915659-3 WG915659-4 Methylene chloride 105 104 70-130 30 1 1,1-Dichloroethane 108 105 70-130 3 30 Chloroform 99 70-130 30 101 2 Carbon tetrachloride 30 111 107 70-130 4 1,2-Dichloropropane 105 104 70-130 30 1 Dibromochloromethane 70-130 30 104 107 3 2-Chloroethylvinyl ether 100 103 70-130 3 30 1,1,2-Trichloroethane 107 70-130 30 111 4 Tetrachloroethene 70-130 30 122 117 4 Chlorobenzene 70-130 30 110 108 2 70-139 30 Trichlorofluoromethane 96 88 9 1,2-Dichloroethane 93 94 70-130 30 1 1,1,1-Trichloroethane 108 104 70-130 30 4 Bromodichloromethane 70-130 30 98 99 1 trans-1,3-Dichloropropene 70-130 30 107 108 1 cis-1,3-Dichloropropene 70-130 30 101 103 2 1,1-Dichloropropene 111 105 70-130 6 30 Bromoform 108 110 70-130 2 30 1.1.2.2-Tetrachloroethane 30 108 110 70-130 2 70-130 30 Benzene 108 105 3 Toluene 113 110 70-130 30 3

Project Name: 505 CLOVE RD. Project Number: 505 CLOVE

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WGS	915659-3	WG915659-4			
Ethylbenzene	109		106		70-130	3	30	
Chloromethane	120		115		52-130	4	30	
Bromomethane	83		79		57-147	5	30	
Vinyl chloride	104		96		67-130	8	30	
Chloroethane	77		73		50-151	5	30	
1,1-Dichloroethene	116		109		65-135	6	30	
trans-1,2-Dichloroethene	111		106		70-130	5	30	
Trichloroethene	106		105		70-130	1	30	
1,2-Dichlorobenzene	115		114		70-130	1	30	
1,3-Dichlorobenzene	116		114		70-130	2	30	
1,4-Dichlorobenzene	114		113		70-130	1	30	
Methyl tert butyl ether	100		100		66-130	0	30	
p/m-Xylene	111		108		70-130	3	30	
o-Xylene	109		107		70-130	2	30	
cis-1,2-Dichloroethene	106		104		70-130	2	30	
Dibromomethane	96		98		70-130	2	30	
Styrene	105		104		70-130	1	30	
Dichlorodifluoromethane	115		105		30-146	9	30	
Acetone	103		92		54-140	11	30	
Carbon disulfide	99		97		59-130	2	30	
2-Butanone	105		101		70-130	4	30	

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WGS	915659-3	WG915659-4			
Vinyl acetate	102		105		70-130	3		30
4-Methyl-2-pentanone	104		104		70-130	0		30
1,2,3-Trichloropropane	102		104		68-130	2		30
2-Hexanone	103		104		70-130	1		30
Bromochloromethane	104		105		70-130	1		30
2,2-Dichloropropane	111		106		70-130	5		30
1,2-Dibromoethane	108		108		70-130	0		30
1,3-Dichloropropane	107		108		69-130	1		30
1,1,1,2-Tetrachloroethane	110		111		70-130	1		30
Bromobenzene	116		116		70-130	0		30
n-Butylbenzene	117		111		70-130	5		30
sec-Butylbenzene	118		111		70-130	6		30
tert-Butylbenzene	119		113		70-130	5		30
o-Chlorotoluene	114		110		70-130	4		30
p-Chlorotoluene	112		109		70-130	3		30
1,2-Dibromo-3-chloropropane	101		107		68-130	6		30
Hexachlorobutadiene	128		126		67-130	2		30
Isopropylbenzene	117		111		70-130	5		30
p-Isopropyltoluene	118		113		70-130	4		30
Naphthalene	112		114		70-130	2		30
Acrylonitrile	111		113		70-130	2		30

Lab Control Sample Analysis

Batch Quality Control

Project Name: 505 CLOVE RD. Project Number: 505 CLOVE Lab Number: L1621764 Report Date: 07/22/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG915659-3 WG915659-4 Isopropyl Ether 106 107 66-130 30 1 tert-Butyl Alcohol 105 111 70-130 6 30 n-Propylbenzene 112 70-130 30 117 4 122 30 1,2,3-Trichlorobenzene 120 70-130 2 1,2,4-Trichlorobenzene 124 126 70-130 2 30 1,3,5-Trimethylbenzene 70-130 30 115 110 4 1,2,4-Trimethylbenzene 114 110 70-130 4 30 Methyl Acetate 106 105 51-146 30 1 Ethyl Acetate 70-130 30 104 106 2 70-130 30 Acrolein 112 126 12 Cyclohexane 122 114 59-142 30 7 1,4-Dioxane 106 114 65-136 7 30 1,1,2-Trichloro-1,2,2-Trifluoroethane 108 50-139 30 116 7 70-130 30 p-Diethylbenzene 119 114 4 p-Ethyltoluene 112 70-130 30 117 4 1,2,4,5-Tetramethylbenzene 114 112 70-130 30 2 Tetrahydrofuran 103 105 66-130 2 30 Ethyl ether 102 99 67-130 3 30 trans-1.4-Dichloro-2-butene 70-130 30 104 106 2 Methyl cyclohexane 70-130 30 116 111 4 Ethyl-Tert-Butyl-Ether 103 104 70-130 30 1

Project Name:505 CLOVE RD.Project Number:505 CLOVE

 Lab Number:
 L1621764

 Report Date:
 07/22/16

Parameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch:	WG915659-3	WG915659-4			
Tertiary-Amyl Methyl Ether	98		99		70-130	1		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	90		90		70-130	
Toluene-d8	102		102		70-130	
4-Bromofluorobenzene	98		96		70-130	
Dibromofluoromethane	94		95		70-130	

SEMIVOLATILES

			Serial_No:07221616:37				
Project Name:	505 CLOVE RD.		Lab Number:	L1621764			
Project Number:	505 CLOVE		Report Date:	07/22/16			
		SAMPLE RESULTS					
Lab ID:	L1621764-01		Date Collected:	07/13/16 13:00			
Client ID:	SC1		Date Received:	07/14/16			
Sample Location:	MONROE, NEW YORK		Field Prep:	Not Specified			
Matrix:	Soil		Extraction Metho	d:EPA 3546			
Analytical Method:	1,8270D		Extraction Date:	07/18/16 04:50			
Analytical Date:	07/22/16 15:21						
Analyst:	HL						
Percent Solids:	92%						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbo	orough Lab					
Acenaphthene	ND		ug/kg	140	19.	1
1,2,4-Trichlorobenzene	ND		ug/kg	180	20.	1
Hexachlorobenzene	ND		ug/kg	110	20.	1
Bis(2-chloroethyl)ether	ND		ug/kg	160	24.	1
2-Chloronaphthalene	ND		ug/kg	180	18.	1
1,2-Dichlorobenzene	ND		ug/kg	180	32.	1
1,3-Dichlorobenzene	ND		ug/kg	180	31.	1
1,4-Dichlorobenzene	ND		ug/kg	180	31.	1
3,3'-Dichlorobenzidine	ND		ug/kg	180	48.	1
2,4-Dinitrotoluene	ND		ug/kg	180	36.	1
2,6-Dinitrotoluene	ND		ug/kg	180	31.	1
Fluoranthene	ND		ug/kg	110	21.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	180	19.	1
4-Bromophenyl phenyl ether	ND		ug/kg	180	27.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	31.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	190	18.	1
Hexachlorobutadiene	ND		ug/kg	180	26.	1
Hexachlorocyclopentadiene	ND		ug/kg	510	160	1
Hexachloroethane	ND		ug/kg	140	29.	1
Isophorone	ND		ug/kg	160	23.	1
Naphthalene	ND		ug/kg	180	22.	1
Nitrobenzene	ND		ug/kg	160	27.	1
NDPA/DPA	ND		ug/kg	140	20.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	180	28.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	62.	1
Butyl benzyl phthalate	ND		ug/kg	180	45.	1
Di-n-butylphthalate	ND		ug/kg	180	34.	1
Di-n-octylphthalate	ND		ug/kg	180	61.	1
Diethyl phthalate	ND		ug/kg	180	17.	1
Dimethyl phthalate	ND		ug/kg	180	38.	1

Project Name: Sos CLOVE RD. Lab Nume: Lab Classical Soc			Serial_No:07221616:37					
Adu Dir. Life 1764-01 Sci Sci Sci Sci Sci <td>Project Name:</td> <td>505 CLOVE RD.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Project Name:	505 CLOVE RD.						
Adu Dir. Life 1764-01 Sci Sci Sci Sci Sci <td>Project Number:</td> <td>505 CLOVE</td> <td></td> <td></td> <td></td> <td>Report</td> <td>Date:</td> <td>07/22/16</td>	Project Number:	505 CLOVE				Report	Date:	07/22/16
Client ID: Sample LocationSC1 MONDE NEWOrkLYData Rec:v: N0 voltageData Rec:v: N0 voltageMot Not Specified Not Specified	· · · , · · · · · · · · · · · · · · · · · · ·	000 010 11	SAMPI		5			01/22/10
Client ID: Sample LocationSC1 MONDE NEWOrkLYData Rec:v: N0 voltageData Rec:v: N0 voltageMot Not Specified Not Specified	Lab ID:	L1621764-01				Date Col	lected:	07/13/16 13:00
ParameterResultOutlierNDN	Client ID:							
Semivolatile Organics by GC/MS - Westborough Lab Benzolajanthracena ND ug/kg 110 20. 1 Benzolajovrane ND ug/kg 140 44. 1 Benzolajovrane ND ug/kg 110 30. 1 Benzolajovrane ND ug/kg 110 20. 1 Chrysene ND ug/kg 140 28. 1 Aconaphrysine ND ug/kg 140 28. 1 Aconaphrysine ND ug/kg 140 21. 1 Fluorene ND ug/kg 110 21. 1 Fluorene ND ug/kg 110 21. 1 Inderoci (J.3scil)pyrene ND ug/kg 110 18. 1 Bibroryi ND ug/kg 180 3. 1 Actioraniline ND ug/kg 180 3. 1 Actioraniline ND ug/kg 180	Sample Location:	MONROE, NEW YOF	RK					Not Specified
Procession ND ug/kg 110 20. 1 Banzo(a)privino ND ug/kg 140 44. 1 Banzo(k)fururanthene ND ug/kg 110 30. 1 Banzo(k)fururanthene ND ug/kg 110 28. 1 Chyseine ND ug/kg 140 28. 1 Acanaptrivine ND ug/kg 140 28. 1 Acanaptrivine ND ug/kg 140 28. 1 Acanaptrivine ND ug/kg 140 28. 1 Antracore ND ug/kg 140 21. 1 Bianzo(k)furthreene ND ug/kg 180 17. 1 Promen ND ug/kg 180 28. 1 Dienzo(k)furthreene ND ug/kg 180 34. 1 Promenitive ND ug/kg 180 74. 1 Promantine <td>Parameter</td> <td></td> <td>Result</td> <td>Qualifier</td> <td>Units</td> <td>RL</td> <td>MDL</td> <td>Dilution Factor</td>	Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Banzo(a)prono ND ug/kg 140 44. 1 Benzo(b)/lucranthene ND ug/kg 110 30. 1 Benzo(b)/lucranthene ND ug/kg 110 30. 1 Chysene ND ug/kg 110 30. 1 Aconaphthylene ND ug/kg 140 28. 1 Anthracene ND ug/kg 140 28. 1 Fucorene ND ug/kg 140 24. 1 Fucorene ND ug/kg 180 34. 1 Fucorene ND ug/k	Semivolatile Orgar	nics by GC/MS - Westbor	ough Lab					
Banzo(a)prono ND ug/kg 140 44. 1 Benzo(b)/lucranthene ND ug/kg 110 30. 1 Benzo(b)/lucranthene ND ug/kg 110 30. 1 Chysene ND ug/kg 110 30. 1 Aconaphthylene ND ug/kg 140 28. 1 Anthracene ND ug/kg 140 28. 1 Fucorene ND ug/kg 140 24. 1 Fucorene ND ug/kg 180 34. 1 Fucorene ND ug/k	Benzo(a)anthracene		ND		ua/ka	110	20	1
ND ugkg 110 9.0 1 Benzok/Muoranthene ND ugkg 110 28. 1 Chysene ND ugkg 110 28. 1 Chysene ND ugkg 110 35. 1 Anthracene ND ugkg 140 28. 1 Anthracene ND ugkg 140 21. 1 Pinorantore ND ugkg 110 22. 1 Diberzo(a/Janthracene ND ugkg 110 22. 1 Diberzo(a/Janthracene ND ugkg 110 21. 1 Indeno(12.3-cofipyrene ND ugkg 140 25. 1 Pyrene ND ugkg 180 33. 1 Attroaniline ND ugkg 180 34. 1 Attroaniline ND ugkg 180 17. 1 Attroaniline ND ugkg								
Benzol()Huoranthene ND ug/kg 110 29. 1 Chrysono ND ug/kg 110 19. 1 Acanaphthylene ND ug/kg 110 28. 1 Acanaphthylene ND ug/kg 140 28. 1 Acanaphthylene ND ug/kg 140 21. 1 Fluoreno ND ug/kg 180 17. 1 Phananthracene ND ug/kg 140 28. 1 Dibenzoch/anthracene ND ug/kg 140 28. 1 Pyrene ND ug/kg 140 28. 1 Chrosoniline ND ug/kg 180 38. 1 Altroaniline ND ug/kg 180 37. 1 Altroaniline ND ug/kg 180 17. 1 Dibenzohran ND ug/kg 180 17. 1 Altroaniline								
Display Up (kg 110 19. 1 Acanaphthylono ND Ug/kg 140 28. 1 Anthracene ND Ug/kg 140 28. 1 Anthracene ND Ug/kg 140 21. 1 Encorene ND Ug/kg 110 22. 1 Phonanthracene ND Ug/kg 110 22. 1 Diberot(s,h)anthracene ND Ug/kg 110 21. 1 Phonanthracene ND Ug/kg 110 22. 1 Diberot(s,h)anthracene ND Ug/kg 110 18. 1 Biphenyl ND Ug/kg 180 33. 1 4-Chitoranilline ND Ug/kg 180 34. 1 2-Nitroanilline ND Ug/kg 180 74. 1 Diberotrourn ND Ug/kg 180 74. 1 2-Mitroanilline ND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Anthrace ND ug/kg 140 28. 1 Anthracene ND ug/kg 140 28. 1 Anthracene ND ug/kg 140 28. 1 Benzelghijperylene ND ug/kg 140 21. 1 Phenanthracene ND ug/kg 110 22. 1 Dibenzelghijperylene ND ug/kg 140 28. 1 Prenenditracene ND ug/kg 140 28. 1 Biphenyl ND ug/kg 140 42. 1 4-Chroseniline ND ug/kg 180 33. 1 2-Nitroaniline ND ug/kg 180 34. 1 4-Shitroaniline ND ug/kg 180 17. 1 2-Nitroaniline ND ug/kg 180 17. 1 2-Nitroaniline ND ug/kg 180 17. 1 2-Nitroaniline </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Antracene ND ug/kg 110 35. 1 Benzo(ghi)perylene ND ug/kg 140 21. 1 Fluorene ND ug/kg 110 22. 1 Denzo(ghi)perylene ND ug/kg 110 22. 1 Denzo(ghi)parthracene ND ug/kg 110 21. 1 Indeno(1, 2,3-od)pyrene ND ug/kg 110 18. 1 Biphenyl ND ug/kg 180 33. 1 2-Mitroaniline ND ug/kg 180 34. 1 2-Mitroaniline ND ug/kg 180 34. 1 2-Mitroaniline ND ug/kg 180 17. 1 2-Mitroaniline ND ug/kg 180 17. 1 2-Mitroaniline ND ug/kg 180 17. 1 2-Methylinpehride ND ug/kg 180 12. 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Participant ND ug/kg 140 21. 1 Fluorene ND ug/kg 180 17. 1 Phenanthrene ND ug/kg 110 22. 1 Diberzo(a.h)anthracene ND ug/kg 110 21. 1 Indero(1, 2.3-cd)pyrene ND ug/kg 110 18. 1 Pyrene ND ug/kg 110 18. 1 Athroaniline ND ug/kg 180 33. 1 Athroaniline ND ug/kg 180 35. 1 Athroaniline ND ug/kg 180 17. 1 Athroaniline ND ug/kg 180 17. 1 Athroaniline ND ug/kg 180 12. 1 Athroaniline ND ug/kg 180 12. 1 Athroaniline ND ug/kg 180 12. 1 Athroaniline								
Burn P Burn P Inorene ND ug/kg 180 17. 1 Phenanthrene ND ug/kg 110 22. 1 Dibenzo(1,2)-ord/pyrene ND ug/kg 110 21. 1 Indeno(1,2)-ord/pyrene ND ug/kg 110 18. 1 Biphenyl ND ug/kg 410 42. 1 4-Chloroaniline ND ug/kg 180 33. 1 2-Nitroaniline ND ug/kg 180 34. 1 4-Nitroaniline ND ug/kg 180 74. 1 Dibenzofuran ND ug/kg 180 77. 1 2-Metrohorbenzene ND ug/kg 180 12. 1 2-Abertohorophenol ND ug/kg 180 22. 1 2.4-Firch/orophenol ND ug/kg 180 23. 1 2.4-Diorophenol ND ug/kg 390 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Penanthrene ND ugkg 110 22 1 Dibenzo(a, h)anthracene ND ug/kg 140 25. 1 Dibenzo(a, h)anthracene ND ug/kg 140 25. 1 Pyrene ND ug/kg 140 25. 1 Biphenyl ND ug/kg 140 42. 1 Achtoraniline ND ug/kg 180 33. 1 2-Nitroaniline ND ug/kg 180 35. 1 3-Nitroaniline ND ug/kg 180 34. 1 4-Nitroaniline ND ug/kg 180 74. 1 2-Nitroaniline ND ug/kg 180 74. 1 2-Nitroaniline ND ug/kg 180 74. 1 2-Nitroaniline ND ug/kg 180 22. 1 1.2.4.5 Tetrakolenzene ND ug/kg 180 24. 1 2.								
Dibenzo(a,h)anthraceneNDug/kg11021.1Indenc(1,2,3-cd)pyreneNDug/kg14025.1PyreneNDug/kg11018.1BiphenylNDug/kg18033.1CharcanilineNDug/kg18035.12-NitroanilineNDug/kg18034.12-NitroanilineNDug/kg18074.12-NitroanilineNDug/kg18074.12-NitroanilineNDug/kg18074.12-NitroanilineNDug/kg18074.12-NethylnaphthaleneNDug/kg18074.112.4,5-TetrachlorobenzeneNDug/kg18022.12,4,5-TetrachlorobenzeneNDug/kg18021.12,4,5-TetrachlorobenzeneNDug/kg18021.12,4-DichorophenolNDug/kg18021.12,4-DichorophenolNDug/kg18029.112,4-DichorophenolNDug/kg18029.112,4-DichorophenolNDug/kg18029.112,4-DichorophenolNDug/kg18029.112,4-DichorophenolNDug/kg18029.112,4-DichorophenolNDug/kg18029.112,								
Indero(1,2,3-cdpyrene ND ug/kg 140 25. 1 Pyrene ND ug/kg 110 18. 1 Biphenyi ND ug/kg 410 42. 1 4-Chioraniline ND ug/kg 180 33. 1 2-Nitroaniline ND ug/kg 180 34. 1 4-Nitroaniline ND ug/kg 180 34. 1 4-Nitroaniline ND ug/kg 180 74. 1 4-Nitroaniline ND ug/kg 180 74. 1 4-Nitroaniline ND ug/kg 180 74. 1 4-Nitroaniline ND ug/kg 180 17. 1 2-Mitroaniline ND ug/kg 180 22. 1 2-Abitroanicrobenene ND ug/kg 180 21. 1 2-Abitrophenol ND ug/kg 180 59. 1 2-Abitrop								
Pyrene ND ug/kg 110 18. 1 Biphenyl ND ug/kg 410 42. 1 Biphenyl ND ug/kg 180 33. 1 4-Chloroaniline ND ug/kg 180 35. 1 3-Nitroaniline ND ug/kg 180 35. 1 3-Nitroaniline ND ug/kg 180 34. 1 2-Nitroaniline ND ug/kg 180 74. 1 2-Abertylphthalene ND ug/kg 180 22. 1 1.2.4.5-Trichlorophenol ND ug/kg 180 21. 1 2.4-Dirothylphenol ND ug/kg 180 59. 1 2.4-Diroth								
John J Ug/kg 410 42. 1 4-Chloroaniline ND Ug/kg 180 33. 1 2-Nitroaniline ND Ug/kg 180 35. 1 3-Nitroaniline ND Ug/kg 180 34. 1 3-Nitroaniline ND Ug/kg 180 34. 1 4-Nitroaniline ND Ug/kg 180 74. 1 Dibenzoltran ND Ug/kg 180 74. 1 2-Methylnaphthalene ND Ug/kg 180 19. 1 2.4.6-Trichorobenzene ND Ug/kg 180 22. 1 2.4.6-Trichorophenol ND Ug/kg 180 27. 1 2.4-Dirochm-cresol ND Ug/kg 180 27. 1 2.4-Dirothybhenol ND Ug/kg 180 29. 1 2.4-Dirothybhenol ND Ug/kg 180 29. 1 2.4-Dirot								
A-Chloroaniline ND ug/kg 180 33. 1 2-Nitroaniline ND ug/kg 180 35. 1 3-Nitroaniline ND ug/kg 180 34. 1 3-Nitroaniline ND ug/kg 180 74. 1 Dibenzofuran ND ug/kg 180 74. 1 2-Methylnaphthalene ND ug/kg 180 17. 1 2-Methylnaphthalene ND ug/kg 180 19. 1 Acetophenone ND ug/kg 180 22. 1 2.4.6-Trichlorophenol ND ug/kg 180 27. 1 2.4.6-Trichlorophenol ND ug/kg 180 27. 1 2.4.0-Trichlorophenol ND ug/kg 180 29. 1 2.4.0-Trichlorophenol ND ug/kg 180 29. 1 2.4.0-Trichlorophenol ND ug/kg 180 27. 1 2.4.0-Dinkrophenol ND ug/kg 860 84. 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Alticoaniline ND ug/kg 180 35. 1 3-Nitroaniline ND ug/kg 180 34. 1 3-Nitroaniline ND ug/kg 180 74. 1 Dibenzofuran ND ug/kg 180 74. 1 2-Methylnaphthalene ND ug/kg 180 17. 1 2-Methylnaphthalene ND ug/kg 180 17. 1 2-Adethylnaphthalene ND ug/kg 180 19. 1 2-Adethylnaphthalene ND ug/kg 180 22. 1 2.4.6-Trichlorophenol ND ug/kg 180 27. 1 2.4.6-Trichlorophenol ND ug/kg 180 27. 1 2.4.0-Trichlorophenol ND ug/kg 180 27. 1 2.4-Dichlorophenol ND ug/kg 180 59. 1 2.4-Dichlorophenol ND ug/kg 180 27. <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
ND ug/sg 180 34. 1 4-Nitroaniline ND ug/kg 180 74. 1 Dibenzofuran ND ug/kg 180 17. 1 2-Methylnaphthalene ND ug/kg 180 17. 1 2-Methylnaphthalene ND ug/kg 180 19. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 180 22. 1 Acetophenone ND ug/kg 180 22. 1 2,4,6-Trichlorophenol ND ug/kg 180 27. 1 2,4,6-Trichlorophenol ND ug/kg 180 21. 1 2,4-Diroto-m-cresol ND ug/kg 180 21. 1 2,4-Dirotophenol ND ug/kg 180 21. 1 2,4-Dirotophenol ND ug/kg 39. 68. 1 2,4-Dirotophenol ND ug/kg 860 84. 1 <								
Altiroaniline ND ug/kg 180 74. 1 Dibenzofuran ND ug/kg 180 17. 1 2-Methylnaphthalene ND ug/kg 220 22. 1 1.2.4,5-Tetrachlorobenzene ND ug/kg 180 19. 1 Acetophenone ND ug/kg 180 22. 1 2.4.6-Trichlorophenol ND ug/kg 180 27. 1 2.4.6-Trichlorophenol ND ug/kg 180 27. 1 2.4.0-Ichloro-m-cresol ND ug/kg 180 21. 1 2.4-Dichlorophenol ND ug/kg 180 21. 1 2.4-Dichlorophenol ND ug/kg 180 59. 1 2.4-Dichlorophenol ND ug/kg 390 68. 1 2.4-Dichlorophenol ND ug/kg 180 24. 1 2.4-Dinitrophenol ND ug/kg 140 40.								
Dibenzofuran ND ug/kg 180 17. 1 2-Methylnaphthalene ND ug/kg 220 22. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 180 19. 1 Acetophenone ND ug/kg 180 22. 1 2,4,6-Trichlorophenol ND ug/kg 180 27. 1 2,4,6-Trichlorophenol ND ug/kg 180 27. 1 2,4-Dichloro-m-cresol ND ug/kg 180 21. 1 2,4-Dichlorophenol ND ug/kg 180 29. 1 2,4-Dichlorophenol ND ug/kg 180 59. 1 2,4-Dinitrophenol ND ug/kg 390 68. 1 2,4-Dinitrophenol ND ug/kg 480 1 1 2,4-Dinitrophenol ND ug/kg 180 27. 1 2,4-Dinitrophenol ND ug/kg 180 28.								
ND ug/kg 220 22. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 180 19. 1 Acetophenone ND ug/kg 180 22. 1 Acetophenone ND ug/kg 180 22. 1 2,4,6-Trichlorophenol ND ug/kg 180 27. 1 2,4,6-Trichlorophenol ND ug/kg 180 27. 1 2,4,6-Trichlorophenol ND ug/kg 180 21. 1 2,4,6-Trichlorophenol ND ug/kg 180 21. 1 2,4-Dirichorophenol ND ug/kg 180 29. 1 2,4-Dirichorophenol ND ug/kg 180 59. 1 2,4-Diritrophenol ND ug/kg 390 68. 1 2,4-Diritrophenol ND ug/kg 180 27. 1 2,4-Diritrophenol ND ug/kg 180 27. 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
1,2,4,5-Tetrachlorobenzene ND ug/kg 180 19. 1 Acetophenone ND ug/kg 180 22. 1 2,4,6-Trichlorophenol ND ug/kg 110 34. 1 2,4,6-Trichlorophenol ND ug/kg 180 27. 1 2,4,6-Trichlorophenol ND ug/kg 180 21. 1 2,4-Dichlorophenol ND ug/kg 180 29. 1 2,4-Dichlorophenol ND ug/kg 180 29. 1 2,4-Dichlorophenol ND ug/kg 180 59. 1 2,4-Dinethylphenol ND ug/kg 390 68. 1 2,4-Dinitrophenol ND ug/kg 860 84. 1 2,4-Dinitrophenol ND ug/kg 180 27. 1 2,4-Dinitrophenol ND ug/kg 180 27. 1 2,4-Dinitrophenol ND ug/kg 180 28. 1 2,4-Dinitrophenol ND ug/kg 180 27. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Acetophenone ND ug/kg 180 22. 1 2,4,6-Trichlorophenol ND ug/kg 110 34. 1 2,4,6-Trichlorophenol ND ug/kg 180 27. 1 2-Chlorophenol ND ug/kg 180 27. 1 2-Chlorophenol ND ug/kg 180 21. 1 2,4-Dichlorophenol ND ug/kg 180 29. 1 2,4-Dichlorophenol ND ug/kg 180 29. 1 2,4-Dichlorophenol ND ug/kg 180 59. 1 2,4-Dintethylphenol ND ug/kg 390 68. 1 2,4-Dintetholphenol ND ug/kg 250 73. 1 2,4-Dinitro-o-cresol ND ug/kg 460 84. 1 2,4-Dinitro-o-cresol ND ug/kg 180 27. 1 Phenol ND ug/kg 180 28. 1								
2,4,6-Trichlorophenol ND ug/kg 110 34. 1 p-Chloro-m-cresol ND ug/kg 180 27. 1 2-Chlorophenol ND ug/kg 180 21. 1 2,4-Dichlorophenol ND ug/kg 160 29. 1 2,4-Dichlorophenol ND ug/kg 180 59. 1 2,4-Dirothylphenol ND ug/kg 390 68. 1 2-Nitrophenol ND ug/kg 250 73. 1 2-Nitrophenol ND ug/kg 860 84. 1 2,4-Dinitro-phenol ND ug/kg 470 86. 1 2,4-Dinitro-o-cresol ND ug/kg 180 27. 1 Pentachlorophenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 2-Methylphenol/4-Methylphenol ND ug/kg 180 34. 1 2,4,5-Trichlorophenol ND ug/kg 180 34.		ne						
P-Chloro-m-cresol ND ug/kg 180 27. 1 2-Chlorophenol ND ug/kg 180 21. 1 2,4-Dichlorophenol ND ug/kg 160 29. 1 2,4-Dichlorophenol ND ug/kg 180 59. 1 2,4-Dichlorophenol ND ug/kg 390 68. 1 2,4-Dimethylphenol ND ug/kg 250 73. 1 2,4-Dinitrophenol ND ug/kg 860 84. 1 2,4-Dinitrophenol ND ug/kg 470 86. 1 2,4-Dinitro-o-cresol ND ug/kg 140 40. 1 Pentachlorophenol ND ug/kg 180 27. 1 2-Methylphenol/4-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 180 34. 1 2,4,5-Trichlorophenol ND ug/kg 580								
Product ND ug/kg 180 21. 1 2-Chlorophenol ND ug/kg 160 29. 1 2,4-Dichlorophenol ND ug/kg 180 59. 1 2,4-Direthylphenol ND ug/kg 390 68. 1 2-Nitrophenol ND ug/kg 250 73. 1 2-Nitrophenol ND ug/kg 860 84. 1 2,4-Dinitrophenol ND ug/kg 470 86. 1 2,4-Dinitrophenol ND ug/kg 140 40. 1 2,4-Dinitrophenol ND ug/kg 140 40. 1 2,4-Dinitrophenol ND ug/kg 180 27. 1 Pentachlorophenol ND ug/kg 180 28. 1 2-Methylphenol/4-Methylphenol ND ug/kg 180 34. 1 2,4,5-Trichlorophenol ND ug/kg 580 180 1								
2,4-Dichlorophenol ND ug/kg 160 29. 1 2,4-Dimethylphenol ND ug/kg 180 59. 1 2-Nitrophenol ND ug/kg 390 68. 1 4-Nitrophenol ND ug/kg 250 73. 1 2,4-Dinitrophenol ND ug/kg 860 84. 1 2,4-Dinitrophenol ND ug/kg 860 84. 1 2,4-Dinitrophenol ND ug/kg 470 86. 1 4,6-Dinitro-o-cresol ND ug/kg 140 40. 1 Pentachlorophenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 2-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 2,4,5-Trichlorophenol ND ug/kg 580 180 1 Benzoic Acid ND ug/kg 580 180 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
2,4-Dimethylphenol ND ug/kg 180 59. 1 2-Nitrophenol ND ug/kg 390 68. 1 4-Nitrophenol ND ug/kg 250 73. 1 2,4-Dinitrophenol ND ug/kg 860 84. 1 2,4-Dinitrophenol ND ug/kg 860 84. 1 2,4-Dinitrophenol ND ug/kg 470 86. 1 4.6-Dinitro-o-cresol ND ug/kg 140 40. 1 Pentachlorophenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 2-Methylphenol/4-Methylphenol ND ug/kg 180 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 2,4,5-Trichlorophenol ND ug/kg 580 180 1 Benzoic Acid ND ug/kg 580 180 1	· ·							
ND ug/kg 390 68. 1 2-Nitrophenol ND ug/kg 250 73. 1 2.4-Dinitrophenol ND ug/kg 860 84. 1 2.4-Dinitrophenol ND ug/kg 860 84. 1 2.4-Dinitrophenol ND ug/kg 470 86. 1 4.6-Dinitro-o-cresol ND ug/kg 140 40. 1 Pentachlorophenol ND ug/kg 180 27. 1 Phenol ND ug/kg 180 28. 1 2-Methylphenol/4-Methylphenol ND ug/kg 180 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Benzoic Acid ND ug/kg 180 34. 1								
4-Nitrophenol ND ug/kg 250 73. 1 2,4-Dinitrophenol ND ug/kg 860 84. 1 4,6-Dinitro-o-cresol ND ug/kg 470 86. 1 Pentachlorophenol ND ug/kg 140 40. 1 Pentachlorophenol ND ug/kg 180 27. 1 Phenol ND ug/kg 180 28. 1 2-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Benzoic Acid ND ug/kg 580 180 1								
2,4-Dinitrophenol ND ug/kg 860 84. 1 4,6-Dinitro-o-cresol ND ug/kg 470 86. 1 Pentachlorophenol ND ug/kg 140 40. 1 Phenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Benzoic Acid ND ug/kg 580 180 1 Benzyl Alcohol ND ug/kg 580 180 1	2-Nitrophenol							
4,6-Dinitro-o-cresol ND ug/kg 470 86. 1 Pentachlorophenol ND ug/kg 140 40. 1 Phenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Benzoic Acid ND ug/kg 580 180 1	4-Nitrophenol							
Pentachlorophenol ND ug/kg 140 40. 1 Phenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Benzoic Acid ND ug/kg 580 180 1 Benzyl Alcohol ND ug/kg 180 55. 1	2,4-Dinitrophenol							
Phenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Benzoic Acid ND ug/kg 580 180 1 Benzyl Alcohol ND ug/kg 180 55. 1	4,6-Dinitro-o-cresol							1
2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Benzoic Acid ND ug/kg 580 180 1 Benzyl Alcohol ND ug/kg 180 55. 1	Pentachlorophenol							
3-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Benzoic Acid ND ug/kg 580 180 1 Benzyl Alcohol ND ug/kg 580 180 1	Phenol				ug/kg	180		1
2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Benzoic Acid ND ug/kg 580 180 1 Benzyl Alcohol ND ug/kg 180 1	2-Methylphenol		ND		ug/kg	180	28.	1
Benzoic AcidNDug/kg5801801Benzyl AlcoholNDug/kg18055.1	3-Methylphenol/4-Methylp	phenol	ND		ug/kg	260	28.	1
Benzyl Alcohol ND ug/kg 180 55. 1	2,4,5-Trichlorophenol		ND		ug/kg	180	34.	1
	Benzoic Acid		ND		ug/kg	580	180	1
Carbazole ND ug/kg 180 17. 1	Benzyl Alcohol		ND		ug/kg	180	55.	1
	Carbazole		ND		ug/kg	180	17.	1

				Serial_No:07221616:37				
Project Name:	505 CLOVE RD.				Lab Number:	L1621764		
Project Number:	505 CLOVE				Report Date:	07/22/16		
		SAMP	LE RESULTS	5				
Lab ID:	L1621764-01				Date Collected:	07/13/16 13:00		
Client ID:	SC1				Date Received:	07/14/16		
Sample Location:	MONROE, NEW YORK				Field Prep:	Not Specified		
Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor		
Semivolatile Organ	nice by GC/MS - Westborou	iah Lah						

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	65		25-120	
Phenol-d6	72		10-120	
Nitrobenzene-d5	77		23-120	
2-Fluorobiphenyl	69		30-120	
2,4,6-Tribromophenol	75		10-136	
4-Terphenyl-d14	64		18-120	

Project Name:	505 CLOVE RD.			Lab Number:	L1621764
Project Number:	505 CLOVE			Report Date:	07/22/16

Analytical Method: Analytical Date: Analyst:

1,8270D 07/19/16 14:41 WPN Extraction Method: EPA 3546 Extraction Date: 07/18/16 04:50

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/M	S - Westboroug	h Lab for s	ample(s):	01	Batch:	WG914473-1
Acenaphthene	ND		ug/kg		130	17.
1,2,4-Trichlorobenzene	ND		ug/kg		160	19.
Hexachlorobenzene	ND		ug/kg		98	18.
Bis(2-chloroethyl)ether	ND		ug/kg		150	22.
2-Chloronaphthalene	ND		ug/kg		160	16.
1,2-Dichlorobenzene	ND		ug/kg		160	29.
1,3-Dichlorobenzene	ND		ug/kg		160	28.
1,4-Dichlorobenzene	ND		ug/kg		160	28.
3,3'-Dichlorobenzidine	ND		ug/kg		160	43.
2,4-Dinitrotoluene	ND		ug/kg		160	32.
2,6-Dinitrotoluene	ND		ug/kg		160	28.
Fluoranthene	ND		ug/kg		98	19.
4-Chlorophenyl phenyl ether	ND		ug/kg		160	17.
4-Bromophenyl phenyl ether	ND		ug/kg		160	25.
Bis(2-chloroisopropyl)ether	ND		ug/kg		200	28.
Bis(2-chloroethoxy)methane	ND		ug/kg		180	16.
Hexachlorobutadiene	ND		ug/kg		160	24.
Hexachlorocyclopentadiene	ND		ug/kg		460	150
Hexachloroethane	ND		ug/kg		130	26.
Isophorone	ND		ug/kg		150	21.
Naphthalene	ND		ug/kg		160	20.
Nitrobenzene	ND		ug/kg		150	24.
NDPA/DPA	ND		ug/kg		130	18.
n-Nitrosodi-n-propylamine	ND		ug/kg		160	25.
Bis(2-ethylhexyl)phthalate	ND		ug/kg		160	56.
Butyl benzyl phthalate	ND		ug/kg		160	41.
Di-n-butylphthalate	ND		ug/kg		160	31.
Di-n-octylphthalate	ND		ug/kg		160	55.
Diethyl phthalate	ND		ug/kg		160	15.

Project Name:	505 CLOVE RD.			Lab Number:	L1621764
Project Number:	505 CLOVE			Report Date:	07/22/16

Analytical Method: Analytical Date: Analyst:

1,8270D 07/19/16 14:41 WPN Extraction Method: EPA 3546 Extraction Date: 07/18/16 04:50

arameter	Result	Qualifier	Units	R	L	MDL	
emivolatile Organics by GC/I	NS - Westboroug	h Lab for s	ample(s):	01 I	Batch:	WG914473	3-1
Dimethyl phthalate	ND		ug/kg	16	0	34.	
Benzo(a)anthracene	ND		ug/kg	98	3	18.	
Benzo(a)pyrene	ND		ug/kg	13	0	40.	
Benzo(b)fluoranthene	ND		ug/kg	98	3	27.	
Benzo(k)fluoranthene	ND		ug/kg	98	3	26.	
Chrysene	ND		ug/kg	98	3	17.	
Acenaphthylene	ND		ug/kg	13	0	25.	
Anthracene	ND		ug/kg	98	3	32.	
Benzo(ghi)perylene	ND		ug/kg	13	0	19.	
Fluorene	ND		ug/kg	16	0	16.	
Phenanthrene	ND		ug/kg	98	3	20.	
Dibenzo(a,h)anthracene	ND		ug/kg	98	3	19.	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	13	0	23.	
Pyrene	ND		ug/kg	98	3	16.	
Biphenyl	ND		ug/kg	37	0	38.	
4-Chloroaniline	ND		ug/kg	16	0	30.	
2-Nitroaniline	ND		ug/kg	16	0	31.	
3-Nitroaniline	ND		ug/kg	16	0	31.	
4-Nitroaniline	ND		ug/kg	16	0	67.	
Dibenzofuran	ND		ug/kg	16	0	15.	
2-Methylnaphthalene	ND		ug/kg	20	0	20.	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	16	0	17.	
Acetophenone	ND		ug/kg	16	0	20.	
2,4,6-Trichlorophenol	ND		ug/kg	98	3	31.	
p-Chloro-m-cresol	ND		ug/kg	16	0	24.	
2-Chlorophenol	ND		ug/kg	16	0	19.	
2,4-Dichlorophenol	ND		ug/kg	15	0	26.	
2,4-Dimethylphenol	ND		ug/kg	16	0	54.	
2-Nitrophenol	ND		ug/kg	35	0	61.	

Project Name:	505 CLOVE RD.	Lab Number:	L1621764
Project Number:	505 CLOVE	Report Date:	07/22/16

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270D 07/19/16 14:41 WPN Extraction Method: EPA 3546 Extraction Date: 07/18/16 04:50

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/MS	- Westboroug	h Lab for sa	ample(s):	01 Batch	: WG914473-1	
4-Nitrophenol	ND		ug/kg	230	66.	
2,4-Dinitrophenol	ND		ug/kg	780	76.	
4,6-Dinitro-o-cresol	ND		ug/kg	420	78.	
Pentachlorophenol	ND		ug/kg	130	36.	
Phenol	ND		ug/kg	160	24.	
2-Methylphenol	ND		ug/kg	160	25.	
3-Methylphenol/4-Methylphenol	ND		ug/kg	230	25.	
2,4,5-Trichlorophenol	ND		ug/kg	160	31.	
Benzoic Acid	ND		ug/kg	530	160	
Benzyl Alcohol	ND		ug/kg	160	50.	
Carbazole	ND		ug/kg	160	16.	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	70	25-120
Phenol-d6	75	10-120
Nitrobenzene-d5	77	23-120
2-Fluorobiphenyl	80	30-120
2,4,6-Tribromophenol	89	10-136
4-Terphenyl-d14	94	18-120

Project Name: 505 CLOVE RD. Project Number: 505 CLOVE

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS - Westbo	rough Lab Assoc	ated sample(s):	01 Batch:	WG914473-2	WG914473-3				
Acenaphthene	91		80		31-137	13		50	
Benzidine	55		73	Q	10-66	28		50	
1,2,4-Trichlorobenzene	86		56		38-107	42		50	
Hexachlorobenzene	84		82		40-140	2		50	
Bis(2-chloroethyl)ether	74		41		40-140	57	Q	50	
2-Chloronaphthalene	90		73		40-140	21		50	
1,2-Dichlorobenzene	80		32	Q	40-140	86	Q	50	
1,3-Dichlorobenzene	79		25	Q	40-140	104	Q	50	
1,4-Dichlorobenzene	78		27	Q	28-104	97	Q	50	
3,3'-Dichlorobenzidine	59		100		40-140	52	Q	50	
2,4-Dinitrotoluene	101	Q	107	Q	28-89	6		50	
2,6-Dinitrotoluene	95		91		40-140	4		50	
Azobenzene	96		93		40-140	3		50	
Fluoranthene	94		101		40-140	7		50	
4-Chlorophenyl phenyl ether	90		86		40-140	5		50	
4-Bromophenyl phenyl ether	92		90		40-140	2		50	
Bis(2-chloroisopropyl)ether	71		41		40-140	54	Q	50	
Bis(2-chloroethoxy)methane	84		64		40-117	27		50	
Hexachlorobutadiene	86		48		40-140	57	Q	50	
Hexachlorocyclopentadiene	84		58		40-140	37		50	
Hexachloroethane	78		26	Q	40-140	100	Q	50	

Project Name: 505 CLOVE RD. Project Number: 505 CLOVE

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
emivolatile Organics by GC/MS - Wes	tborough Lab Associ	ated sample(s):	01 Batch:	WG914473-2	WG914473-3			
Isophorone	86		70		40-140	21	50	
Naphthalene	82		55		40-140	39	50	
Nitrobenzene	90		62		40-140	37	50	
NitrosoDiPhenylAmine(NDPA)/DPA	93		93		36-157	0	50	
n-Nitrosodi-n-propylamine	87		68		32-121	25	50	
Bis(2-Ethylhexyl)phthalate	102		108		40-140	6	50	
Butyl benzyl phthalate	108		121		40-140	11	50	
Di-n-butylphthalate	99		104		40-140	5	50	
Di-n-octylphthalate	108		115		40-140	6	50	
Diethyl phthalate	96		96		40-140	0	50	
Dimethyl phthalate	96		91		40-140	5	50	
Benzo(a)anthracene	94		100		40-140	6	50	
Benzo(a)pyrene	94		103		40-140	9	50	
Benzo(b)fluoranthene	89		101		40-140	13	50	
Benzo(k)fluoranthene	90		96		40-140	6	50	
Chrysene	82		87		40-140	6	50	
Acenaphthylene	95		83		40-140	13	50	
Anthracene	93		95		40-140	2	50	
Benzo(ghi)perylene	85		91		40-140	7	50	
Fluorene	94		90		40-140	4	50	
Phenanthrene	88		88		40-140	0	50	

Project Name: 505 CLOVE RD. Project Number: 505 CLOVE

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - W	estborough Lab Associa	ted sample(s):	01 Batch:	WG914473-2	WG914473-3			
Dibenzo(a,h)anthracene	92		99		40-140	7		50
Indeno(1,2,3-cd)Pyrene	100		106		40-140	6		50
Pyrene	91		98		35-142	7		50
Biphenyl	88		72		54-104	20		50
4-Chloroaniline	50		75		40-140	40		50
1-Methylnaphthalene	87		68		26-130	25		50
2-Nitroaniline	93		89		47-134	4		50
3-Nitroaniline	82		97		26-129	17		50
4-Nitroaniline	100		105		41-125	5		50
Dibenzofuran	92		83		40-140	10		50
2-Methylnaphthalene	91		69		40-140	28		50
1,2,4,5-Tetrachlorobenzene	87		66		40-117	27		50
Acetophenone	88		64		14-144	32		50
n-Nitrosodimethylamine	63		20	Q	22-100	104	Q	50
2,4,6-Trichlorophenol	106		93		30-130	13		50
P-Chloro-M-Cresol	97		88		26-103	10		50
2-Chlorophenol	83		53		25-102	44		50
2,4-Dichlorophenol	96		75		30-130	25		50
2,4-Dimethylphenol	93		76		30-130	20		50
2-Nitrophenol	95		69		30-130	32		50
4-Nitrophenol	109		116	Q	11-114	6		50

Project Name: 505 CLOVE RD. Project Number: 505 CLOVE

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westb	orough Lab Associa	ated sample(s):	01 Batch:	WG914473-2	WG914473-3			
2,4-Dinitrophenol	80		80		4-130	0		50
4,6-Dinitro-o-cresol	93		98		10-130	5		50
Pentachlorophenol	81		82		17-109	1		50
Phenol	89		63		26-90	34		50
2-Methylphenol	87		65		30-130.	29		50
3-Methylphenol/4-Methylphenol	88		69		30-130	24		50
2,4,5-Trichlorophenol	102		92		30-130	10		50
Benzoic Acid	38		29		10-110	27		50
Benzyl Alcohol	93		71		40-140	27		50
Carbazole	89		94		54-128	5		50
Parathion, ethyl	111		122		40-140	9		50
Atrazine	116		120		40-140	3		50
Benzaldehyde	62		3	Q	40-140	180	Q	50
Caprolactam	103		103		15-130	0		50
2,3,4,6-Tetrachlorophenol	98		96		40-140	2		50

Lab Control Sample Analysis

Batch Quality Control

Project Name:505 CLOVE RD.Project Number:505 CLOVE

 Lab Number:
 L1621764

 Report Date:
 07/22/16

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG914473-2 WG914473-3

LCS %Recovery G	LCSD Qual %Recovery Qual	Acceptance Criteria
79	42	25-120
85	59	10-120
87	57	23-120
84	66	30-120
85	84	10-136
84	90	18-120
	%Recovery C 79 85 87 84 85 87	%Recovery Qual %Recovery Qual 79 42

PCBS

			Serial_N	0:07221616:37
Project Name:	505 CLOVE RD.		Lab Number:	L1621764
Project Number:	505 CLOVE		Report Date:	07/22/16
		SAMPLE RESULTS		
Lab ID:	L1621764-01		Date Collected:	07/13/16 13:00
Client ID:	SC1		Date Received:	07/14/16
Sample Location:	MONROE, NEW YORK		Field Prep:	Not Specified
Matrix:	Soil		Extraction Metho	d:EPA 3546
Analytical Method:	1,8082A		Extraction Date:	07/17/16 20:49
Analytical Date:	07/18/16 18:56		Cleanup Method:	EPA 3665A
Analyst:	KEG		Cleanup Date:	07/18/16
Percent Solids:	92%		Cleanup Method:	EPA 3660B
			Cleanup Date:	07/18/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
				05.0	0.70	_			
Aroclor 1016	ND		ug/kg	35.2	2.78	1	A		
Aroclor 1221	ND		ug/kg	35.2	3.24	1	А		
Aroclor 1232	ND		ug/kg	35.2	4.12	1	А		
Aroclor 1242	ND		ug/kg	35.2	4.30	1	А		
Aroclor 1248	ND		ug/kg	35.2	2.97	1	А		
Aroclor 1254	ND		ug/kg	35.2	2.89	1	А		
Aroclor 1260	ND		ug/kg	35.2	2.68	1	А		
Aroclor 1262	ND		ug/kg	35.2	1.74	1	А		
Aroclor 1268	ND		ug/kg	35.2	5.10	1	А		
PCBs, Total	ND		ug/kg	35.2	1.74	1	А		

Sumonoto		Qualifian	Acceptance	0.1
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	54		30-150	А
Decachlorobiphenyl	75		30-150	А
2,4,5,6-Tetrachloro-m-xylene	56		30-150	В
Decachlorobiphenyl	76		30-150	В

Project Name:	505 CLOVE RD.	Lab Number:	L1621764
Project Number:	505 CLOVE	Report Date:	07/22/16

Analytical Method:
Analytical Date:
Analyst:

1,8082A 07/18/16 17:49 KEG Extraction Method:EPA 3546Extraction Date:07/17/16 20:49Cleanup Method:EPA 3665ACleanup Date:07/18/16Cleanup Method:EPA 3660BCleanup Date:07/18/16

Parameter	Result	Qualifier	Units	F	RL	MDL	Column
Polychlorinated Biphenyls by GC - \	Vestborough	h Lab for sa	ample(s):	01	Batch:	WG914452-1	
Aroclor 1016	ND		ug/kg	3	1.5	2.49	А
Aroclor 1221	ND		ug/kg	3	1.5	2.90	А
Aroclor 1232	ND		ug/kg	3	1.5	3.69	А
Aroclor 1242	ND		ug/kg	3	1.5	3.85	А
Aroclor 1248	ND		ug/kg	3	1.5	2.66	А
Aroclor 1254	ND		ug/kg	3	1.5	2.59	А
Aroclor 1262	ND		ug/kg	3	1.5	1.56	А
Aroclor 1268	ND		ug/kg	3	1.5	4.56	A
PCBs, Total	ND		ug/kg	3	1.5	1.56	А
Aroclor 1260	ND		ug/kg	3	1.5	2.40	В

			Acceptance	;
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	68		30-150	A
Decachlorobiphenyl	91		30-150	А
2,4,5,6-Tetrachloro-m-xylene	64		30-150	В
Decachlorobiphenyl	90		30-150	В

L1621764

Lab Control Sample Analysis Batch Quality Control

Project Name:505 CLOVE RD.Project Number:505 CLOVE

Lab Number:

Report Date: 07/22/16

		LCS		LC	CSD		%Recovery			RPD	
Para	neter	%Recovery	Qual	%Re	covery	Qual	Limits	RPD	Qual	Limits	Column
Polyc	hlorinated Biphenyls by GC - Westborou	igh Lab Associ	iated sample(s)	: 01	Batch:	WG914452-2	WG914452-3				
A	roclor 1016	81			84		40-140	4		50	А
A	roclor 1260	86			92		40-140	7		50	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
	70		05		00.450	
2,4,5,6-Tetrachloro-m-xylene	70		65		30-150	A
Decachlorobiphenyl	92		84		30-150	А
2,4,5,6-Tetrachloro-m-xylene	68		63		30-150	В
Decachlorobiphenyl	89		83		30-150	В

PESTICIDES

			Serial_No:07221616:37		
Project Name:	505 CLOVE RD.		Lab Number:	L1621764	
Project Number:	505 CLOVE		Report Date:	07/22/16	
		SAMPLE RESULTS			
Lab ID:	L1621764-01		Date Collected:	07/13/16 13:00	
Client ID:	SC1		Date Received:	07/14/16	
Sample Location:	MONROE, NEW YORK		Field Prep:	Not Specified	
Matrix:	Soil		Extraction Method	d:EPA 3546	
Analytical Method:	1,8081B		Extraction Date:	07/17/16 17:55	
Analytical Date:	07/19/16 13:29		Cleanup Method:	EPA 3620B	
Analyst:	EC		Cleanup Date:	07/18/16	
Percent Solids:	92%				

Organochlorine Pesticides by GC - Westbo	orough Lab					
	ND					
Delta-BHC	ND	ug/kg	1.66	0.324	1	А
indane	ND	ug/kg	0.690	0.308	1	А
Alpha-BHC	ND	ug/kg	0.690	0.196	1	А
Beta-BHC	ND	ug/kg	1.66	0.628	1	А
Heptachlor	ND	ug/kg	0.828	0.371	1	А
Aldrin	ND	ug/kg	1.66	0.583	1	А
Heptachlor epoxide	ND	ug/kg	3.10	0.931	1	А
Endrin	ND	ug/kg	0.690	0.283	1	А
Endrin aldehyde	ND	ug/kg	2.07	0.724	1	А
Endrin ketone	ND	ug/kg	1.66	0.426	1	А
Dieldrin	ND	ug/kg	1.03	0.517	1	А
1,4'-DDE	ND	ug/kg	1.66	0.383	1	А
1,4'-DDD	ND	ug/kg	1.66	0.590	1	А
1,4'-DDT	ND	ug/kg	3.10	1.33	1	А
Endosulfan I	ND	ug/kg	1.66	0.391	1	А
Endosulfan II	ND	ug/kg	1.66	0.553	1	А
Endosulfan sulfate	ND	ug/kg	0.690	0.328	1	А
Methoxychlor	ND	ug/kg	3.10	0.966	1	А
Toxaphene	ND	ug/kg	31.0	8.69	1	А
cis-Chlordane	ND	ug/kg	2.07	0.577	1	А
rans-Chlordane	ND	ug/kg	2.07	0.546	1	А
Chlordane	ND	ug/kg	13.4	5.48	1	А

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	100		30-150	В		
Decachlorobiphenyl	115		30-150	В		
2,4,5,6-Tetrachloro-m-xylene	87		30-150	А		
Decachlorobiphenyl	84		30-150	А		

Project Name:	505 CLOVE RD.	Lab Number:	L1621764
Project Number:	505 CLOVE	Report Date:	07/22/16

Analytical Method:	
Analytical Date:	
Analyst:	

1,8081B 07/19/16 10:52 EC Extraction Method:EPA 3546Extraction Date:07/17/16 17:55Cleanup Method:EPA 3620BCleanup Date:07/18/16

arameter	Result	Qualifier	Units	RL	MDL	Columr
rganochlorine Pesticides	by GC - Westboroug	h Lab for	sample(s):	01 Batc	h: WG914435-1	
Delta-BHC	ND		ug/kg	1.52	0.298	А
Lindane	ND		ug/kg	0.633	0.283	А
Alpha-BHC	ND		ug/kg	0.633	0.180	А
Beta-BHC	ND		ug/kg	1.52	0.576	А
Heptachlor	ND		ug/kg	0.760	0.341	А
Aldrin	ND		ug/kg	1.52	0.535	А
Heptachlor epoxide	ND		ug/kg	2.85	0.855	А
Endrin	ND		ug/kg	0.633	0.260	А
Endrin aldehyde	ND		ug/kg	1.90	0.665	А
Endrin ketone	ND		ug/kg	1.52	0.391	А
Dieldrin	ND		ug/kg	0.950	0.475	А
4,4'-DDE	ND		ug/kg	1.52	0.351	А
4,4'-DDD	ND		ug/kg	1.52	0.542	А
4,4'-DDT	ND		ug/kg	2.85	1.22	А
Endosulfan I	ND		ug/kg	1.52	0.359	А
Endosulfan II	ND		ug/kg	1.52	0.508	А
Endosulfan sulfate	ND		ug/kg	0.633	0.301	А
Methoxychlor	ND		ug/kg	2.85	0.887	А
Toxaphene	ND		ug/kg	28.5	7.98	А
cis-Chlordane	ND		ug/kg	1.90	0.529	А
trans-Chlordane	ND		ug/kg	1.90	0.502	А
Chlordane	ND		ug/kg	12.3	5.03	А

Project Name:	505 CLOVE RD.		Lab Number:	L1621764
Project Number:	505 CLOVE		Report Date:	07/22/16
		Method Blank Analysis Batch Quality Control		

Batch Quality Control

Analytical Method:	1,8081B
Analytical Date:	07/19/16 10:52
Analyst:	EC

EPA 3546
07/17/16 17:55
EPA 3620B
07/18/16

Parameter	Result	Qualifier	Units		RL	MDL	
Organochlorine Pesticides by GC	Westboroug	gh Lab for s	sample(s):	01	Batch:	WG914435-1	

			Acceptance	•
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	78		30-150	В
Decachlorobiphenyl	85		30-150	В
2,4,5,6-Tetrachloro-m-xylene	69		30-150	A
Decachlorobiphenyl	72		30-150	A
Beeddinerebiphony	12		00 100	, (

Project Name: 505 CLOVE RD. Project Number: 505 CLOVE

		RPD			%Recovery		LCSD		LCS	
Delta-BHC 62 82 30-150 28 30 Lindane 58 77 30-150 28 30 Alpha-BHC 57 77 30-150 30 30 Beta-BHC 68 80 30-150 16 30 Beta-BHC 68 80 30-150 16 30 Heptachlor 62 79 30-150 24 30 Aldrin 56 72 30-150 23 30 Heptachlor epoxide 62 78 30-150 23 30 Endrin 57 74 30-150 26 30 Endrin aldehyde 37 59 30-150 26 30 Endrin ketone 42 73 30-150 26 30 Jeldrin 59 77 30-150 26 30 Jeldrin 59 77 30-150 26 30 Jeldrin 59 77 30	Column	Limits	Qual	RPD		Qual		Qual		Parameter
Lindane 58 77 30-150 28 30 Alpha-BHC 57 77 30-150 30 30 Beta-BHC 68 80 30-150 16 30 Heptachlor 62 79 30-150 24 30 Aldrin 56 72 30-150 25 30 Heptachlor epoxide 62 78 30-150 26 30 Endrin aldehyde 37 74 30-150 26 30 Endrin aldehyde 37 59 30-150 26 30 Joledrin 59 77					-2 WG914435-3	WG914435-	: 01 Batch:	ciated sample(s)	ugh Lab Assoc	Organochlorine Pesticides by GC - Westboro
Alpha-BHC 57 77 30-150 30 30 Beta-BHC 68 80 30-150 16 30 Heptachlor 62 79 30-150 24 30 Aldrin 56 79 30-150 24 30 Heptachlor epoxide 62 79 30-150 24 30 Hoptachlor epoxide 62 78 30-150 23 30 Endrin 57 74 30-150 26 30 Endrin aldehyde 37 59 30-150 26 30 Endrin ketone 42 73 30-150 26 30 Jeidrin 59 30-150 26 30 30 Jeidrin 59 77 30-150 26 30 Jeidrin 59 77 30-150 26 30 Jeidrin 59 77 30-150 26 30 Jeidrin 54 70	А	30		28	30-150		82		62	Delta-BHC
Beta-BHC 68 80 30-150 16 30 Heptachlor 62 79 30-150 24 30 Aldrin 56 72 30-150 25 30 Heptachlor epoxide 62 78 30-150 23 30 Endrin 57 74 30-150 26 30 Endrin aldehyde 37 59 30-150 46 Q 30 Endrin ketone 42 73 30-150 46 Q 30 Dieldrin 59 30-150 54 Q 30 4.4-DDE 52 67 30-150 26 30 4.4-DDT 54 70 30-150 25 30 4.4-DDT 62 78 30-150 26 30 4.4-DDT 62 78 30-150 26 30 Endosulfan I 57 74 30-150 26 30 Endosulfan II <t< td=""><td>А</td><td>30</td><td></td><td>28</td><td>30-150</td><td></td><td>77</td><td></td><td>58</td><td>Lindane</td></t<>	А	30		28	30-150		77		58	Lindane
Heptachlor 62 79 30-150 24 30 Aldrin 56 72 30-150 25 30 Heptachlor epoxide 62 78 30-150 23 30 Heptachlor epoxide 62 78 30-150 23 30 Endrin 57 74 30-150 26 30 Endrin aldehyde 37 59 30-150 46 Q 30 Endrin ketone 42 73 30-150 54 Q 30 Dieldrin 59 77 30-150 26 30 30 4,4-DDE 52 67 30-150 26 30 30 4,4-DDT 52 67 30-150 26 30 30 4,4-DDT 54 78 30-150 26 30 30 4,4-DDT 62 78 30-150 26 30 30 Endosulfan I 57 74 3	А	30		30	30-150		77		57	Alpha-BHC
Aldrin 56 72 30-150 25 30 Heptachlor epoxide 62 78 30-150 23 30 Endrin 57 74 30-150 26 30 Endrin aldehyde 37 59 30-150 46 Q 30 Endrin aldehyde 37 59 30-150 46 Q 30 Dieldrin 59 30-150 54 Q 30 Jeldrin 59 77 30-150 26 30 Jeldrin 59 77 30-150 26 30 4,4-DDE 52 67 30-150 26 30 4,4-DDT 54 70 30-150 26 30 4,4-DDT 62 78 30-150 23 30 4,4-DDT 62 74 30-150 26 30 Endosulfan I 57 74 30-150 32 Q 30	А	30		16	30-150		80		68	Beta-BHC
Heptachlor epoxide 62 78 30-150 23 30 Endrin 57 74 30-150 26 30 Endrin aldehyde 37 59 30-150 46 Q 30 Endrin aldehyde 37 59 30-150 46 Q 30 Endrin ketone 42 73 30-150 54 Q 30 Dieldrin 59 77 30-150 26 30 30 4,4-DDE 52 67 30-150 26 30 30 4,4-DDT 54 70 30-150 26 30 30 4,4-DDT 62 78 30-150 26 30 30 4,4-DDT 62 78 30-150 26 30 30 Endosulfan I 57 74 30-150 26 30 30 Endosulfan II 61 84 30-150 32 Q 30	А	30		24	30-150		79		62	Heptachlor
Endrin 57 74 30-150 26 30 Endrin aldehyde 37 59 30-150 46 Q 30 Endrin ketone 42 73 30-150 54 Q 30 Dieldrin 59 77 30-150 26 30 30 4,4'-DDE 59 67 30-150 26 30 30 4,4'-DDD 52 67 30-150 26 30 30 4,4'-DDD 54 0 70 30-150 26 30 30 4,4'-DDT 62 78 30-150 26 30 30 4,4'-DDT 62 78 30-150 26 30 30 Endosulfan I 57 74 30-150 26 30 30 Endosulfan II 61 84 30-150 32 Q 30	А	30		25	30-150		72		56	Aldrin
Endrin aldehyde 37 59 30-150 46 Q 30 Endrin ketone 42 73 30-150 54 Q 30 Dieldrin 59 77 30-150 26 30 4,4-DDE 52 67 30-150 26 30 4,4-DDD 54 Q 30 4,4-DDT 62 78 30-150 26 30 Endosulfan I 57 74 30-150 23 30 Endosulfan II 61 84 30-150 26 30	А	30		23	30-150		78		62	Heptachlor epoxide
Endrin ketone 42 73 30-150 54 Q 30 Dieldrin 59 77 30-150 26 30 4,4-DDE 52 67 30-150 25 30 4,4-DDD 54 Q 30	А	30		26	30-150		74		57	Endrin
Dieldrin 59 77 30-150 26 30 4,4-DDE 52 67 30-150 25 30 4,4-DDD 54 70 30-150 26 30 4,4-DDT 62 78 30-150 23 30 Endosulfan I 57 74 30-150 26 30 Endosulfan II 61 84 30-150 26 30	А	30	Q	46	30-150		59		37	Endrin aldehyde
4,4'-DDE 52 67 30'-150 25 30' 4,4'-DDD 54 70 30'-150 26 30' 4,4'-DDT 62 78 30'-150 23 30' Endosulfan I 57 74 30'-150 26 30' Endosulfan II 61 84 30'-150 32 Q 30'	А	30	Q	54	30-150		73		42	Endrin ketone
4,4'-DDD 54 70 30-150 26 30 4,4'-DDT 62 78 30-150 23 30 Endosulfan I 57 74 30-150 26 30 Endosulfan II 61 84 30-150 32 Q 30	А	30		26	30-150		77		59	Dieldrin
A,4'-DDT 62 78 30-150 23 30 Endosulfan I 57 74 30-150 26 30 Endosulfan II 61 84 30-150 32 Q 30	А	30		25	30-150		67		52	4,4'-DDE
Endosulfan I 57 74 30-150 26 30 Endosulfan II 61 84 30-150 32 Q 30	А	30		26	30-150		70		54	4,4'-DDD
Endosulfan II 61 84 30-150 32 Q 30	А	30		23	30-150		78		62	4,4'-DDT
	А	30		26	30-150		74		57	Endosulfan I
Endosulfan sulfate 37 66 30-150 56 Q 30	А	30	Q	32	30-150		84		61	Endosulfan II
	А	30	Q	56	30-150		66		37	Endosulfan sulfate
Methoxychlor 56 80 30-150 35 Q 30	А	30	Q	35	30-150		80		56	Methoxychlor
cis-Chlordane 48 62 30-150 25 30	А	30		25	30-150		62		48	cis-Chlordane
trans-Chlordane 45 56 30-150 22 30	А	30		22	30-150		56		45	trans-Chlordane

Lab Control Sample Analysis

Batch Quality Control

Project Name:505 CLOVE RD.Project Number:505 CLOVE

 Lab Number:
 L1621764

 Report Date:
 07/22/16

 LCS
 LCSD
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 Value
 Limits
 RPD

 Organochlorine Pesticides by GC - Westborough Lab
 Associated sample(s):
 01
 Batch:
 WG914435-2
 WG914435-3

	LCS		LCSD		Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	70		92		30-150	В	
Decachlorobiphenyl	76		105		30-150	В	
2,4,5,6-Tetrachloro-m-xylene	62		77		30-150	А	
Decachlorobiphenyl	70		93		30-150	А	

METALS

Serial_No:07221616:37

				Serial_No:07221616:37							
Project Name:	505 C	LOVE RD.					Lab Nu	mber:	L16217	64	
Project Number:	505 C	LOVE					Report	Date:	07/22/1	6	
				SAMPL	E RES	ULTS					
Lab ID:		764-01					Date Co	ollected:	07/13/16 13:00		
Client ID:	SC1						Date Re		07/14/1		
Sample Location: Matrix:	MONI Soil	ROE, NEW	YORK				Field Pro	ep:	Not Spe	cified	
Percent Solids:	92%										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	10000		mg/kg	8.4	1.6	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Antimony, Total	ND		mg/kg	4.2	0.67	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Arsenic, Total	4.3		mg/kg	0.84	0.28	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Barium, Total	28		mg/kg	0.84	0.23	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Beryllium, Total	0.27	J	mg/kg	0.42	0.09	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Cadmium, Total	ND		mg/kg	0.84	0.06	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Calcium, Total	410		mg/kg	8.4	2.3	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Chromium, Total	11		mg/kg	0.84	0.14	2	07/16/16 07:30) 07/18/16 13:12	EPA 3050B	1,6010C	PS
Cobalt, Total	7.7		mg/kg	1.7	0.41	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Copper, Total	19		mg/kg	0.84	0.15	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Iron, Total	18000		mg/kg	4.2	1.3	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Lead, Total	8.8		mg/kg	4.2	0.18	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Magnesium, Total	3700		mg/kg	8.4	1.1	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Manganese, Total	520		mg/kg	0.84	0.20	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Mercury, Total	0.08		mg/kg	0.07	0.02	1	07/16/16 12:10	07/16/16 14:30	EPA 7471B	1,7471B	BV
Nickel, Total	15		mg/kg	2.1	0.34	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Potassium, Total	350		mg/kg	210	24.	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Selenium, Total	ND		mg/kg	1.7	0.23	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Silver, Total	ND		mg/kg	0.84	0.17	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Sodium, Total	14	J	mg/kg	170	14.	2	07/16/16 07:30	07/18/16 13:12	EPA 3050B	1,6010C	PS
Thallium, Total	ND		mg/kg	1.7	0.27	2	07/16/16 07:30) 07/18/16 13:12	EPA 3050B	1,6010C	PS

1,6010C

1,6010C

PS

PS

Vanadium, Total

Zinc, Total

14

43

mg/kg

mg/kg

0.84

4.2

0.08

0.59

2

2

07/16/16 07:30 07/18/16 13:12 EPA 3050B

07/16/16 07:30 07/18/16 13:12 EPA 3050B

 Lab Number:
 L1621764

 Report Date:
 07/22/16

Project Name:505 CLOVE RD.Project Number:505 CLOVE

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01 Batch	n: WG9	14181-1					
Aluminum, Total	ND	mg/kg	4.0	0.79	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Antimony, Total	ND	mg/kg	2.0	0.32	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Arsenic, Total	ND	mg/kg	0.40	0.13	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Barium, Total	ND	mg/kg	0.40	0.11	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Beryllium, Total	ND	mg/kg	0.20	0.04	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Cadmium, Total	ND	mg/kg	0.40	0.03	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Calcium, Total	ND	mg/kg	4.0	1.1	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Chromium, Total	ND	mg/kg	0.40	0.07	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Cobalt, Total	ND	mg/kg	0.80	0.20	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Copper, Total	ND	mg/kg	0.40	0.07	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Iron, Total	ND	mg/kg	2.0	0.63	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Lead, Total	ND	mg/kg	2.0	0.09	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Magnesium, Total	ND	mg/kg	4.0	0.53	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Manganese, Total	ND	mg/kg	0.40	0.10	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Nickel, Total	ND	mg/kg	1.0	0.16	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Potassium, Total	ND	mg/kg	100	11.	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Selenium, Total	ND	mg/kg	0.80	0.11	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Silver, Total	ND	mg/kg	0.40	0.08	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Sodium, Total	ND	mg/kg	80	6.7	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Thallium, Total	ND	mg/kg	0.80	0.13	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Vanadium, Total	ND	mg/kg	0.40	0.04	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS
Zinc, Total	ND	mg/kg	2.0	0.28	1	07/16/16 07:30	07/18/16 12:20	1,6010C	PS

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfi	eld Lab for sample(s):	01 Batch	: WG9 ⁻	14195-1					
Mercury, Total	ND	mg/kg	0.08	0.02	1	07/16/16 12:10	07/16/16 14:10	1,7471B	BV

Project Name: 505 CLOVE RD.

Project Number: 505 CLOVE

 Lab Number:
 L1621764

 Report Date:
 07/22/16

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7471B

Project Name: 505 CLOVE RD. Project Number: 505 CLOVE

Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG914181-2 SRM Lot Number: D089-540 Alurninum, Total 68 - 52-147 - Antinorry, Total 114 - 1-197 - Antinorry, Total 108 - 68-120 - Barlum, Total 93 - 83-117 - Beryllum, Total 93 - 82-117 - Cadmium, Total 98 - 79-121 - Cobatt, Total 101 - 83-117 - Cobatt, Total 101 - 83-117 - Magnessur, Total 103 - 45-155 - Iton, Total 103 - 81-119 - Magness, Total 103 - 81-119 - <t< th=""><th>Parameter</th><th>LCS %Recovery</th><th>Qual</th><th>LCSD %Recovery</th><th>Qual</th><th>%Recovery Limits</th><th></th><th>Qual</th><th>RPD Limits</th></t<>	Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits		Qual	RPD Limits
Aluminum, Total 68 - 52-147 - Antimony, Total 114 - 1-197 - Ansenic, Total 108 - 80-120 - Barium, Total 93 - 83-117 - Beryllium, Total 93 - 82-117 - Cadmium, Total 93 - 82-117 - Cadmium, Total 92 - 81-119 - Cadcium, Total 92 - 81-119 - Cobati, Total 98 - 79-121 - Cobati, Total 91 - 83-117 - Cobati, Total 101 - 83-117 - Cobati, Total 101 - 83-117 - Cobati, Total 101 - 83-117 - Icon, Total 96 - 45-155 - Lead, Total 103 - 81-119 - Manganese, Total 88 - 76-123 - Manganese, Total 91 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>RPU</th><th>Qual</th><th></th></t<>							RPU	Qual	
Antimony, Total114-Arsenic, Total108-80-120-Barium, Total93-83-117-Beryllium, Total98-82-117-Cadmium, Total103-82-117-Catcium, Total92-81-119-Cobalt, Total98-79-121-Cobalt, Total101-83-117-Cobalt, Total101-83-117-Cobalt, Total101-83-117-Cobalt, Total101-83-117-Cobalt, Total101-83-117-Magnesium, Total98-45-155-Magnesium, Total88-76-123-Magnesium, Total88-71-128-Nickel, Total101-82-117-Nickel, Total101-82-117-Selenium, Total88-71-128-Storer, Total103-71-128-Storer, Total99-71-128-Storer, Total99-75-125-Solium, Total92-71-128-Solium, Total92-71-128-Solium, Total92-71-128-Solium, Total92-71-128-Solium, Total92-71-128-Solium, Total9	I otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG914181-	2 SRM LOT NU	mber: DU8	9-540			
Arsenic, Total 108 - 80-120 - Barium, Total 93 - 83-117 - Beryllium, Total 98 - 82-117 - Cadmium, Total 103 - 82-117 - Cadcium, Total 92 - 81-119 - Cadcium, Total 92 - 83-117 - Cobalt, Total 98 - 79-121 - Cobalt, Total 101 - 83-117 - Cobalt, Total 101 - 80-119 - Iron, Total 96 - 45-155 - Iron, Total 96 - 76-123 - Magnesium, Total 88 - 76-123 - Magnese, Total 93 - 81-119 - Nickel, Total 93 - 71-128 - Selenium, Total 99 - 76-125 - Silver, Total <td< td=""><td>Aluminum, Total</td><td>68</td><td></td><td>-</td><td></td><td>52-147</td><td>-</td><td></td><td></td></td<>	Aluminum, Total	68		-		52-147	-		
Barium, Total93.83.117.Beryllium, Total98<	Antimony, Total	114		-		1-197	-		
Beryllium, Total 98 - 82-117 - Cadmium, Total 103 - 82-117 - Calcium, Total 92 - 81-119 - Chromium, Total 98 - 79-121 - Cobalt, Total 101 - 83-117 - Cobalt, Total 101 - 83-117 - Cobalt, Total 101 - 83-117 - Cobalt, Total 101 - 80-119 - Iron, Total 96 - 45-155 - Lead, Total 103 - 81-119 - Magnesium, Total 88 - 76-123 - Magnese, Total 93 - 82-117 - Nickel, Total 101 - 82-117 - Potassium, Total 85 - 71-128 - Selenium, Total 97 - 75-125 - Silver, Total	Arsenic, Total	108		-		80-120	-		
Cadnium, Total103Calcium, Total92Chromium, Total98 <t< td=""><td>Barium, Total</td><td>93</td><td></td><td>-</td><td></td><td>83-117</td><td>-</td><td></td><td></td></t<>	Barium, Total	93		-		83-117	-		
Calcium, Total92-81-119-Chromium, Total98-79-121-Cobalt, Total101-83-117-Coper, Total101-80-119-Iron, Total96-45-155-Lead, Total103-81-119-Magnesium, Total88-76-123-Magnese, Total93-81-119-Nickel, Total93-81-119-Potassium, Total93-82-117-Potassium, Total99-76-123-Selenium, Total99-78-121-Silver, Total97-75-125-Sodium, Total92-71-128-Total106-79-120-	Beryllium, Total	98		-		82-117	-		
Chromium, Total98-79-121-Cobalt, Total101-83-117-Copper, Total101-80-119-Iron, Total96-45-155-Lead, Total103-81-119-Magnesium, Total88-76-123-Magnese, Total93-81-119-Nickel, Total101-82-117-Potassium, Total85-71-128-Selenium, Total99-78-121-Silver, Total97-75-125-Sodium, Total92-71-128-Thallium, Total106-79-120-	Cadmium, Total	103		-		82-117	-		
Cobalt, Total10183-117.Copper, Total101Iron, Total96Lead, Total103Magnesium, Total88Manganese, Total93Nickel, Total101Potassium, Total85Selenium, Total99Silver, Total99Silver, Total99Sodium, Total92Ihalium, Total106	Calcium, Total	92		-		81-119	-		
Copper, Total10180-119-Iron, Total96-45-155-Lead, Total103-81-119-Magnesium, Total88-76-123-Magnese, Total93-81-119-Nickel, Total010-82-117-Potassium, Total85-71-128-Selenium, Total99-78-121-Siver, Total97-75-125-Sodium, Total92-71-128-Thallium, Total106-79-120-	Chromium, Total	98		-		79-121	-		
Iron, Total96-45-155-Lead, Total103-81-119-Magnesium, Total88-76-123-Manganese, Total93-81-119-Nickel, Total101-82-117-Potassium, Total85-71-128-Selenium, Total99-78-121-Silver, Total97-75-125-Sodium, Total92-71-128-Thallium, Total106-79-120-	Cobalt, Total	101		-		83-117	-		
Lead, Total103-Magnesium, Total88-76-123-Manganese, Total93-81-119-Nickel, Total101-82-117-Potassium, Total85-71-128-Selenium, Total99-78-121-Silver, Total97-75-125-Sodium, Total92-71-128-Thallium, Total106-79-120-	Copper, Total	101		-		80-119	-		
Magnesium, Total88-76-123-Manganese, Total93-81-119-Nickel, Total101-82-117-Potassium, Total85-71-128-Selenium, Total99-78-121-Silver, Total97-75-125-Sodium, Total92-71-128-Thallium, Total106-79-120-	Iron, Total	96		-		45-155	-		
Manganese, Total93-Nickel, Total101-Potassium, Total85-Selenium, Total99-Silver, Total97-Sodium, Total92-Thallium, Total106-	Lead, Total	103		-		81-119	-		
Nickel, Total101-Potassium, Total85-71-128Selenium, Total99-78-121Silver, Total97-75-125Sodium, Total92-71-128Thallium, Total106-79-120	Magnesium, Total	88		-		76-123	-		
Potassium, Total85-Selenium, Total99-78-121Silver, Total97-75-125Sodium, Total92-71-128Thallium, Total106-79-120	Manganese, Total	93		-		81-119	-		
Selenium, Total99-78-121-Silver, Total97-75-125-Sodium, Total92-71-128-Thallium, Total106-79-120-	Nickel, Total	101		-		82-117	-		
Silver, Total 97 - Sodium, Total 92 - 71-128 - Thallium, Total 106 - 79-120 -	Potassium, Total	85		-		71-128	-		
Sodium, Total 92 - 71-128 - Thallium, Total 106 - 79-120 -	Selenium, Total	99		-		78-121	-		
Thallium, Total - 79-120 -	Silver, Total	97		-		75-125	-		
	Sodium, Total	92		-		71-128	-		
Vanadium, Total 93 - 77-122 -	Thallium, Total	106		-		79-120	-		
	Vanadium, Total	93		-		77-122	-		

Project Name: 505 CLOVE RD. Project Number: 505 CLOVE

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated san	nple(s): 01 Batch: WG914	181-2 SRM Lot Number:	D089-540		
Zinc, Total	100	-	80-119	-	
Total Metals - Mansfield Lab Associated san	nple(s): 01 Batch: WG914	195-2 SRM Lot Number:	D089-540		
Mercury, Total	80	-	57-143	-	

Matrix Spike Analysis Batch Quality Control

Project Name: 505 CLOVE RD. Project Number: 505 CLOVE

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield La	ab Associated sar	nple(s): 01	QC Batch	ID: WG914181	-4 Q	C Sample:	L1621694-01	Client ID: MS Sar	nple		
Aluminum, Total	3700	175	3800	57	Q	-	-	75-125	-		20
Antimony, Total	ND	43.6	34	78		-	-	75-125	-		20
Arsenic, Total	1.6	10.5	13	109		-	-	75-125	-		20
Barium, Total	23.	175	170	84		-	-	75-125	-		20
Beryllium, Total	0.124J	4.36	3.9	89		-	-	75-125	-		20
Cadmium, Total	ND	4.45	4.0	90		-	-	75-125	-		20
Calcium, Total	2100	873	3000	103		-	-	75-125	-		20
Chromium, Total	8.3	17.5	22	78		-	-	75-125	-		20
Cobalt, Total	3.1	43.6	39	82		-	-	75-125	-		20
Copper, Total	9.5	21.8	28	85		-	-	75-125	-		20
Iron, Total	9200	87.3	6900	0	Q	-	-	75-125	-		20
Lead, Total	20.	44.5	55	78		-	-	75-125	-		20
Magnesium, Total	1200	873	1800	69	Q	-	-	75-125	-		20
Manganese, Total	160	43.6	160	0	Q	-	-	75-125	-		20
Nickel, Total	16.	43.6	45	66	Q	-	-	75-125	-		20
Potassium, Total	440	873	1200	87		-	-	75-125	-		20
Selenium, Total	ND	10.5	9.6	92		-	-	75-125	-		20
Silver, Total	ND	26.2	23	88		-	-	75-125	-		20
Sodium, Total	66.J	873	900	103		-	-	75-125	-		20
Thallium, Total	ND	10.5	8.6	82		-	-	75-125	-		20
Vanadium, Total	8.8	43.6	47	87		-	-	75-125	-		20

Matrix Spike Analysis Batch Quality Control

Project Name:	505 CLOVE RD.	Batch Quality Control	Lab Number:	L1621764
Project Number:	505 CLOVE		Report Date:	07/22/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch	ID: WG914181-4	QC Sample:	L1621694-01	Client ID: MS San	nple	
Zinc, Total	23.	43.6	58	80	-	-	75-125	-	20
Total Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch	ID: WG914195-4	QC Sample:	L1621694-01	Client ID: MS San	nple	
Mercury, Total	0.04J	0.14	0.20	143	Q -	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 505 CLOVE RD. Project Number: 505 CLOVE

Lab Number:

L1621764 07/22/16 Report Date:

Parameter	Native Sample Du	plicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG914181-3	QC Sample: L	1621694-01 C	ient ID: DU	P Sample	
Antimony, Total	ND	ND	mg/kg	NC		20
Arsenic, Total	1.6	1.8	mg/kg	12		20
Barium, Total	23.	25	mg/kg	8		20
Beryllium, Total	0.124J	0.132J	mg/kg	NC		20
Cadmium, Total	ND	ND	mg/kg	NC		20
Chromium, Total	8.3	8.6	mg/kg	4		20
Copper, Total	9.5	10	mg/kg	5		20
Lead, Total	20.	20	mg/kg	0		20
Manganese, Total	160	160	mg/kg	0		20
Nickel, Total	16.	14	mg/kg	13		20
Selenium, Total	ND	ND	mg/kg	NC		20
Silver, Total	ND	ND	mg/kg	NC		20
Thallium, Total	ND	ND	mg/kg	NC		20
Zinc, Total	23.	26	mg/kg	12		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG914195-3	QC Sample: L	1621694-01 C	ient ID: DU	P Sample	
Mercury, Total	0.04J	0.03J	mg/kg	NC		20

INORGANICS & MISCELLANEOUS

Serial No:07221616:37

Project Name:	505 CLOVE RD.		Lab Number:	L1621764
Project Number:	505 CLOVE		Report Date:	07/22/16
		SAMPLE RESULTS		
Lab ID:	L1621764-01		Date Collected:	07/13/16 13:00

Client ID:	SC1						Date R	eceived:	07/14/16	
Sample Location:	MONROE, NE	DNROE, NEW YORK						rep:	Not Specified	
Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst

General Chemistry -	Westborough Lab								
Solids, Total	92.1	%	0.100	NA	1	-	07/15/16 10:05	121,2540G	RI

Project Name:	505 CLOVE RD.	Li	ab Duplicate Analy Batch Quality Control	La	ab Number	r: L1621764	
Project Number:	505 CLOVE				R	eport Date	: 07/22/16
Parameter		Native Sample	Dunlicate Sample	Units	RPD	Qual	RPD Limits

Parameter	Native Sample	Duplicate Sample	e Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01 OC Batch	ID: WG913918-1 OC	Sample: 1 162160	4-01 Clie	nt ID· DI IP Sample
General Chemistry - Westbolough Lab		1D. WO913910-1 QC			nt ib. boi Sample
Solids, Total	89.4	89.4	%	0	20

Serial_No:07221616:37

Lab Number: L1621764 Report Date: 07/22/16

Project Name:505 CLOVE RD.Project Number:505 CLOVE

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Absent

Cooler Information Custody Seal

Cooler

A

Container Info	Container Information								
Container ID	Container Type	Cooler	рΗ	Temp deg C	Pres	Seal	Analysis(*)		
L1621764-01A	Vial Large Septa unpreserved (4o	А	N/A	4.4	Y	Absent	NYTCL-8260(14)		
L1621764-01A9	Vial MeOH preserved split	А	N/A	4.4	Y	Absent	NYTCL-8260(14)		
L1621764-01B	Glass 250ml/8oz unpreserved	A	N/A	4.4	Y	Absent	NYTCL-8270(14),TS(7),NYTCL- 8081(14),NYTCL-8082(14)		
L1621764-01C	Metals Only - Glass 60mL/2oz unp	A	N/A	4.4	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),AL- TI(180),CR-TI(180),NI-		

BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),CU-TI(180),PB-TI(180),CD-TI(180),SE-TI(180),ZN-TI(180),FE-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),K-TI(180),NA-TI(180)

L1621764

07/22/16

Project Name: 505 CLOVE RD.

Project Number: 505 CLOVE

Report Date:

Lab Number:

Acronyms

EDL

EPA LCS LCSD LFB MDL

MS

MSD

115	
	 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME). Environmental Protection Agency.
	 Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. Laboratory Control Sample Duplicate: Refer to LCS.
	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
	- Matrix Spike Sample Duplicate: Refer to MS.

GLOSSARY

- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NDPA/DPA N-Nitrosodiphenylamine/Diphenylamine.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Serial_No:07221616:37

Project Name: 505 CLOVE RD.

Project Number: 505 CLOVE

Lab Number: L1621764

Report Date: 07/22/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name:505 CLOVE RD.Project Number:505 CLOVE

 Lab Number:
 L1621764

 Report Date:
 07/22/16

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:07221616:37

	NEW YORK	Service Centers	Way		Pag	1					La the				1000				
ALPHA	CHAIN OF	Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker			1 of /		-		Rec'			1			ALPHA Job #				
A sub- sub- sub-	CUSTODY	Tonawanda, NY 14150: 275 Co	ooper Ave, Suite	105				in	Lab	14	7/14/16				L1621764				
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information						Deliverables							Billing Information				
TEL: 508-898-9220	TEL: 508-898-9220 TEL: 508-822-9300 Project Name: 505 Claule Kd							ASP-A				ASP-	B		Same as Client Info				
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: Monroe, New York					EQuIS (1 File) EQUIS (4 File)												
Client Information Project # 505 Clove										10)		5)	P0#						
Client: Tenen EnU Vonmental (Use Project name as Project #)										iromo	at								
		Project Manager: Ma				•	Regulatory Requirement								Disposal Site Information				
Suite 702 N	YNYIDOOL	ALPHAQuote #:	anne d												Please identify below location or applicable disposal facilities.	of			
Phone: 646 60		Turn-Around Time												ŀ	•••••				
Fax:		Standard	4	Due Date			NY Restricted Use Other								Disposal Facility:				
	altenen env.	Rush (only if pre approved		Due Date			NY Unrestricted Use								NJ NY				
	been previously analyze	And the second se		# of Days					Concernance of the local division of the loc	Dischar	ge		_		Other:				
and the second	c requirements/comm	and the second design of the s					ANA	LYSIS							Sample Filtration	T o			
pj op-oni	e requiremento/comm						-				5				Done	t			
									S		fa				Lab to do	a			
Please specify Metal	Please specify Metals or TAL.														Preservation Lab to do				
Trease speeny metal									U	5	X					В			
			- 190				C	S	+	8	7			((Please Specify below)	o t			
ALPHA Lab ID	Sar	Coll	ection	Sample	Sampler's	Voc	sjours	Pest	.0	Y				t					
(Lab Use Only)				Date Time		Initials	>	5	à	- 7	5			5	Sample Specific Comments	e I			
21764-01	501	1	7/13/16	1:00	S	MA	×	×	X	X	X								
	(1.1			for the second sec								+		+ - 1			
														+		+			
										-				+		+			
														+		+			
														+		+			
								-						+		+			
										_				+		\vdash			
										-+	-+	\rightarrow	_	+		\vdash			
														+		\square			
Preservative Code:	Container Code	Westboro: Certification N	MA025						-+	-+	-+			_					
A = None B = HCl	F - Flastic	Westboro: Certification No: MA935 Mansfield: Certification No: MA015													Please print clearly, legibly	y			
$C = HNO_3$	V = Vial	Mansheld, Certification No	D: MAU15												and completely. Samples can				
$D = H_2SO_4$	G = Glass Preservative														not be logged in and turnaround time clock will i				
E = NaOH F = MeOH	B = Bacteria Cup C = Cube										start until any ambiguities a								
G = NaHSO ₄	O = Other	Relinquished By: Date/Time									I		resolved. BY EXECUTING						
$H = Na_2S_2O_3$							idn	Idin /AKL 711					140	J.J	THIS COC, THE CLIENT				
K/E = Zn Ac/NaOH D = BOD Bottle				Tom	Tom Tokh 7-14-16 18						181	11	HAS READ AND AGREES TO BE BOUND BY ALPHA'S						
		For lohn "					the me					4/10	230	ข	TERMS & CONDITIONS.				
Form No: 01-25 HC (rev. 30)-Sept-2013)										11. 4. 2 0000				(See reverse side.)				

Draft Environmental Impact Statement

NYSDEC Correspondence

P.O. Box 2020, Monroe New York 10949 Tel: (845) 774 · 8000 | cpcnynj@gmail.com From: **Gelb Simon** <gelbsimon@gmail.com> Date: Wed, Oct 5, 2016 at 3:40 PM Subject: Clovewood - RCR (Village of South Blooming Grove, Orange County, NY) To: edward.moore@dec.ny.gov Cc: "Petronella, John W (DEC)" <john.petronella@dec.ny.gov>

Dear Mr. Moore;

On November 17, 2015, you responded to our submission (of 8/27/15) on the Clovewood Phase I & II and Remedial Action Work Plan. We are attaching hereto the Clovewood Remedial Closure Report. This should complete any required mitigation and please respond if further action is required.

The Final Scoping Document for the Clovewood Environmental Impact Statement adopted by the Village of South Blooming Grove provides: To evaluate the status of the Project Site, including NYSDEC's position on the condition of the Project Site, and whether or not the implemented remediation resulted in a No Further Action letter.

We assume the attached Remedial Closure Report adequately addresses all outstanding issues and with respect to previous uses of the site by the previous owners (as dumping and/or an unlicensed solid wastes management facility, etc.).

Sincerely, Simon Gelb, CPC

From: **Moore, Edward L (DEC)** <edward.moore@dec.ny.gov> Date: Fri, Nov 4, 2016 at 2:42 PM Subject: RE: Clovewood - RCR (Village of South Blooming Grove, Orange County, NY) To: Gelb Simon <gelbsimon@gmail.com>

Cc: "Petronella, John W (DEC)" <john.petronella@dec.ny.gov>

Simon,

I concur with the conclusions shown on page 6 of the report.

4.0 CONCLUSIONS

Based on the implementation of the remedial actions described in Section 3, Tenen has the following conclusions:

One 4,900-gallon out-of-service aboveground fuel oil tank was removed and disposed off-site in accordance with the NYSDEC PBS requirements and the tank was administratively closed in NYSDEC's records.

- One 550-gallon water tank was removed and disposed off-site.
- · Solid waste at the Site was collected, removed and disposed off-site.
- Scrap metal, including discarded tanks, were removed and disposed off-site.

Soil with elevated levels of SVOCs was capped with two-feet of material that meets the NYSDEC Unrestricted Use SCOs to prevent the direct contact.

This report will be filed as the Tank Closure Report for PBS 3-601349. No further action is required by DEC regulations.

Ed Moore Environmental Engineer 3 DER Supervisor, Region 3 21 South Putt Corners Road New Paltz, NY 12561 (845) 256-3137